#include "erfa.h" void eraPn06(double date1, double date2, double dpsi, double deps, double *epsa, double rb[3][3], double rp[3][3], double rbp[3][3], double rn[3][3], double rbpn[3][3]) /* ** - - - - - - - - ** e r a P n 0 6 ** - - - - - - - - ** ** Precession-nutation, IAU 2006 model: a multi-purpose function, ** supporting classical (equinox-based) use directly and CIO-based use ** indirectly. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** dpsi,deps double nutation (Note 2) ** ** Returned: ** epsa double mean obliquity (Note 3) ** rb double[3][3] frame bias matrix (Note 4) ** rp double[3][3] precession matrix (Note 5) ** rbp double[3][3] bias-precession matrix (Note 6) ** rn double[3][3] nutation matrix (Note 7) ** rbpn double[3][3] GCRS-to-true matrix (Note 8) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The caller is responsible for providing the nutation components; ** they are in longitude and obliquity, in radians and are with ** respect to the equinox and ecliptic of date. For high-accuracy ** applications, free core nutation should be included as well as ** any other relevant corrections to the position of the CIP. ** ** 3) The returned mean obliquity is consistent with the IAU 2006 ** precession. ** ** 4) The matrix rb transforms vectors from GCRS to J2000.0 mean ** equator and equinox by applying frame bias. ** ** 5) The matrix rp transforms vectors from J2000.0 mean equator and ** equinox to mean equator and equinox of date by applying ** precession. ** ** 6) The matrix rbp transforms vectors from GCRS to mean equator and ** equinox of date by applying frame bias then precession. It is ** the product rp x rb. ** ** 7) The matrix rn transforms vectors from mean equator and equinox ** of date to true equator and equinox of date by applying the ** nutation (luni-solar + planetary). ** ** 8) The matrix rbpn transforms vectors from GCRS to true equator and ** equinox of date. It is the product rn x rbp, applying frame ** bias, precession and nutation in that order. ** ** 9) The X,Y,Z coordinates of the Celestial Intermediate Pole are ** elements (3,1-3) of the GCRS-to-true matrix, i.e. rbpn[2][0-2]. ** ** 10) It is permissible to re-use the same array in the returned ** arguments. The arrays are filled in the stated order. ** ** Called: ** eraPfw06 bias-precession F-W angles, IAU 2006 ** eraFw2m F-W angles to r-matrix ** eraCr copy r-matrix ** eraTr transpose r-matrix ** eraRxr product of two r-matrices ** ** References: ** ** Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855 ** ** Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981 ** ** Copyright (C) 2013-2017, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { double gamb, phib, psib, eps, r1[3][3], r2[3][3], rt[3][3]; /* Bias-precession Fukushima-Williams angles of J2000.0 = frame bias. */ eraPfw06(ERFA_DJM0, ERFA_DJM00, &gamb, &phib, &psib, &eps); /* B matrix. */ eraFw2m(gamb, phib, psib, eps, r1); eraCr(r1, rb); /* Bias-precession Fukushima-Williams angles of date. */ eraPfw06(date1, date2, &gamb, &phib, &psib, &eps); /* Bias-precession matrix. */ eraFw2m(gamb, phib, psib, eps, r2); eraCr(r2, rbp); /* Solve for precession matrix. */ eraTr(r1, rt); eraRxr(r2, rt, rp); /* Equinox-based bias-precession-nutation matrix. */ eraFw2m(gamb, phib, psib + dpsi, eps + deps, r1); eraCr(r1, rbpn); /* Solve for nutation matrix. */ eraTr(r2, rt); eraRxr(r1, rt, rn); /* Obliquity, mean of date. */ *epsa = eps; return; } /*---------------------------------------------------------------------- ** ** ** Copyright (C) 2013-2017, NumFOCUS Foundation. ** All rights reserved. ** ** This library is derived, with permission, from the International ** Astronomical Union's "Standards of Fundamental Astronomy" library, ** available from http://www.iausofa.org. ** ** The ERFA version is intended to retain identical functionality to ** the SOFA library, but made distinct through different function and ** file names, as set out in the SOFA license conditions. The SOFA ** original has a role as a reference standard for the IAU and IERS, ** and consequently redistribution is permitted only in its unaltered ** state. The ERFA version is not subject to this restriction and ** therefore can be included in distributions which do not support the ** concept of "read only" software. ** ** Although the intent is to replicate the SOFA API (other than ** replacement of prefix names) and results (with the exception of ** bugs; any that are discovered will be fixed), SOFA is not ** responsible for any errors found in this version of the library. ** ** If you wish to acknowledge the SOFA heritage, please acknowledge ** that you are using a library derived from SOFA, rather than SOFA ** itself. ** ** ** TERMS AND CONDITIONS ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1 Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** ** 2 Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in ** the documentation and/or other materials provided with the ** distribution. ** ** 3 Neither the name of the Standards Of Fundamental Astronomy Board, ** the International Astronomical Union nor the names of its ** contributors may be used to endorse or promote products derived ** from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ** POSSIBILITY OF SUCH DAMAGE. ** */