1 | /*
|
---|
2 | *+
|
---|
3 | * Name:
|
---|
4 | * palPertue
|
---|
5 |
|
---|
6 | * Purpose:
|
---|
7 | * Update the universal elements by applying planetary perturbations
|
---|
8 |
|
---|
9 | * Language:
|
---|
10 | * Starlink ANSI C
|
---|
11 |
|
---|
12 | * Type of Module:
|
---|
13 | * Library routine
|
---|
14 |
|
---|
15 | * Invocation:
|
---|
16 | * void palPertue( double date, double u[13], int *jstat );
|
---|
17 |
|
---|
18 | * Arguments:
|
---|
19 | * date = double (Given)
|
---|
20 | * Final epoch (TT MJD) for the update elements.
|
---|
21 | * u = const double [13] (Given & Returned)
|
---|
22 | * Universal orbital elements (Note 1)
|
---|
23 | * (0) combined mass (M+m)
|
---|
24 | * (1) total energy of the orbit (alpha)
|
---|
25 | * (2) reference (osculating) epoch (t0)
|
---|
26 | * (3-5) position at reference epoch (r0)
|
---|
27 | * (6-8) velocity at reference epoch (v0)
|
---|
28 | * (9) heliocentric distance at reference epoch
|
---|
29 | * (10) r0.v0
|
---|
30 | * (11) date (t)
|
---|
31 | * (12) universal eccentric anomaly (psi) of date, approx
|
---|
32 | * jstat = int * (Returned)
|
---|
33 | * status:
|
---|
34 | * +102 = warning, distant epoch
|
---|
35 | * +101 = warning, large timespan ( > 100 years)
|
---|
36 | * +1 to +10 = coincident with major planet (Note 5)
|
---|
37 | * 0 = OK
|
---|
38 | * -1 = numerical error
|
---|
39 |
|
---|
40 | * Description:
|
---|
41 | * Update the universal elements of an asteroid or comet by applying
|
---|
42 | * planetary perturbations.
|
---|
43 |
|
---|
44 | * Authors:
|
---|
45 | * PTW: Pat Wallace (STFC)
|
---|
46 | * TIMJ: Tim Jenness (JAC, Hawaii)
|
---|
47 | * {enter_new_authors_here}
|
---|
48 |
|
---|
49 | * Notes:
|
---|
50 | * - The "universal" elements are those which define the orbit for the
|
---|
51 | * purposes of the method of universal variables (see reference 2).
|
---|
52 | * They consist of the combined mass of the two bodies, an epoch,
|
---|
53 | * and the position and velocity vectors (arbitrary reference frame)
|
---|
54 | * at that epoch. The parameter set used here includes also various
|
---|
55 | * quantities that can, in fact, be derived from the other
|
---|
56 | * information. This approach is taken to avoiding unnecessary
|
---|
57 | * computation and loss of accuracy. The supplementary quantities
|
---|
58 | * are (i) alpha, which is proportional to the total energy of the
|
---|
59 | * orbit, (ii) the heliocentric distance at epoch, (iii) the
|
---|
60 | * outwards component of the velocity at the given epoch, (iv) an
|
---|
61 | * estimate of psi, the "universal eccentric anomaly" at a given
|
---|
62 | * date and (v) that date.
|
---|
63 | * - The universal elements are with respect to the J2000 equator and
|
---|
64 | * equinox.
|
---|
65 | * - The epochs DATE, U(3) and U(12) are all Modified Julian Dates
|
---|
66 | * (JD-2400000.5).
|
---|
67 | * - The algorithm is a simplified form of Encke's method. It takes as
|
---|
68 | * a basis the unperturbed motion of the body, and numerically
|
---|
69 | * integrates the perturbing accelerations from the major planets.
|
---|
70 | * The expression used is essentially Sterne's 6.7-2 (reference 1).
|
---|
71 | * Everhart and Pitkin (reference 2) suggest rectifying the orbit at
|
---|
72 | * each integration step by propagating the new perturbed position
|
---|
73 | * and velocity as the new universal variables. In the present
|
---|
74 | * routine the orbit is rectified less frequently than this, in order
|
---|
75 | * to gain a slight speed advantage. However, the rectification is
|
---|
76 | * done directly in terms of position and velocity, as suggested by
|
---|
77 | * Everhart and Pitkin, bypassing the use of conventional orbital
|
---|
78 | * elements.
|
---|
79 | *
|
---|
80 | * The f(q) part of the full Encke method is not used. The purpose
|
---|
81 | * of this part is to avoid subtracting two nearly equal quantities
|
---|
82 | * when calculating the "indirect member", which takes account of the
|
---|
83 | * small change in the Sun's attraction due to the slightly displaced
|
---|
84 | * position of the perturbed body. A simpler, direct calculation in
|
---|
85 | * double precision proves to be faster and not significantly less
|
---|
86 | * accurate.
|
---|
87 | *
|
---|
88 | * Apart from employing a variable timestep, and occasionally
|
---|
89 | * "rectifying the orbit" to keep the indirect member small, the
|
---|
90 | * integration is done in a fairly straightforward way. The
|
---|
91 | * acceleration estimated for the middle of the timestep is assumed
|
---|
92 | * to apply throughout that timestep; it is also used in the
|
---|
93 | * extrapolation of the perturbations to the middle of the next
|
---|
94 | * timestep, to predict the new disturbed position. There is no
|
---|
95 | * iteration within a timestep.
|
---|
96 | *
|
---|
97 | * Measures are taken to reach a compromise between execution time
|
---|
98 | * and accuracy. The starting-point is the goal of achieving
|
---|
99 | * arcsecond accuracy for ordinary minor planets over a ten-year
|
---|
100 | * timespan. This goal dictates how large the timesteps can be,
|
---|
101 | * which in turn dictates how frequently the unperturbed motion has
|
---|
102 | * to be recalculated from the osculating elements.
|
---|
103 | *
|
---|
104 | * Within predetermined limits, the timestep for the numerical
|
---|
105 | * integration is varied in length in inverse proportion to the
|
---|
106 | * magnitude of the net acceleration on the body from the major
|
---|
107 | * planets.
|
---|
108 | *
|
---|
109 | * The numerical integration requires estimates of the major-planet
|
---|
110 | * motions. Approximate positions for the major planets (Pluto
|
---|
111 | * alone is omitted) are obtained from the routine palPlanet. Two
|
---|
112 | * levels of interpolation are used, to enhance speed without
|
---|
113 | * significantly degrading accuracy. At a low frequency, the routine
|
---|
114 | * palPlanet is called to generate updated position+velocity "state
|
---|
115 | * vectors". The only task remaining to be carried out at the full
|
---|
116 | * frequency (i.e. at each integration step) is to use the state
|
---|
117 | * vectors to extrapolate the planetary positions. In place of a
|
---|
118 | * strictly linear extrapolation, some allowance is made for the
|
---|
119 | * curvature of the orbit by scaling back the radius vector as the
|
---|
120 | * linear extrapolation goes off at a tangent.
|
---|
121 | *
|
---|
122 | * Various other approximations are made. For example, perturbations
|
---|
123 | * by Pluto and the minor planets are neglected and relativistic
|
---|
124 | * effects are not taken into account.
|
---|
125 | *
|
---|
126 | * In the interests of simplicity, the background calculations for
|
---|
127 | * the major planets are carried out en masse. The mean elements and
|
---|
128 | * state vectors for all the planets are refreshed at the same time,
|
---|
129 | * without regard for orbit curvature, mass or proximity.
|
---|
130 | *
|
---|
131 | * The Earth-Moon system is treated as a single body when the body is
|
---|
132 | * distant but as separate bodies when closer to the EMB than the
|
---|
133 | * parameter RNE, which incurs a time penalty but improves accuracy
|
---|
134 | * for near-Earth objects.
|
---|
135 | *
|
---|
136 | * - This routine is not intended to be used for major planets.
|
---|
137 | * However, if major-planet elements are supplied, sensible results
|
---|
138 | * will, in fact, be produced. This happens because the routine
|
---|
139 | * checks the separation between the body and each of the planets and
|
---|
140 | * interprets a suspiciously small value (0.001 AU) as an attempt to
|
---|
141 | * apply the routine to the planet concerned. If this condition is
|
---|
142 | * detected, the contribution from that planet is ignored, and the
|
---|
143 | * status is set to the planet number (1-10 = Mercury, Venus, EMB,
|
---|
144 | * Mars, Jupiter, Saturn, Uranus, Neptune, Earth, Moon) as a warning.
|
---|
145 |
|
---|
146 | * See Also:
|
---|
147 | * - Sterne, Theodore E., "An Introduction to Celestial Mechanics",
|
---|
148 | * Interscience Publishers Inc., 1960. Section 6.7, p199.
|
---|
149 | * - Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983.
|
---|
150 |
|
---|
151 | * History:
|
---|
152 | * 2012-03-12 (TIMJ):
|
---|
153 | * Initial version direct conversion of SLA/F.
|
---|
154 | * Adapted with permission from the Fortran SLALIB library.
|
---|
155 | * 2012-06-21 (TIMJ):
|
---|
156 | * Support a lack of copysign() function.
|
---|
157 | * 2012-06-22 (TIMJ):
|
---|
158 | * Check __STDC_VERSION__
|
---|
159 | * {enter_further_changes_here}
|
---|
160 |
|
---|
161 | * Copyright:
|
---|
162 | * Copyright (C) 2004 Patrick T. Wallace
|
---|
163 | * Copyright (C) 2012 Science and Technology Facilities Council.
|
---|
164 | * All Rights Reserved.
|
---|
165 |
|
---|
166 | * Licence:
|
---|
167 | * This program is free software; you can redistribute it and/or
|
---|
168 | * modify it under the terms of the GNU General Public License as
|
---|
169 | * published by the Free Software Foundation; either version 3 of
|
---|
170 | * the License, or (at your option) any later version.
|
---|
171 | *
|
---|
172 | * This program is distributed in the hope that it will be
|
---|
173 | * useful, but WITHOUT ANY WARRANTY; without even the implied
|
---|
174 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
---|
175 | * PURPOSE. See the GNU General Public License for more details.
|
---|
176 | *
|
---|
177 | * You should have received a copy of the GNU General Public License
|
---|
178 | * along with this program; if not, write to the Free Software
|
---|
179 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
---|
180 | * MA 02110-1301, USA.
|
---|
181 |
|
---|
182 | * Bugs:
|
---|
183 | * {note_any_bugs_here}
|
---|
184 | *-
|
---|
185 | */
|
---|
186 |
|
---|
187 | /* Use the config file if we have one, else look at
|
---|
188 | compiler defines to see if we have C99 */
|
---|
189 | #if HAVE_CONFIG_H
|
---|
190 | #include <config.h>
|
---|
191 | #else
|
---|
192 | #ifdef __STDC_VERSION__
|
---|
193 | # if (__STDC_VERSION__ >= 199901L)
|
---|
194 | # define HAVE_COPYSIGN 1
|
---|
195 | # endif
|
---|
196 | #endif
|
---|
197 | #endif
|
---|
198 |
|
---|
199 | #include <math.h>
|
---|
200 |
|
---|
201 | #include "pal.h"
|
---|
202 | #include "palmac.h"
|
---|
203 | #include "pal1sofa.h"
|
---|
204 |
|
---|
205 | /* copysign is C99 */
|
---|
206 | #if HAVE_COPYSIGN
|
---|
207 | # define COPYSIGN copysign
|
---|
208 | #else
|
---|
209 | # define COPYSIGN(a,b) DSIGN(a,b)
|
---|
210 | #endif
|
---|
211 |
|
---|
212 | void palPertue( double date, double u[13], int *jstat ) {
|
---|
213 |
|
---|
214 | /* Distance from EMB at which Earth and Moon are treated separately */
|
---|
215 | const double RNE=1.0;
|
---|
216 |
|
---|
217 | /* Coincidence with major planet distance */
|
---|
218 | const double COINC=0.0001;
|
---|
219 |
|
---|
220 | /* Coefficient relating timestep to perturbing force */
|
---|
221 | const double TSC=1e-4;
|
---|
222 |
|
---|
223 | /* Minimum and maximum timestep (days) */
|
---|
224 | const double TSMIN = 0.01;
|
---|
225 | const double TSMAX = 10.0;
|
---|
226 |
|
---|
227 | /* Age limit for major-planet state vector (days) */
|
---|
228 | const double AGEPMO=5.0;
|
---|
229 |
|
---|
230 | /* Age limit for major-planet mean elements (days) */
|
---|
231 | const double AGEPEL=50.0;
|
---|
232 |
|
---|
233 | /* Margin for error when deciding whether to renew the planetary data */
|
---|
234 | const double TINY=1e-6;
|
---|
235 |
|
---|
236 | /* Age limit for the body's osculating elements (before rectification) */
|
---|
237 | const double AGEBEL=100.0;
|
---|
238 |
|
---|
239 | /* Gaussian gravitational constant squared */
|
---|
240 | const double GCON2 = PAL__GCON * PAL__GCON;
|
---|
241 |
|
---|
242 | /* The final epoch */
|
---|
243 | double TFINAL;
|
---|
244 |
|
---|
245 | /* The body's current universal elements */
|
---|
246 | double UL[13];
|
---|
247 |
|
---|
248 | /* Current reference epoch */
|
---|
249 | double T0;
|
---|
250 |
|
---|
251 | /* Timespan from latest orbit rectification to final epoch (days) */
|
---|
252 | double TSPAN;
|
---|
253 |
|
---|
254 | /* Time left to go before integration is complete */
|
---|
255 | double TLEFT;
|
---|
256 |
|
---|
257 | /* Time direction flag: +1=forwards, -1=backwards */
|
---|
258 | double FB;
|
---|
259 |
|
---|
260 | /* First-time flag */
|
---|
261 | int FIRST = 0;
|
---|
262 |
|
---|
263 | /*
|
---|
264 | * The current perturbations
|
---|
265 | */
|
---|
266 |
|
---|
267 | /* Epoch (days relative to current reference epoch) */
|
---|
268 | double RTN;
|
---|
269 | /* Position (AU) */
|
---|
270 | double PERP[3];
|
---|
271 | /* Velocity (AU/d) */
|
---|
272 | double PERV[3];
|
---|
273 | /* Acceleration (AU/d/d) */
|
---|
274 | double PERA[3];
|
---|
275 |
|
---|
276 | /* Length of current timestep (days), and half that */
|
---|
277 | double TS,HTS;
|
---|
278 |
|
---|
279 | /* Epoch of middle of timestep */
|
---|
280 | double T;
|
---|
281 |
|
---|
282 | /* Epoch of planetary mean elements */
|
---|
283 | double TPEL = 0.0;
|
---|
284 |
|
---|
285 | /* Planet number (1=Mercury, 2=Venus, 3=EMB...8=Neptune) */
|
---|
286 | int NP;
|
---|
287 |
|
---|
288 | /* Planetary universal orbital elements */
|
---|
289 | double UP[8][13];
|
---|
290 |
|
---|
291 | /* Epoch of planetary state vectors */
|
---|
292 | double TPMO = 0.0;
|
---|
293 |
|
---|
294 | /* State vectors for the major planets (AU,AU/s) */
|
---|
295 | double PVIN[8][6];
|
---|
296 |
|
---|
297 | /* Earth velocity and position vectors (AU,AU/s) */
|
---|
298 | double VB[3],PB[3],VH[3],PE[3];
|
---|
299 |
|
---|
300 | /* Moon geocentric state vector (AU,AU/s) and position part */
|
---|
301 | double PVM[6],PM[3];
|
---|
302 |
|
---|
303 | /* Date to J2000 de-precession matrix */
|
---|
304 | double PMAT[3][3];
|
---|
305 |
|
---|
306 | /*
|
---|
307 | * Correction terms for extrapolated major planet vectors
|
---|
308 | */
|
---|
309 |
|
---|
310 | /* Sun-to-planet distances squared multiplied by 3 */
|
---|
311 | double R2X3[8];
|
---|
312 | /* Sunward acceleration terms, G/2R^3 */
|
---|
313 | double GC[8];
|
---|
314 | /* Tangential-to-circular correction factor */
|
---|
315 | double FC;
|
---|
316 | /* Radial correction factor due to Sunwards acceleration */
|
---|
317 | double FG;
|
---|
318 |
|
---|
319 | /* The body's unperturbed and perturbed state vectors (AU,AU/s) */
|
---|
320 | double PV0[6],PV[6];
|
---|
321 |
|
---|
322 | /* The body's perturbed and unperturbed heliocentric distances (AU) cubed */
|
---|
323 | double R03,R3;
|
---|
324 |
|
---|
325 | /* The perturbating accelerations, indirect and direct */
|
---|
326 | double FI[3],FD[3];
|
---|
327 |
|
---|
328 | /* Sun-to-planet vector, and distance cubed */
|
---|
329 | double RHO[3],RHO3;
|
---|
330 |
|
---|
331 | /* Body-to-planet vector, and distance cubed */
|
---|
332 | double DELTA[3],DELTA3;
|
---|
333 |
|
---|
334 | /* Miscellaneous */
|
---|
335 | int I,J;
|
---|
336 | double R2,W,DT,DT2,R,FT;
|
---|
337 | int NE;
|
---|
338 |
|
---|
339 | /* Planetary inverse masses, Mercury through Neptune then Earth and Moon */
|
---|
340 | const double AMAS[10] = {
|
---|
341 | 6023600., 408523.5, 328900.5, 3098710.,
|
---|
342 | 1047.355, 3498.5, 22869., 19314.,
|
---|
343 | 332946.038, 27068709.
|
---|
344 | };
|
---|
345 |
|
---|
346 | /* Preset the status to OK. */
|
---|
347 | *jstat = 0;
|
---|
348 |
|
---|
349 | /* Copy the final epoch. */
|
---|
350 | TFINAL = date;
|
---|
351 |
|
---|
352 | /* Copy the elements (which will be periodically updated). */
|
---|
353 | for (I=0; I<13; I++) {
|
---|
354 | UL[I] = u[I];
|
---|
355 | }
|
---|
356 |
|
---|
357 | /* Initialize the working reference epoch. */
|
---|
358 | T0=UL[2];
|
---|
359 |
|
---|
360 | /* Total timespan (days) and hence time left. */
|
---|
361 | TSPAN = TFINAL-T0;
|
---|
362 | TLEFT = TSPAN;
|
---|
363 |
|
---|
364 | /* Warn if excessive. */
|
---|
365 | if (fabs(TSPAN) > 36525.0) *jstat=101;
|
---|
366 |
|
---|
367 | /* Time direction: +1 for forwards, -1 for backwards. */
|
---|
368 | FB = COPYSIGN(1.0,TSPAN);
|
---|
369 |
|
---|
370 | /* Initialize relative epoch for start of current timestep. */
|
---|
371 | RTN = 0.0;
|
---|
372 |
|
---|
373 | /* Reset the perturbations (position, velocity, acceleration). */
|
---|
374 | for (I=0; I<3; I++) {
|
---|
375 | PERP[I] = 0.0;
|
---|
376 | PERV[I] = 0.0;
|
---|
377 | PERA[I] = 0.0;
|
---|
378 | }
|
---|
379 |
|
---|
380 | /* Set "first iteration" flag. */
|
---|
381 | FIRST = 1;
|
---|
382 |
|
---|
383 | /* Step through the time left. */
|
---|
384 | while (FB*TLEFT > 0.0) {
|
---|
385 |
|
---|
386 | /* Magnitude of current acceleration due to planetary attractions. */
|
---|
387 | if (FIRST) {
|
---|
388 | TS = TSMIN;
|
---|
389 | } else {
|
---|
390 | R2 = 0.0;
|
---|
391 | for (I=0; I<3; I++) {
|
---|
392 | W = FD[I];
|
---|
393 | R2 = R2+W*W;
|
---|
394 | }
|
---|
395 | W = sqrt(R2);
|
---|
396 |
|
---|
397 | /* Use the acceleration to decide how big a timestep can be tolerated. */
|
---|
398 | if (W != 0.0) {
|
---|
399 | TS = DMIN(TSMAX,DMAX(TSMIN,TSC/W));
|
---|
400 | } else {
|
---|
401 | TS = TSMAX;
|
---|
402 | }
|
---|
403 | }
|
---|
404 | TS = TS*FB;
|
---|
405 |
|
---|
406 | /* Override if final epoch is imminent. */
|
---|
407 | TLEFT = TSPAN-RTN;
|
---|
408 | if (fabs(TS) > fabs(TLEFT)) TS=TLEFT;
|
---|
409 |
|
---|
410 | /* Epoch of middle of timestep. */
|
---|
411 | HTS = TS/2.0;
|
---|
412 | T = T0+RTN+HTS;
|
---|
413 |
|
---|
414 | /* Is it time to recompute the major-planet elements? */
|
---|
415 | if (FIRST || fabs(T-TPEL)-AGEPEL >= TINY) {
|
---|
416 |
|
---|
417 | /* Yes: go forward in time by just under the maximum allowed. */
|
---|
418 | TPEL = T+FB*AGEPEL;
|
---|
419 |
|
---|
420 | /* Compute the state vector for the new epoch. */
|
---|
421 | for (NP=1; NP<=8; NP++) {
|
---|
422 | palPlanet(TPEL,NP,PV,&J);
|
---|
423 |
|
---|
424 | /* Warning if remote epoch, abort if error. */
|
---|
425 | if (J == 1) {
|
---|
426 | *jstat = 102;
|
---|
427 | } else if (J != 0) {
|
---|
428 | goto ABORT;
|
---|
429 | }
|
---|
430 |
|
---|
431 | /* Transform the vector into universal elements. */
|
---|
432 | palPv2ue(PV,TPEL,0.0,&(UP[NP-1][0]),&J);
|
---|
433 | if (J != 0) goto ABORT;
|
---|
434 | }
|
---|
435 | }
|
---|
436 |
|
---|
437 | /* Is it time to recompute the major-planet motions? */
|
---|
438 | if (FIRST || fabs(T-TPMO)-AGEPMO >= TINY) {
|
---|
439 |
|
---|
440 | /* Yes: look ahead. */
|
---|
441 | TPMO = T+FB*AGEPMO;
|
---|
442 |
|
---|
443 | /* Compute the motions of each planet (AU,AU/d). */
|
---|
444 | for (NP=1; NP<=8; NP++) {
|
---|
445 |
|
---|
446 | /* The planet's position and velocity (AU,AU/s). */
|
---|
447 | palUe2pv(TPMO,&(UP[NP-1][0]),&(PVIN[NP-1][0]),&J);
|
---|
448 | if (J != 0) goto ABORT;
|
---|
449 |
|
---|
450 | /* Scale velocity to AU/d. */
|
---|
451 | for (J=3; J<6; J++) {
|
---|
452 | PVIN[NP-1][J] = PVIN[NP-1][J]*PAL__SPD;
|
---|
453 | }
|
---|
454 |
|
---|
455 | /* Precompute also the extrapolation correction terms. */
|
---|
456 | R2 = 0.0;
|
---|
457 | for (I=0; I<3; I++) {
|
---|
458 | W = PVIN[NP-1][I];
|
---|
459 | R2 = R2+W*W;
|
---|
460 | }
|
---|
461 | R2X3[NP-1] = R2*3.0;
|
---|
462 | GC[NP-1] = GCON2/(2.0*R2*sqrt(R2));
|
---|
463 | }
|
---|
464 | }
|
---|
465 |
|
---|
466 | /* Reset the first-time flag. */
|
---|
467 | FIRST = 0;
|
---|
468 |
|
---|
469 | /* Unperturbed motion of the body at middle of timestep (AU,AU/s). */
|
---|
470 | palUe2pv(T,UL,PV0,&J);
|
---|
471 | if (J != 0) goto ABORT;
|
---|
472 |
|
---|
473 | /* Perturbed position of the body (AU) and heliocentric distance cubed. */
|
---|
474 | R2 = 0.0;
|
---|
475 | for (I=0; I<3; I++) {
|
---|
476 | W = PV0[I]+PERP[I]+(PERV[I]+PERA[I]*HTS/2.0)*HTS;
|
---|
477 | PV[I] = W;
|
---|
478 | R2 = R2+W*W;
|
---|
479 | }
|
---|
480 | R3 = R2*sqrt(R2);
|
---|
481 |
|
---|
482 | /* The body's unperturbed heliocentric distance cubed. */
|
---|
483 | R2 = 0.0;
|
---|
484 | for (I=0; I<3; I++) {
|
---|
485 | W = PV0[I];
|
---|
486 | R2 = R2+W*W;
|
---|
487 | }
|
---|
488 | R03 = R2*sqrt(R2);
|
---|
489 |
|
---|
490 | /* Compute indirect and initialize direct parts of the perturbation. */
|
---|
491 | for (I=0; I<3; I++) {
|
---|
492 | FI[I] = PV0[I]/R03-PV[I]/R3;
|
---|
493 | FD[I] = 0.0;
|
---|
494 | }
|
---|
495 |
|
---|
496 | /* Ready to compute the direct planetary effects. */
|
---|
497 |
|
---|
498 | /* Reset the "near-Earth" flag. */
|
---|
499 | NE = 0;
|
---|
500 |
|
---|
501 | /* Interval from state-vector epoch to middle of current timestep. */
|
---|
502 | DT = T-TPMO;
|
---|
503 | DT2 = DT*DT;
|
---|
504 |
|
---|
505 | /* Planet by planet, including separate Earth and Moon. */
|
---|
506 | for (NP=1; NP<10; NP++) {
|
---|
507 |
|
---|
508 | /* Which perturbing body? */
|
---|
509 | if (NP <= 8) {
|
---|
510 |
|
---|
511 | /* Planet: compute the extrapolation in longitude (squared). */
|
---|
512 | R2 = 0.0;
|
---|
513 | for (J=3; J<6; J++) {
|
---|
514 | W = PVIN[NP-1][J]*DT;
|
---|
515 | R2 = R2+W*W;
|
---|
516 | }
|
---|
517 |
|
---|
518 | /* Hence the tangential-to-circular correction factor. */
|
---|
519 | FC = 1.0+R2/R2X3[NP-1];
|
---|
520 |
|
---|
521 | /* The radial correction factor due to the inwards acceleration. */
|
---|
522 | FG = 1.0-GC[NP-1]*DT2;
|
---|
523 |
|
---|
524 | /* Planet's position. */
|
---|
525 | for (I=0; I<3; I++) {
|
---|
526 | RHO[I] = FG*(PVIN[NP-1][I]+FC*PVIN[NP-1][I+3]*DT);
|
---|
527 | }
|
---|
528 |
|
---|
529 | } else if (NE) {
|
---|
530 |
|
---|
531 | /* Near-Earth and either Earth or Moon. */
|
---|
532 |
|
---|
533 | if (NP == 9) {
|
---|
534 |
|
---|
535 | /* Earth: position. */
|
---|
536 | palEpv(T,PE,VH,PB,VB);
|
---|
537 | for (I=0; I<3; I++) {
|
---|
538 | RHO[I] = PE[I];
|
---|
539 | }
|
---|
540 |
|
---|
541 | } else {
|
---|
542 |
|
---|
543 | /* Moon: position. */
|
---|
544 | palPrec(palEpj(T),2000.0,PMAT);
|
---|
545 | palDmoon(T,PVM);
|
---|
546 | eraRxp(PMAT,PVM,PM);
|
---|
547 | for (I=0; I<3; I++) {
|
---|
548 | RHO[I] = PM[I]+PE[I];
|
---|
549 | }
|
---|
550 | }
|
---|
551 | }
|
---|
552 |
|
---|
553 | /* Proceed unless Earth or Moon and not the near-Earth case. */
|
---|
554 | if (NP <= 8 || NE) {
|
---|
555 |
|
---|
556 | /* Heliocentric distance cubed. */
|
---|
557 | R2 = 0.0;
|
---|
558 | for (I=0; I<3; I++) {
|
---|
559 | W = RHO[I];
|
---|
560 | R2 = R2+W*W;
|
---|
561 | }
|
---|
562 | R = sqrt(R2);
|
---|
563 | RHO3 = R2*R;
|
---|
564 |
|
---|
565 | /* Body-to-planet vector, and distance. */
|
---|
566 | R2 = 0.0;
|
---|
567 | for (I=0; I<3; I++) {
|
---|
568 | W = RHO[I]-PV[I];
|
---|
569 | DELTA[I] = W;
|
---|
570 | R2 = R2+W*W;
|
---|
571 | }
|
---|
572 | R = sqrt(R2);
|
---|
573 |
|
---|
574 | /* If this is the EMB, set the near-Earth flag appropriately. */
|
---|
575 | if (NP == 3 && R < RNE) NE = 1;
|
---|
576 |
|
---|
577 | /* Proceed unless EMB and this is the near-Earth case. */
|
---|
578 | if ( ! (NE && NP == 3) ) {
|
---|
579 |
|
---|
580 | /* If too close, ignore this planet and set a warning. */
|
---|
581 | if (R < COINC) {
|
---|
582 | *jstat = NP;
|
---|
583 |
|
---|
584 | } else {
|
---|
585 |
|
---|
586 | /* Accumulate "direct" part of perturbation acceleration. */
|
---|
587 | DELTA3 = R2*R;
|
---|
588 | W = AMAS[NP-1];
|
---|
589 | for (I=0; I<3; I++) {
|
---|
590 | FD[I] = FD[I]+(DELTA[I]/DELTA3-RHO[I]/RHO3)/W;
|
---|
591 | }
|
---|
592 | }
|
---|
593 | }
|
---|
594 | }
|
---|
595 | }
|
---|
596 |
|
---|
597 | /* Update the perturbations to the end of the timestep. */
|
---|
598 | RTN += TS;
|
---|
599 | for (I=0; I<3; I++) {
|
---|
600 | W = (FI[I]+FD[I])*GCON2;
|
---|
601 | FT = W*TS;
|
---|
602 | PERP[I] = PERP[I]+(PERV[I]+FT/2.0)*TS;
|
---|
603 | PERV[I] = PERV[I]+FT;
|
---|
604 | PERA[I] = W;
|
---|
605 | }
|
---|
606 |
|
---|
607 | /* Time still to go. */
|
---|
608 | TLEFT = TSPAN-RTN;
|
---|
609 |
|
---|
610 | /* Is it either time to rectify the orbit or the last time through? */
|
---|
611 | if (fabs(RTN) >= AGEBEL || FB*TLEFT <= 0.0) {
|
---|
612 |
|
---|
613 | /* Yes: update to the end of the current timestep. */
|
---|
614 | T0 += RTN;
|
---|
615 | RTN = 0.0;
|
---|
616 |
|
---|
617 | /* The body's unperturbed motion (AU,AU/s). */
|
---|
618 | palUe2pv(T0,UL,PV0,&J);
|
---|
619 | if (J != 0) goto ABORT;
|
---|
620 |
|
---|
621 | /* Add and re-initialize the perturbations. */
|
---|
622 | for (I=0; I<3; I++) {
|
---|
623 | J = I+3;
|
---|
624 | PV[I] = PV0[I]+PERP[I];
|
---|
625 | PV[J] = PV0[J]+PERV[I]/PAL__SPD;
|
---|
626 | PERP[I] = 0.0;
|
---|
627 | PERV[I] = 0.0;
|
---|
628 | PERA[I] = FD[I]*GCON2;
|
---|
629 | }
|
---|
630 |
|
---|
631 | /* Use the position and velocity to set up new universal elements. */
|
---|
632 | palPv2ue(PV,T0,0.0,UL,&J);
|
---|
633 | if (J != 0) goto ABORT;
|
---|
634 |
|
---|
635 | /* Adjust the timespan and time left. */
|
---|
636 | TSPAN = TFINAL-T0;
|
---|
637 | TLEFT = TSPAN;
|
---|
638 | }
|
---|
639 |
|
---|
640 | /* Next timestep. */
|
---|
641 | }
|
---|
642 |
|
---|
643 | /* Return the updated universal-element set. */
|
---|
644 | for (I=0; I<13; I++) {
|
---|
645 | u[I] = UL[I];
|
---|
646 | }
|
---|
647 |
|
---|
648 | /* Finished. */
|
---|
649 | return;
|
---|
650 |
|
---|
651 | /* Miscellaneous numerical error. */
|
---|
652 | ABORT:
|
---|
653 | *jstat = -1;
|
---|
654 | return;
|
---|
655 | }
|
---|