| 1 | #include "erfa.h"
|
|---|
| 2 |
|
|---|
| 3 | void eraPn06(double date1, double date2, double dpsi, double deps,
|
|---|
| 4 | double *epsa,
|
|---|
| 5 | double rb[3][3], double rp[3][3], double rbp[3][3],
|
|---|
| 6 | double rn[3][3], double rbpn[3][3])
|
|---|
| 7 | /*
|
|---|
| 8 | ** - - - - - - - -
|
|---|
| 9 | ** e r a P n 0 6
|
|---|
| 10 | ** - - - - - - - -
|
|---|
| 11 | **
|
|---|
| 12 | ** Precession-nutation, IAU 2006 model: a multi-purpose function,
|
|---|
| 13 | ** supporting classical (equinox-based) use directly and CIO-based use
|
|---|
| 14 | ** indirectly.
|
|---|
| 15 | **
|
|---|
| 16 | ** Given:
|
|---|
| 17 | ** date1,date2 double TT as a 2-part Julian Date (Note 1)
|
|---|
| 18 | ** dpsi,deps double nutation (Note 2)
|
|---|
| 19 | **
|
|---|
| 20 | ** Returned:
|
|---|
| 21 | ** epsa double mean obliquity (Note 3)
|
|---|
| 22 | ** rb double[3][3] frame bias matrix (Note 4)
|
|---|
| 23 | ** rp double[3][3] precession matrix (Note 5)
|
|---|
| 24 | ** rbp double[3][3] bias-precession matrix (Note 6)
|
|---|
| 25 | ** rn double[3][3] nutation matrix (Note 7)
|
|---|
| 26 | ** rbpn double[3][3] GCRS-to-true matrix (Note 8)
|
|---|
| 27 | **
|
|---|
| 28 | ** Notes:
|
|---|
| 29 | **
|
|---|
| 30 | ** 1) The TT date date1+date2 is a Julian Date, apportioned in any
|
|---|
| 31 | ** convenient way between the two arguments. For example,
|
|---|
| 32 | ** JD(TT)=2450123.7 could be expressed in any of these ways,
|
|---|
| 33 | ** among others:
|
|---|
| 34 | **
|
|---|
| 35 | ** date1 date2
|
|---|
| 36 | **
|
|---|
| 37 | ** 2450123.7 0.0 (JD method)
|
|---|
| 38 | ** 2451545.0 -1421.3 (J2000 method)
|
|---|
| 39 | ** 2400000.5 50123.2 (MJD method)
|
|---|
| 40 | ** 2450123.5 0.2 (date & time method)
|
|---|
| 41 | **
|
|---|
| 42 | ** The JD method is the most natural and convenient to use in
|
|---|
| 43 | ** cases where the loss of several decimal digits of resolution
|
|---|
| 44 | ** is acceptable. The J2000 method is best matched to the way
|
|---|
| 45 | ** the argument is handled internally and will deliver the
|
|---|
| 46 | ** optimum resolution. The MJD method and the date & time methods
|
|---|
| 47 | ** are both good compromises between resolution and convenience.
|
|---|
| 48 | **
|
|---|
| 49 | ** 2) The caller is responsible for providing the nutation components;
|
|---|
| 50 | ** they are in longitude and obliquity, in radians and are with
|
|---|
| 51 | ** respect to the equinox and ecliptic of date. For high-accuracy
|
|---|
| 52 | ** applications, free core nutation should be included as well as
|
|---|
| 53 | ** any other relevant corrections to the position of the CIP.
|
|---|
| 54 | **
|
|---|
| 55 | ** 3) The returned mean obliquity is consistent with the IAU 2006
|
|---|
| 56 | ** precession.
|
|---|
| 57 | **
|
|---|
| 58 | ** 4) The matrix rb transforms vectors from GCRS to J2000.0 mean
|
|---|
| 59 | ** equator and equinox by applying frame bias.
|
|---|
| 60 | **
|
|---|
| 61 | ** 5) The matrix rp transforms vectors from J2000.0 mean equator and
|
|---|
| 62 | ** equinox to mean equator and equinox of date by applying
|
|---|
| 63 | ** precession.
|
|---|
| 64 | **
|
|---|
| 65 | ** 6) The matrix rbp transforms vectors from GCRS to mean equator and
|
|---|
| 66 | ** equinox of date by applying frame bias then precession. It is
|
|---|
| 67 | ** the product rp x rb.
|
|---|
| 68 | **
|
|---|
| 69 | ** 7) The matrix rn transforms vectors from mean equator and equinox
|
|---|
| 70 | ** of date to true equator and equinox of date by applying the
|
|---|
| 71 | ** nutation (luni-solar + planetary).
|
|---|
| 72 | **
|
|---|
| 73 | ** 8) The matrix rbpn transforms vectors from GCRS to true equator and
|
|---|
| 74 | ** equinox of date. It is the product rn x rbp, applying frame
|
|---|
| 75 | ** bias, precession and nutation in that order.
|
|---|
| 76 | **
|
|---|
| 77 | ** 9) The X,Y,Z coordinates of the Celestial Intermediate Pole are
|
|---|
| 78 | ** elements (3,1-3) of the GCRS-to-true matrix, i.e. rbpn[2][0-2].
|
|---|
| 79 | **
|
|---|
| 80 | ** 10) It is permissible to re-use the same array in the returned
|
|---|
| 81 | ** arguments. The arrays are filled in the stated order.
|
|---|
| 82 | **
|
|---|
| 83 | ** Called:
|
|---|
| 84 | ** eraPfw06 bias-precession F-W angles, IAU 2006
|
|---|
| 85 | ** eraFw2m F-W angles to r-matrix
|
|---|
| 86 | ** eraCr copy r-matrix
|
|---|
| 87 | ** eraTr transpose r-matrix
|
|---|
| 88 | ** eraRxr product of two r-matrices
|
|---|
| 89 | **
|
|---|
| 90 | ** References:
|
|---|
| 91 | **
|
|---|
| 92 | ** Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855
|
|---|
| 93 | **
|
|---|
| 94 | ** Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981
|
|---|
| 95 | **
|
|---|
| 96 | ** Copyright (C) 2013-2017, NumFOCUS Foundation.
|
|---|
| 97 | ** Derived, with permission, from the SOFA library. See notes at end of file.
|
|---|
| 98 | */
|
|---|
| 99 | {
|
|---|
| 100 | double gamb, phib, psib, eps, r1[3][3], r2[3][3], rt[3][3];
|
|---|
| 101 |
|
|---|
| 102 |
|
|---|
| 103 | /* Bias-precession Fukushima-Williams angles of J2000.0 = frame bias. */
|
|---|
| 104 | eraPfw06(ERFA_DJM0, ERFA_DJM00, &gamb, &phib, &psib, &eps);
|
|---|
| 105 |
|
|---|
| 106 | /* B matrix. */
|
|---|
| 107 | eraFw2m(gamb, phib, psib, eps, r1);
|
|---|
| 108 | eraCr(r1, rb);
|
|---|
| 109 |
|
|---|
| 110 | /* Bias-precession Fukushima-Williams angles of date. */
|
|---|
| 111 | eraPfw06(date1, date2, &gamb, &phib, &psib, &eps);
|
|---|
| 112 |
|
|---|
| 113 | /* Bias-precession matrix. */
|
|---|
| 114 | eraFw2m(gamb, phib, psib, eps, r2);
|
|---|
| 115 | eraCr(r2, rbp);
|
|---|
| 116 |
|
|---|
| 117 | /* Solve for precession matrix. */
|
|---|
| 118 | eraTr(r1, rt);
|
|---|
| 119 | eraRxr(r2, rt, rp);
|
|---|
| 120 |
|
|---|
| 121 | /* Equinox-based bias-precession-nutation matrix. */
|
|---|
| 122 | eraFw2m(gamb, phib, psib + dpsi, eps + deps, r1);
|
|---|
| 123 | eraCr(r1, rbpn);
|
|---|
| 124 |
|
|---|
| 125 | /* Solve for nutation matrix. */
|
|---|
| 126 | eraTr(r2, rt);
|
|---|
| 127 | eraRxr(r1, rt, rn);
|
|---|
| 128 |
|
|---|
| 129 | /* Obliquity, mean of date. */
|
|---|
| 130 | *epsa = eps;
|
|---|
| 131 |
|
|---|
| 132 | return;
|
|---|
| 133 |
|
|---|
| 134 | }
|
|---|
| 135 | /*----------------------------------------------------------------------
|
|---|
| 136 | **
|
|---|
| 137 | **
|
|---|
| 138 | ** Copyright (C) 2013-2017, NumFOCUS Foundation.
|
|---|
| 139 | ** All rights reserved.
|
|---|
| 140 | **
|
|---|
| 141 | ** This library is derived, with permission, from the International
|
|---|
| 142 | ** Astronomical Union's "Standards of Fundamental Astronomy" library,
|
|---|
| 143 | ** available from http://www.iausofa.org.
|
|---|
| 144 | **
|
|---|
| 145 | ** The ERFA version is intended to retain identical functionality to
|
|---|
| 146 | ** the SOFA library, but made distinct through different function and
|
|---|
| 147 | ** file names, as set out in the SOFA license conditions. The SOFA
|
|---|
| 148 | ** original has a role as a reference standard for the IAU and IERS,
|
|---|
| 149 | ** and consequently redistribution is permitted only in its unaltered
|
|---|
| 150 | ** state. The ERFA version is not subject to this restriction and
|
|---|
| 151 | ** therefore can be included in distributions which do not support the
|
|---|
| 152 | ** concept of "read only" software.
|
|---|
| 153 | **
|
|---|
| 154 | ** Although the intent is to replicate the SOFA API (other than
|
|---|
| 155 | ** replacement of prefix names) and results (with the exception of
|
|---|
| 156 | ** bugs; any that are discovered will be fixed), SOFA is not
|
|---|
| 157 | ** responsible for any errors found in this version of the library.
|
|---|
| 158 | **
|
|---|
| 159 | ** If you wish to acknowledge the SOFA heritage, please acknowledge
|
|---|
| 160 | ** that you are using a library derived from SOFA, rather than SOFA
|
|---|
| 161 | ** itself.
|
|---|
| 162 | **
|
|---|
| 163 | **
|
|---|
| 164 | ** TERMS AND CONDITIONS
|
|---|
| 165 | **
|
|---|
| 166 | ** Redistribution and use in source and binary forms, with or without
|
|---|
| 167 | ** modification, are permitted provided that the following conditions
|
|---|
| 168 | ** are met:
|
|---|
| 169 | **
|
|---|
| 170 | ** 1 Redistributions of source code must retain the above copyright
|
|---|
| 171 | ** notice, this list of conditions and the following disclaimer.
|
|---|
| 172 | **
|
|---|
| 173 | ** 2 Redistributions in binary form must reproduce the above copyright
|
|---|
| 174 | ** notice, this list of conditions and the following disclaimer in
|
|---|
| 175 | ** the documentation and/or other materials provided with the
|
|---|
| 176 | ** distribution.
|
|---|
| 177 | **
|
|---|
| 178 | ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
|
|---|
| 179 | ** the International Astronomical Union nor the names of its
|
|---|
| 180 | ** contributors may be used to endorse or promote products derived
|
|---|
| 181 | ** from this software without specific prior written permission.
|
|---|
| 182 | **
|
|---|
| 183 | ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|---|
| 184 | ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|---|
| 185 | ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|---|
| 186 | ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|---|
| 187 | ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|---|
| 188 | ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|---|
| 189 | ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|---|
| 190 | ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|---|
| 191 | ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|---|
| 192 | ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|---|
| 193 | ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|---|
| 194 | ** POSSIBILITY OF SUCH DAMAGE.
|
|---|
| 195 | **
|
|---|
| 196 | */
|
|---|