1 | /*
|
---|
2 | *+
|
---|
3 | * Name:
|
---|
4 | * palEl2ue
|
---|
5 |
|
---|
6 | * Purpose:
|
---|
7 | * Transform conventional elements into "universal" form
|
---|
8 |
|
---|
9 | * Language:
|
---|
10 | * Starlink ANSI C
|
---|
11 |
|
---|
12 | * Type of Module:
|
---|
13 | * Library routine
|
---|
14 |
|
---|
15 | * Invocation:
|
---|
16 | * void palEl2ue ( double date, int jform, double epoch, double orbinc,
|
---|
17 | * double anode, double perih, double aorq, double e,
|
---|
18 | * double aorl, double dm, double u[13], int *jstat );
|
---|
19 |
|
---|
20 | * Arguments:
|
---|
21 | * date = double (Given)
|
---|
22 | * Epoch (TT MJD) of osculation (Note 3)
|
---|
23 | * jform = int (Given)
|
---|
24 | * Element set actually returned (1-3; Note 6)
|
---|
25 | * epoch = double (Given)
|
---|
26 | * Epoch of elements (TT MJD)
|
---|
27 | * orbinc = double (Given)
|
---|
28 | * inclination (radians)
|
---|
29 | * anode = double (Given)
|
---|
30 | * longitude of the ascending node (radians)
|
---|
31 | * perih = double (Given)
|
---|
32 | * longitude or argument of perihelion (radians)
|
---|
33 | * aorq = double (Given)
|
---|
34 | * mean distance or perihelion distance (AU)
|
---|
35 | * e = double (Given)
|
---|
36 | * eccentricity
|
---|
37 | * aorl = double (Given)
|
---|
38 | * mean anomaly or longitude (radians, JFORM=1,2 only)
|
---|
39 | * dm = double (Given)
|
---|
40 | * daily motion (radians, JFORM=1 only)
|
---|
41 | * u = double [13] (Returned)
|
---|
42 | * Universal orbital elements (Note 1)
|
---|
43 | * - (0) combined mass (M+m)
|
---|
44 | * - (1) total energy of the orbit (alpha)
|
---|
45 | * - (2) reference (osculating) epoch (t0)
|
---|
46 | * - (3-5) position at reference epoch (r0)
|
---|
47 | * - (6-8) velocity at reference epoch (v0)
|
---|
48 | * - (9) heliocentric distance at reference epoch
|
---|
49 | * - (10) r0.v0
|
---|
50 | * - (11) date (t)
|
---|
51 | * - (12) universal eccentric anomaly (psi) of date, approx
|
---|
52 | * jstat = int * (Returned)
|
---|
53 | * status: 0 = OK
|
---|
54 | * - -1 = illegal JFORM
|
---|
55 | * - -2 = illegal E
|
---|
56 | * - -3 = illegal AORQ
|
---|
57 | * - -4 = illegal DM
|
---|
58 | * - -5 = numerical error
|
---|
59 |
|
---|
60 | * Description:
|
---|
61 | * Transform conventional osculating elements into "universal" form.
|
---|
62 |
|
---|
63 | * Authors:
|
---|
64 | * PTW: Pat Wallace (STFC)
|
---|
65 | * TIMJ: Tim Jenness (JAC, Hawaii)
|
---|
66 | * {enter_new_authors_here}
|
---|
67 |
|
---|
68 | * Notes:
|
---|
69 | * - The "universal" elements are those which define the orbit for the
|
---|
70 | * purposes of the method of universal variables (see reference).
|
---|
71 | * They consist of the combined mass of the two bodies, an epoch,
|
---|
72 | * and the position and velocity vectors (arbitrary reference frame)
|
---|
73 | * at that epoch. The parameter set used here includes also various
|
---|
74 | * quantities that can, in fact, be derived from the other
|
---|
75 | * information. This approach is taken to avoiding unnecessary
|
---|
76 | * computation and loss of accuracy. The supplementary quantities
|
---|
77 | * are (i) alpha, which is proportional to the total energy of the
|
---|
78 | * orbit, (ii) the heliocentric distance at epoch, (iii) the
|
---|
79 | * outwards component of the velocity at the given epoch, (iv) an
|
---|
80 | * estimate of psi, the "universal eccentric anomaly" at a given
|
---|
81 | * date and (v) that date.
|
---|
82 | * - The companion routine is palUe2pv. This takes the set of numbers
|
---|
83 | * that the present routine outputs and uses them to derive the
|
---|
84 | * object's position and velocity. A single prediction requires one
|
---|
85 | * call to the present routine followed by one call to palUe2pv;
|
---|
86 | * for convenience, the two calls are packaged as the routine
|
---|
87 | * palPlanel. Multiple predictions may be made by again calling the
|
---|
88 | * present routine once, but then calling palUe2pv multiple times,
|
---|
89 | * which is faster than multiple calls to palPlanel.
|
---|
90 | * - DATE is the epoch of osculation. It is in the TT timescale
|
---|
91 | * (formerly Ephemeris Time, ET) and is a Modified Julian Date
|
---|
92 | * (JD-2400000.5).
|
---|
93 | * - The supplied orbital elements are with respect to the J2000
|
---|
94 | * ecliptic and equinox. The position and velocity parameters
|
---|
95 | * returned in the array U are with respect to the mean equator and
|
---|
96 | * equinox of epoch J2000, and are for the perihelion prior to the
|
---|
97 | * specified epoch.
|
---|
98 | * - The universal elements returned in the array U are in canonical
|
---|
99 | * units (solar masses, AU and canonical days).
|
---|
100 | * - Three different element-format options are available:
|
---|
101 | *
|
---|
102 | * Option JFORM=1, suitable for the major planets:
|
---|
103 | *
|
---|
104 | * EPOCH = epoch of elements (TT MJD)
|
---|
105 | * ORBINC = inclination i (radians)
|
---|
106 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
107 | * PERIH = longitude of perihelion, curly pi (radians)
|
---|
108 | * AORQ = mean distance, a (AU)
|
---|
109 | * E = eccentricity, e (range 0 to <1)
|
---|
110 | * AORL = mean longitude L (radians)
|
---|
111 | * DM = daily motion (radians)
|
---|
112 | *
|
---|
113 | * Option JFORM=2, suitable for minor planets:
|
---|
114 | *
|
---|
115 | * EPOCH = epoch of elements (TT MJD)
|
---|
116 | * ORBINC = inclination i (radians)
|
---|
117 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
118 | * PERIH = argument of perihelion, little omega (radians)
|
---|
119 | * AORQ = mean distance, a (AU)
|
---|
120 | * E = eccentricity, e (range 0 to <1)
|
---|
121 | * AORL = mean anomaly M (radians)
|
---|
122 | *
|
---|
123 | * Option JFORM=3, suitable for comets:
|
---|
124 | *
|
---|
125 | * EPOCH = epoch of perihelion (TT MJD)
|
---|
126 | * ORBINC = inclination i (radians)
|
---|
127 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
128 | * PERIH = argument of perihelion, little omega (radians)
|
---|
129 | * AORQ = perihelion distance, q (AU)
|
---|
130 | * E = eccentricity, e (range 0 to 10)
|
---|
131 | *
|
---|
132 | * - Unused elements (DM for JFORM=2, AORL and DM for JFORM=3) are
|
---|
133 | * not accessed.
|
---|
134 | * - The algorithm was originally adapted from the EPHSLA program of
|
---|
135 | * D.H.P.Jones (private communication, 1996). The method is based
|
---|
136 | * on Stumpff's Universal Variables.
|
---|
137 | *
|
---|
138 | * See Also:
|
---|
139 | * Everhart & Pitkin, Am.J.Phys. 51, 712 (1983).
|
---|
140 |
|
---|
141 | * History:
|
---|
142 | * 2012-03-12 (TIMJ):
|
---|
143 | * Initial version taken directly from SLA/F.
|
---|
144 | * Adapted with permission from the Fortran SLALIB library.
|
---|
145 | * {enter_further_changes_here}
|
---|
146 |
|
---|
147 | * Copyright:
|
---|
148 | * Copyright (C) 2005 Patrick T. Wallace
|
---|
149 | * Copyright (C) 2012 Science and Technology Facilities Council.
|
---|
150 | * All Rights Reserved.
|
---|
151 |
|
---|
152 | * Licence:
|
---|
153 | * This program is free software; you can redistribute it and/or
|
---|
154 | * modify it under the terms of the GNU General Public License as
|
---|
155 | * published by the Free Software Foundation; either version 3 of
|
---|
156 | * the License, or (at your option) any later version.
|
---|
157 | *
|
---|
158 | * This program is distributed in the hope that it will be
|
---|
159 | * useful, but WITHOUT ANY WARRANTY; without even the implied
|
---|
160 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
---|
161 | * PURPOSE. See the GNU General Public License for more details.
|
---|
162 | *
|
---|
163 | * You should have received a copy of the GNU General Public License
|
---|
164 | * along with this program; if not, write to the Free Software
|
---|
165 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
---|
166 | * MA 02110-1301, USA.
|
---|
167 |
|
---|
168 | * Bugs:
|
---|
169 | * {note_any_bugs_here}
|
---|
170 | *-
|
---|
171 | */
|
---|
172 |
|
---|
173 | #include <math.h>
|
---|
174 |
|
---|
175 | #include "pal.h"
|
---|
176 | #include "palmac.h"
|
---|
177 |
|
---|
178 | void palEl2ue ( double date, int jform, double epoch, double orbinc,
|
---|
179 | double anode, double perih, double aorq, double e,
|
---|
180 | double aorl, double dm, double u[13], int *jstat ) {
|
---|
181 |
|
---|
182 | /* Sin and cos of J2000 mean obliquity (IAU 1976) */
|
---|
183 | const double SE=0.3977771559319137;
|
---|
184 | const double CE=0.9174820620691818;
|
---|
185 |
|
---|
186 | int J;
|
---|
187 |
|
---|
188 | double PHT,ARGPH,Q,W,CM,ALPHA,PHS,SW,CW,SI,CI,SO,CO,
|
---|
189 | X,Y,Z,PX,PY,PZ,VX,VY,VZ,DT,FC,FP,PSI,
|
---|
190 | UL[13],PV[6];
|
---|
191 |
|
---|
192 | /* Validate arguments. */
|
---|
193 | if (jform < 1 || jform > 3) {
|
---|
194 | *jstat = -1;
|
---|
195 | return;
|
---|
196 | }
|
---|
197 | if (e < 0.0 || e > 10.0 || (e >= 1.0 && jform != 3)) {
|
---|
198 | *jstat = -2;
|
---|
199 | return;
|
---|
200 | }
|
---|
201 | if (aorq <= 0.0) {
|
---|
202 | *jstat = -3;
|
---|
203 | return;
|
---|
204 | }
|
---|
205 | if (jform == 1 && dm <= 0.0) {
|
---|
206 | *jstat = -4;
|
---|
207 | return;
|
---|
208 | }
|
---|
209 |
|
---|
210 | /*
|
---|
211 | * Transform elements into standard form:
|
---|
212 | *
|
---|
213 | * PHT = epoch of perihelion passage
|
---|
214 | * ARGPH = argument of perihelion (little omega)
|
---|
215 | * Q = perihelion distance (q)
|
---|
216 | * CM = combined mass, M+m (mu)
|
---|
217 | */
|
---|
218 |
|
---|
219 | if (jform == 1) {
|
---|
220 |
|
---|
221 | /* Major planet. */
|
---|
222 | PHT = epoch-(aorl-perih)/dm;
|
---|
223 | ARGPH = perih-anode;
|
---|
224 | Q = aorq*(1.0-e);
|
---|
225 | W = dm/PAL__GCON;
|
---|
226 | CM = W*W*aorq*aorq*aorq;
|
---|
227 |
|
---|
228 | } else if (jform == 2) {
|
---|
229 |
|
---|
230 | /* Minor planet. */
|
---|
231 | PHT = epoch-aorl*sqrt(aorq*aorq*aorq)/PAL__GCON;
|
---|
232 | ARGPH = perih;
|
---|
233 | Q = aorq*(1.0-e);
|
---|
234 | CM = 1.0;
|
---|
235 |
|
---|
236 | } else {
|
---|
237 |
|
---|
238 | /* Comet. */
|
---|
239 | PHT = epoch;
|
---|
240 | ARGPH = perih;
|
---|
241 | Q = aorq;
|
---|
242 | CM = 1.0;
|
---|
243 |
|
---|
244 | }
|
---|
245 |
|
---|
246 | /* The universal variable alpha. This is proportional to the total
|
---|
247 | * energy of the orbit: -ve for an ellipse, zero for a parabola,
|
---|
248 | * +ve for a hyperbola. */
|
---|
249 |
|
---|
250 | ALPHA = CM*(e-1.0)/Q;
|
---|
251 |
|
---|
252 | /* Speed at perihelion. */
|
---|
253 |
|
---|
254 | PHS = sqrt(ALPHA+2.0*CM/Q);
|
---|
255 |
|
---|
256 | /* In a Cartesian coordinate system which has the x-axis pointing
|
---|
257 | * to perihelion and the z-axis normal to the orbit (such that the
|
---|
258 | * object orbits counter-clockwise as seen from +ve z), the
|
---|
259 | * perihelion position and velocity vectors are:
|
---|
260 | *
|
---|
261 | * position [Q,0,0]
|
---|
262 | * velocity [0,PHS,0]
|
---|
263 | *
|
---|
264 | * To express the results in J2000 equatorial coordinates we make a
|
---|
265 | * series of four rotations of the Cartesian axes:
|
---|
266 | *
|
---|
267 | * axis Euler angle
|
---|
268 | *
|
---|
269 | * 1 z argument of perihelion (little omega)
|
---|
270 | * 2 x inclination (i)
|
---|
271 | * 3 z longitude of the ascending node (big omega)
|
---|
272 | * 4 x J2000 obliquity (epsilon)
|
---|
273 | *
|
---|
274 | * In each case the rotation is clockwise as seen from the +ve end of
|
---|
275 | * the axis concerned.
|
---|
276 | */
|
---|
277 |
|
---|
278 | /* Functions of the Euler angles. */
|
---|
279 | SW = sin(ARGPH);
|
---|
280 | CW = cos(ARGPH);
|
---|
281 | SI = sin(orbinc);
|
---|
282 | CI = cos(orbinc);
|
---|
283 | SO = sin(anode);
|
---|
284 | CO = cos(anode);
|
---|
285 |
|
---|
286 | /* Position at perihelion (AU). */
|
---|
287 | X = Q*CW;
|
---|
288 | Y = Q*SW;
|
---|
289 | Z = Y*SI;
|
---|
290 | Y = Y*CI;
|
---|
291 | PX = X*CO-Y*SO;
|
---|
292 | Y = X*SO+Y*CO;
|
---|
293 | PY = Y*CE-Z*SE;
|
---|
294 | PZ = Y*SE+Z*CE;
|
---|
295 |
|
---|
296 | /* Velocity at perihelion (AU per canonical day). */
|
---|
297 | X = -PHS*SW;
|
---|
298 | Y = PHS*CW;
|
---|
299 | Z = Y*SI;
|
---|
300 | Y = Y*CI;
|
---|
301 | VX = X*CO-Y*SO;
|
---|
302 | Y = X*SO+Y*CO;
|
---|
303 | VY = Y*CE-Z*SE;
|
---|
304 | VZ = Y*SE+Z*CE;
|
---|
305 |
|
---|
306 | /* Time from perihelion to date (in Canonical Days: a canonical day
|
---|
307 | * is 58.1324409... days, defined as 1/PAL__GCON). */
|
---|
308 |
|
---|
309 | DT = (date-PHT)*PAL__GCON;
|
---|
310 |
|
---|
311 | /* First approximation to the Universal Eccentric Anomaly, PSI,
|
---|
312 | * based on the circle (FC) and parabola (FP) values. */
|
---|
313 |
|
---|
314 | FC = DT/Q;
|
---|
315 | W = pow(3.0*DT+sqrt(9.0*DT*DT+8.0*Q*Q*Q), 1.0/3.0);
|
---|
316 | FP = W-2.0*Q/W;
|
---|
317 | PSI = (1.0-e)*FC+e*FP;
|
---|
318 |
|
---|
319 | /* Assemble local copy of element set. */
|
---|
320 | UL[0] = CM;
|
---|
321 | UL[1] = ALPHA;
|
---|
322 | UL[2] = PHT;
|
---|
323 | UL[3] = PX;
|
---|
324 | UL[4] = PY;
|
---|
325 | UL[5] = PZ;
|
---|
326 | UL[6] = VX;
|
---|
327 | UL[7] = VY;
|
---|
328 | UL[8] = VZ;
|
---|
329 | UL[9] = Q;
|
---|
330 | UL[10] = 0.0;
|
---|
331 | UL[11] = date;
|
---|
332 | UL[12] = PSI;
|
---|
333 |
|
---|
334 | /* Predict position+velocity at epoch of osculation. */
|
---|
335 | palUe2pv( date, UL, PV, &J );
|
---|
336 | if (J != 0) {
|
---|
337 | *jstat = -5;
|
---|
338 | return;
|
---|
339 | }
|
---|
340 |
|
---|
341 | /* Convert back to universal elements. */
|
---|
342 | palPv2ue( PV, date, CM-1.0, u, &J );
|
---|
343 | if (J != 0) {
|
---|
344 | *jstat = -5;
|
---|
345 | return;
|
---|
346 | }
|
---|
347 |
|
---|
348 | /* OK exit. */
|
---|
349 | *jstat = 0;
|
---|
350 |
|
---|
351 | }
|
---|