1 | #include "erfa.h"
|
---|
2 |
|
---|
3 | int eraApio13(double utc1, double utc2, double dut1,
|
---|
4 | double elong, double phi, double hm, double xp, double yp,
|
---|
5 | double phpa, double tc, double rh, double wl,
|
---|
6 | eraASTROM *astrom)
|
---|
7 | /*
|
---|
8 | ** - - - - - - - - - -
|
---|
9 | ** e r a A p i o 1 3
|
---|
10 | ** - - - - - - - - - -
|
---|
11 | **
|
---|
12 | ** For a terrestrial observer, prepare star-independent astrometry
|
---|
13 | ** parameters for transformations between CIRS and observed
|
---|
14 | ** coordinates. The caller supplies UTC, site coordinates, ambient air
|
---|
15 | ** conditions and observing wavelength.
|
---|
16 | **
|
---|
17 | ** Given:
|
---|
18 | ** utc1 double UTC as a 2-part...
|
---|
19 | ** utc2 double ...quasi Julian Date (Notes 1,2)
|
---|
20 | ** dut1 double UT1-UTC (seconds)
|
---|
21 | ** elong double longitude (radians, east +ve, Note 3)
|
---|
22 | ** phi double geodetic latitude (radians, Note 3)
|
---|
23 | ** hm double height above ellipsoid (m, geodetic Notes 4,6)
|
---|
24 | ** xp,yp double polar motion coordinates (radians, Note 5)
|
---|
25 | ** phpa double pressure at the observer (hPa = mB, Note 6)
|
---|
26 | ** tc double ambient temperature at the observer (deg C)
|
---|
27 | ** rh double relative humidity at the observer (range 0-1)
|
---|
28 | ** wl double wavelength (micrometers, Note 7)
|
---|
29 | **
|
---|
30 | ** Returned:
|
---|
31 | ** astrom eraASTROM* star-independent astrometry parameters:
|
---|
32 | ** pmt double unchanged
|
---|
33 | ** eb double[3] unchanged
|
---|
34 | ** eh double[3] unchanged
|
---|
35 | ** em double unchanged
|
---|
36 | ** v double[3] unchanged
|
---|
37 | ** bm1 double unchanged
|
---|
38 | ** bpn double[3][3] unchanged
|
---|
39 | ** along double longitude + s' (radians)
|
---|
40 | ** xpl double polar motion xp wrt local meridian (radians)
|
---|
41 | ** ypl double polar motion yp wrt local meridian (radians)
|
---|
42 | ** sphi double sine of geodetic latitude
|
---|
43 | ** cphi double cosine of geodetic latitude
|
---|
44 | ** diurab double magnitude of diurnal aberration vector
|
---|
45 | ** eral double "local" Earth rotation angle (radians)
|
---|
46 | ** refa double refraction constant A (radians)
|
---|
47 | ** refb double refraction constant B (radians)
|
---|
48 | **
|
---|
49 | ** Returned (function value):
|
---|
50 | ** int status: +1 = dubious year (Note 2)
|
---|
51 | ** 0 = OK
|
---|
52 | ** -1 = unacceptable date
|
---|
53 | **
|
---|
54 | ** Notes:
|
---|
55 | **
|
---|
56 | ** 1) utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
|
---|
57 | ** convenient way between the two arguments, for example where utc1
|
---|
58 | ** is the Julian Day Number and utc2 is the fraction of a day.
|
---|
59 | **
|
---|
60 | ** However, JD cannot unambiguously represent UTC during a leap
|
---|
61 | ** second unless special measures are taken. The convention in the
|
---|
62 | ** present function is that the JD day represents UTC days whether
|
---|
63 | ** the length is 86399, 86400 or 86401 SI seconds.
|
---|
64 | **
|
---|
65 | ** Applications should use the function eraDtf2d to convert from
|
---|
66 | ** calendar date and time of day into 2-part quasi Julian Date, as
|
---|
67 | ** it implements the leap-second-ambiguity convention just
|
---|
68 | ** described.
|
---|
69 | **
|
---|
70 | ** 2) The warning status "dubious year" flags UTCs that predate the
|
---|
71 | ** introduction of the time scale or that are too far in the future
|
---|
72 | ** to be trusted. See eraDat for further details.
|
---|
73 | **
|
---|
74 | ** 3) UT1-UTC is tabulated in IERS bulletins. It increases by exactly
|
---|
75 | ** one second at the end of each positive UTC leap second,
|
---|
76 | ** introduced in order to keep UT1-UTC within +/- 0.9s. n.b. This
|
---|
77 | ** practice is under review, and in the future UT1-UTC may grow
|
---|
78 | ** essentially without limit.
|
---|
79 | **
|
---|
80 | ** 4) The geographical coordinates are with respect to the ERFA_WGS84
|
---|
81 | ** reference ellipsoid. TAKE CARE WITH THE LONGITUDE SIGN: the
|
---|
82 | ** longitude required by the present function is east-positive
|
---|
83 | ** (i.e. right-handed), in accordance with geographical convention.
|
---|
84 | **
|
---|
85 | ** 5) The polar motion xp,yp can be obtained from IERS bulletins. The
|
---|
86 | ** values are the coordinates (in radians) of the Celestial
|
---|
87 | ** Intermediate Pole with respect to the International Terrestrial
|
---|
88 | ** Reference System (see IERS Conventions 2003), measured along the
|
---|
89 | ** meridians 0 and 90 deg west respectively. For many applications,
|
---|
90 | ** xp and yp can be set to zero.
|
---|
91 | **
|
---|
92 | ** Internally, the polar motion is stored in a form rotated onto
|
---|
93 | ** the local meridian.
|
---|
94 | **
|
---|
95 | ** 6) If hm, the height above the ellipsoid of the observing station
|
---|
96 | ** in meters, is not known but phpa, the pressure in hPa (=mB), is
|
---|
97 | ** available, an adequate estimate of hm can be obtained from the
|
---|
98 | ** expression
|
---|
99 | **
|
---|
100 | ** hm = -29.3 * tsl * log ( phpa / 1013.25 );
|
---|
101 | **
|
---|
102 | ** where tsl is the approximate sea-level air temperature in K
|
---|
103 | ** (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
|
---|
104 | ** 52). Similarly, if the pressure phpa is not known, it can be
|
---|
105 | ** estimated from the height of the observing station, hm, as
|
---|
106 | ** follows:
|
---|
107 | **
|
---|
108 | ** phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );
|
---|
109 | **
|
---|
110 | ** Note, however, that the refraction is nearly proportional to the
|
---|
111 | ** pressure and that an accurate phpa value is important for
|
---|
112 | ** precise work.
|
---|
113 | **
|
---|
114 | ** 7) The argument wl specifies the observing wavelength in
|
---|
115 | ** micrometers. The transition from optical to radio is assumed to
|
---|
116 | ** occur at 100 micrometers (about 3000 GHz).
|
---|
117 | **
|
---|
118 | ** 8) It is advisable to take great care with units, as even unlikely
|
---|
119 | ** values of the input parameters are accepted and processed in
|
---|
120 | ** accordance with the models used.
|
---|
121 | **
|
---|
122 | ** 9) In cases where the caller wishes to supply his own Earth
|
---|
123 | ** rotation information and refraction constants, the function
|
---|
124 | ** eraApc can be used instead of the present function.
|
---|
125 | **
|
---|
126 | ** 10) This is one of several functions that inserts into the astrom
|
---|
127 | ** structure star-independent parameters needed for the chain of
|
---|
128 | ** astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
|
---|
129 | **
|
---|
130 | ** The various functions support different classes of observer and
|
---|
131 | ** portions of the transformation chain:
|
---|
132 | **
|
---|
133 | ** functions observer transformation
|
---|
134 | **
|
---|
135 | ** eraApcg eraApcg13 geocentric ICRS <-> GCRS
|
---|
136 | ** eraApci eraApci13 terrestrial ICRS <-> CIRS
|
---|
137 | ** eraApco eraApco13 terrestrial ICRS <-> observed
|
---|
138 | ** eraApcs eraApcs13 space ICRS <-> GCRS
|
---|
139 | ** eraAper eraAper13 terrestrial update Earth rotation
|
---|
140 | ** eraApio eraApio13 terrestrial CIRS <-> observed
|
---|
141 | **
|
---|
142 | ** Those with names ending in "13" use contemporary ERFA models to
|
---|
143 | ** compute the various ephemerides. The others accept ephemerides
|
---|
144 | ** supplied by the caller.
|
---|
145 | **
|
---|
146 | ** The transformation from ICRS to GCRS covers space motion,
|
---|
147 | ** parallax, light deflection, and aberration. From GCRS to CIRS
|
---|
148 | ** comprises frame bias and precession-nutation. From CIRS to
|
---|
149 | ** observed takes account of Earth rotation, polar motion, diurnal
|
---|
150 | ** aberration and parallax (unless subsumed into the ICRS <-> GCRS
|
---|
151 | ** transformation), and atmospheric refraction.
|
---|
152 | **
|
---|
153 | ** 11) The context structure astrom produced by this function is used
|
---|
154 | ** by eraAtioq and eraAtoiq.
|
---|
155 | **
|
---|
156 | ** Called:
|
---|
157 | ** eraUtctai UTC to TAI
|
---|
158 | ** eraTaitt TAI to TT
|
---|
159 | ** eraUtcut1 UTC to UT1
|
---|
160 | ** eraSp00 the TIO locator s', IERS 2000
|
---|
161 | ** eraEra00 Earth rotation angle, IAU 2000
|
---|
162 | ** eraRefco refraction constants for given ambient conditions
|
---|
163 | ** eraApio astrometry parameters, CIRS-observed
|
---|
164 | **
|
---|
165 | ** Copyright (C) 2013-2017, NumFOCUS Foundation.
|
---|
166 | ** Derived, with permission, from the SOFA library. See notes at end of file.
|
---|
167 | */
|
---|
168 | {
|
---|
169 | int j;
|
---|
170 | double tai1, tai2, tt1, tt2, ut11, ut12, sp, theta, refa, refb;
|
---|
171 |
|
---|
172 |
|
---|
173 | /* UTC to other time scales. */
|
---|
174 | j = eraUtctai(utc1, utc2, &tai1, &tai2);
|
---|
175 | if ( j < 0 ) return -1;
|
---|
176 | j = eraTaitt(tai1, tai2, &tt1, &tt2);
|
---|
177 | j = eraUtcut1(utc1, utc2, dut1, &ut11, &ut12);
|
---|
178 | if ( j < 0 ) return -1;
|
---|
179 |
|
---|
180 | /* TIO locator s'. */
|
---|
181 | sp = eraSp00(tt1, tt2);
|
---|
182 |
|
---|
183 | /* Earth rotation angle. */
|
---|
184 | theta = eraEra00(ut11, ut12);
|
---|
185 |
|
---|
186 | /* Refraction constants A and B. */
|
---|
187 | eraRefco(phpa, tc, rh, wl, &refa, &refb);
|
---|
188 |
|
---|
189 | /* CIRS <-> observed astrometry parameters. */
|
---|
190 | eraApio(sp, theta, elong, phi, hm, xp, yp, refa, refb, astrom);
|
---|
191 |
|
---|
192 | /* Return any warning status. */
|
---|
193 | return j;
|
---|
194 |
|
---|
195 | /* Finished. */
|
---|
196 |
|
---|
197 | }
|
---|
198 | /*----------------------------------------------------------------------
|
---|
199 | **
|
---|
200 | **
|
---|
201 | ** Copyright (C) 2013-2017, NumFOCUS Foundation.
|
---|
202 | ** All rights reserved.
|
---|
203 | **
|
---|
204 | ** This library is derived, with permission, from the International
|
---|
205 | ** Astronomical Union's "Standards of Fundamental Astronomy" library,
|
---|
206 | ** available from http://www.iausofa.org.
|
---|
207 | **
|
---|
208 | ** The ERFA version is intended to retain identical functionality to
|
---|
209 | ** the SOFA library, but made distinct through different function and
|
---|
210 | ** file names, as set out in the SOFA license conditions. The SOFA
|
---|
211 | ** original has a role as a reference standard for the IAU and IERS,
|
---|
212 | ** and consequently redistribution is permitted only in its unaltered
|
---|
213 | ** state. The ERFA version is not subject to this restriction and
|
---|
214 | ** therefore can be included in distributions which do not support the
|
---|
215 | ** concept of "read only" software.
|
---|
216 | **
|
---|
217 | ** Although the intent is to replicate the SOFA API (other than
|
---|
218 | ** replacement of prefix names) and results (with the exception of
|
---|
219 | ** bugs; any that are discovered will be fixed), SOFA is not
|
---|
220 | ** responsible for any errors found in this version of the library.
|
---|
221 | **
|
---|
222 | ** If you wish to acknowledge the SOFA heritage, please acknowledge
|
---|
223 | ** that you are using a library derived from SOFA, rather than SOFA
|
---|
224 | ** itself.
|
---|
225 | **
|
---|
226 | **
|
---|
227 | ** TERMS AND CONDITIONS
|
---|
228 | **
|
---|
229 | ** Redistribution and use in source and binary forms, with or without
|
---|
230 | ** modification, are permitted provided that the following conditions
|
---|
231 | ** are met:
|
---|
232 | **
|
---|
233 | ** 1 Redistributions of source code must retain the above copyright
|
---|
234 | ** notice, this list of conditions and the following disclaimer.
|
---|
235 | **
|
---|
236 | ** 2 Redistributions in binary form must reproduce the above copyright
|
---|
237 | ** notice, this list of conditions and the following disclaimer in
|
---|
238 | ** the documentation and/or other materials provided with the
|
---|
239 | ** distribution.
|
---|
240 | **
|
---|
241 | ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
|
---|
242 | ** the International Astronomical Union nor the names of its
|
---|
243 | ** contributors may be used to endorse or promote products derived
|
---|
244 | ** from this software without specific prior written permission.
|
---|
245 | **
|
---|
246 | ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
247 | ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
248 | ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
---|
249 | ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
---|
250 | ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
251 | ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
---|
252 | ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
---|
253 | ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
---|
254 | ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
255 | ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
---|
256 | ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
---|
257 | ** POSSIBILITY OF SUCH DAMAGE.
|
---|
258 | **
|
---|
259 | */
|
---|