1 | #include "erfa.h"
|
---|
2 |
|
---|
3 | void eraAticqn(double ri, double di, eraASTROM *astrom,
|
---|
4 | int n, eraLDBODY b[], double *rc, double *dc)
|
---|
5 | /*
|
---|
6 | ** - - - - - - - - -
|
---|
7 | ** e r a A t i c q n
|
---|
8 | ** - - - - - - - - -
|
---|
9 | **
|
---|
10 | ** Quick CIRS to ICRS astrometric place transformation, given the star-
|
---|
11 | ** independent astrometry parameters plus a list of light-deflecting
|
---|
12 | ** bodies.
|
---|
13 | **
|
---|
14 | ** Use of this function is appropriate when efficiency is important and
|
---|
15 | ** where many star positions are all to be transformed for one date.
|
---|
16 | ** The star-independent astrometry parameters can be obtained by
|
---|
17 | ** calling one of the functions eraApci[13], eraApcg[13], eraApco[13]
|
---|
18 | ** or eraApcs[13].
|
---|
19 | *
|
---|
20 | * If the only light-deflecting body to be taken into account is the
|
---|
21 | * Sun, the eraAticq function can be used instead.
|
---|
22 | **
|
---|
23 | ** Given:
|
---|
24 | ** ri,di double CIRS RA,Dec (radians)
|
---|
25 | ** astrom eraASTROM* star-independent astrometry parameters:
|
---|
26 | ** pmt double PM time interval (SSB, Julian years)
|
---|
27 | ** eb double[3] SSB to observer (vector, au)
|
---|
28 | ** eh double[3] Sun to observer (unit vector)
|
---|
29 | ** em double distance from Sun to observer (au)
|
---|
30 | ** v double[3] barycentric observer velocity (vector, c)
|
---|
31 | ** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor
|
---|
32 | ** bpn double[3][3] bias-precession-nutation matrix
|
---|
33 | ** along double longitude + s' (radians)
|
---|
34 | ** xpl double polar motion xp wrt local meridian (radians)
|
---|
35 | ** ypl double polar motion yp wrt local meridian (radians)
|
---|
36 | ** sphi double sine of geodetic latitude
|
---|
37 | ** cphi double cosine of geodetic latitude
|
---|
38 | ** diurab double magnitude of diurnal aberration vector
|
---|
39 | ** eral double "local" Earth rotation angle (radians)
|
---|
40 | ** refa double refraction constant A (radians)
|
---|
41 | ** refb double refraction constant B (radians)
|
---|
42 | ** n int number of bodies (Note 3)
|
---|
43 | ** b eraLDBODY[n] data for each of the n bodies (Notes 3,4):
|
---|
44 | ** bm double mass of the body (solar masses, Note 5)
|
---|
45 | ** dl double deflection limiter (Note 6)
|
---|
46 | ** pv [2][3] barycentric PV of the body (au, au/day)
|
---|
47 | **
|
---|
48 | ** Returned:
|
---|
49 | ** rc,dc double ICRS astrometric RA,Dec (radians)
|
---|
50 | **
|
---|
51 | ** Notes:
|
---|
52 | **
|
---|
53 | ** 1) Iterative techniques are used for the aberration and light
|
---|
54 | ** deflection corrections so that the functions eraAticqn and
|
---|
55 | ** eraAtciqn are accurate inverses; even at the edge of the Sun's
|
---|
56 | ** disk the discrepancy is only about 1 nanoarcsecond.
|
---|
57 | **
|
---|
58 | ** 2) If the only light-deflecting body to be taken into account is the
|
---|
59 | ** Sun, the eraAticq function can be used instead.
|
---|
60 | **
|
---|
61 | ** 3) The struct b contains n entries, one for each body to be
|
---|
62 | ** considered. If n = 0, no gravitational light deflection will be
|
---|
63 | ** applied, not even for the Sun.
|
---|
64 | **
|
---|
65 | ** 4) The struct b should include an entry for the Sun as well as for
|
---|
66 | ** any planet or other body to be taken into account. The entries
|
---|
67 | ** should be in the order in which the light passes the body.
|
---|
68 | **
|
---|
69 | ** 5) In the entry in the b struct for body i, the mass parameter
|
---|
70 | ** b[i].bm can, as required, be adjusted in order to allow for such
|
---|
71 | ** effects as quadrupole field.
|
---|
72 | **
|
---|
73 | ** 6) The deflection limiter parameter b[i].dl is phi^2/2, where phi is
|
---|
74 | ** the angular separation (in radians) between star and body at
|
---|
75 | ** which limiting is applied. As phi shrinks below the chosen
|
---|
76 | ** threshold, the deflection is artificially reduced, reaching zero
|
---|
77 | ** for phi = 0. Example values suitable for a terrestrial
|
---|
78 | ** observer, together with masses, are as follows:
|
---|
79 | **
|
---|
80 | ** body i b[i].bm b[i].dl
|
---|
81 | **
|
---|
82 | ** Sun 1.0 6e-6
|
---|
83 | ** Jupiter 0.00095435 3e-9
|
---|
84 | ** Saturn 0.00028574 3e-10
|
---|
85 | **
|
---|
86 | ** 7) For efficiency, validation of the contents of the b array is
|
---|
87 | ** omitted. The supplied masses must be greater than zero, the
|
---|
88 | ** position and velocity vectors must be right, and the deflection
|
---|
89 | ** limiter greater than zero.
|
---|
90 | **
|
---|
91 | ** Called:
|
---|
92 | ** eraS2c spherical coordinates to unit vector
|
---|
93 | ** eraTrxp product of transpose of r-matrix and p-vector
|
---|
94 | ** eraZp zero p-vector
|
---|
95 | ** eraAb stellar aberration
|
---|
96 | ** eraLdn light deflection by n bodies
|
---|
97 | ** eraC2s p-vector to spherical
|
---|
98 | ** eraAnp normalize angle into range +/- pi
|
---|
99 | **
|
---|
100 | ** Copyright (C) 2013-2017, NumFOCUS Foundation.
|
---|
101 | ** Derived, with permission, from the SOFA library. See notes at end of file.
|
---|
102 | */
|
---|
103 | {
|
---|
104 | int j, i;
|
---|
105 | double pi[3], ppr[3], pnat[3], pco[3], w, d[3], before[3], r2, r,
|
---|
106 | after[3];
|
---|
107 |
|
---|
108 |
|
---|
109 | /* CIRS RA,Dec to Cartesian. */
|
---|
110 | eraS2c(ri, di, pi);
|
---|
111 |
|
---|
112 | /* Bias-precession-nutation, giving GCRS proper direction. */
|
---|
113 | eraTrxp(astrom->bpn, pi, ppr);
|
---|
114 |
|
---|
115 | /* Aberration, giving GCRS natural direction. */
|
---|
116 | eraZp(d);
|
---|
117 | for (j = 0; j < 2; j++) {
|
---|
118 | r2 = 0.0;
|
---|
119 | for (i = 0; i < 3; i++) {
|
---|
120 | w = ppr[i] - d[i];
|
---|
121 | before[i] = w;
|
---|
122 | r2 += w*w;
|
---|
123 | }
|
---|
124 | r = sqrt(r2);
|
---|
125 | for (i = 0; i < 3; i++) {
|
---|
126 | before[i] /= r;
|
---|
127 | }
|
---|
128 | eraAb(before, astrom->v, astrom->em, astrom->bm1, after);
|
---|
129 | r2 = 0.0;
|
---|
130 | for (i = 0; i < 3; i++) {
|
---|
131 | d[i] = after[i] - before[i];
|
---|
132 | w = ppr[i] - d[i];
|
---|
133 | pnat[i] = w;
|
---|
134 | r2 += w*w;
|
---|
135 | }
|
---|
136 | r = sqrt(r2);
|
---|
137 | for (i = 0; i < 3; i++) {
|
---|
138 | pnat[i] /= r;
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | /* Light deflection, giving BCRS coordinate direction. */
|
---|
143 | eraZp(d);
|
---|
144 | for (j = 0; j < 5; j++) {
|
---|
145 | r2 = 0.0;
|
---|
146 | for (i = 0; i < 3; i++) {
|
---|
147 | w = pnat[i] - d[i];
|
---|
148 | before[i] = w;
|
---|
149 | r2 += w*w;
|
---|
150 | }
|
---|
151 | r = sqrt(r2);
|
---|
152 | for (i = 0; i < 3; i++) {
|
---|
153 | before[i] /= r;
|
---|
154 | }
|
---|
155 | eraLdn(n, b, astrom->eb, before, after);
|
---|
156 | r2 = 0.0;
|
---|
157 | for (i = 0; i < 3; i++) {
|
---|
158 | d[i] = after[i] - before[i];
|
---|
159 | w = pnat[i] - d[i];
|
---|
160 | pco[i] = w;
|
---|
161 | r2 += w*w;
|
---|
162 | }
|
---|
163 | r = sqrt(r2);
|
---|
164 | for (i = 0; i < 3; i++) {
|
---|
165 | pco[i] /= r;
|
---|
166 | }
|
---|
167 | }
|
---|
168 |
|
---|
169 | /* ICRS astrometric RA,Dec. */
|
---|
170 | eraC2s(pco, &w, dc);
|
---|
171 | *rc = eraAnp(w);
|
---|
172 |
|
---|
173 | /* Finished. */
|
---|
174 |
|
---|
175 | }
|
---|
176 | /*----------------------------------------------------------------------
|
---|
177 | **
|
---|
178 | **
|
---|
179 | ** Copyright (C) 2013-2017, NumFOCUS Foundation.
|
---|
180 | ** All rights reserved.
|
---|
181 | **
|
---|
182 | ** This library is derived, with permission, from the International
|
---|
183 | ** Astronomical Union's "Standards of Fundamental Astronomy" library,
|
---|
184 | ** available from http://www.iausofa.org.
|
---|
185 | **
|
---|
186 | ** The ERFA version is intended to retain identical functionality to
|
---|
187 | ** the SOFA library, but made distinct through different function and
|
---|
188 | ** file names, as set out in the SOFA license conditions. The SOFA
|
---|
189 | ** original has a role as a reference standard for the IAU and IERS,
|
---|
190 | ** and consequently redistribution is permitted only in its unaltered
|
---|
191 | ** state. The ERFA version is not subject to this restriction and
|
---|
192 | ** therefore can be included in distributions which do not support the
|
---|
193 | ** concept of "read only" software.
|
---|
194 | **
|
---|
195 | ** Although the intent is to replicate the SOFA API (other than
|
---|
196 | ** replacement of prefix names) and results (with the exception of
|
---|
197 | ** bugs; any that are discovered will be fixed), SOFA is not
|
---|
198 | ** responsible for any errors found in this version of the library.
|
---|
199 | **
|
---|
200 | ** If you wish to acknowledge the SOFA heritage, please acknowledge
|
---|
201 | ** that you are using a library derived from SOFA, rather than SOFA
|
---|
202 | ** itself.
|
---|
203 | **
|
---|
204 | **
|
---|
205 | ** TERMS AND CONDITIONS
|
---|
206 | **
|
---|
207 | ** Redistribution and use in source and binary forms, with or without
|
---|
208 | ** modification, are permitted provided that the following conditions
|
---|
209 | ** are met:
|
---|
210 | **
|
---|
211 | ** 1 Redistributions of source code must retain the above copyright
|
---|
212 | ** notice, this list of conditions and the following disclaimer.
|
---|
213 | **
|
---|
214 | ** 2 Redistributions in binary form must reproduce the above copyright
|
---|
215 | ** notice, this list of conditions and the following disclaimer in
|
---|
216 | ** the documentation and/or other materials provided with the
|
---|
217 | ** distribution.
|
---|
218 | **
|
---|
219 | ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
|
---|
220 | ** the International Astronomical Union nor the names of its
|
---|
221 | ** contributors may be used to endorse or promote products derived
|
---|
222 | ** from this software without specific prior written permission.
|
---|
223 | **
|
---|
224 | ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
225 | ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
226 | ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
---|
227 | ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
---|
228 | ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
229 | ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
---|
230 | ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
---|
231 | ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
---|
232 | ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
233 | ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
---|
234 | ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
---|
235 | ** POSSIBILITY OF SUCH DAMAGE.
|
---|
236 | **
|
---|
237 | */
|
---|