1 | /*
|
---|
2 | *+
|
---|
3 | * Name:
|
---|
4 | * palPlanel
|
---|
5 |
|
---|
6 | * Purpose:
|
---|
7 | * Transform conventional elements into position and velocity
|
---|
8 |
|
---|
9 | * Language:
|
---|
10 | * Starlink ANSI C
|
---|
11 |
|
---|
12 | * Type of Module:
|
---|
13 | * Library routine
|
---|
14 |
|
---|
15 | * Invocation:
|
---|
16 | * void palPlanel ( double date, int jform, double epoch, double orbinc,
|
---|
17 | * double anode, double perih, double aorq, double e,
|
---|
18 | * double aorl, double dm, double pv[6], int *jstat );
|
---|
19 |
|
---|
20 | * Arguments:
|
---|
21 | * date = double (Given)
|
---|
22 | * Epoch (TT MJD) of osculation (Note 1)
|
---|
23 | * jform = int (Given)
|
---|
24 | * Element set actually returned (1-3; Note 3)
|
---|
25 | * epoch = double (Given)
|
---|
26 | * Epoch of elements (TT MJD) (Note 4)
|
---|
27 | * orbinc = double (Given)
|
---|
28 | * inclination (radians)
|
---|
29 | * anode = double (Given)
|
---|
30 | * longitude of the ascending node (radians)
|
---|
31 | * perih = double (Given)
|
---|
32 | * longitude or argument of perihelion (radians)
|
---|
33 | * aorq = double (Given)
|
---|
34 | * mean distance or perihelion distance (AU)
|
---|
35 | * e = double (Given)
|
---|
36 | * eccentricity
|
---|
37 | * aorl = double (Given)
|
---|
38 | * mean anomaly or longitude (radians, JFORM=1,2 only)
|
---|
39 | * dm = double (Given)
|
---|
40 | * daily motion (radians, JFORM=1 only)
|
---|
41 | * u = double [13] (Returned)
|
---|
42 | * Universal orbital elements (Note 1)
|
---|
43 | * (0) combined mass (M+m)
|
---|
44 | * (1) total energy of the orbit (alpha)
|
---|
45 | * (2) reference (osculating) epoch (t0)
|
---|
46 | * (3-5) position at reference epoch (r0)
|
---|
47 | * (6-8) velocity at reference epoch (v0)
|
---|
48 | * (9) heliocentric distance at reference epoch
|
---|
49 | * (10) r0.v0
|
---|
50 | * (11) date (t)
|
---|
51 | * (12) universal eccentric anomaly (psi) of date, approx
|
---|
52 | * jstat = int * (Returned)
|
---|
53 | * status: 0 = OK
|
---|
54 | * - -1 = illegal JFORM
|
---|
55 | * - -2 = illegal E
|
---|
56 | * - -3 = illegal AORQ
|
---|
57 | * - -4 = illegal DM
|
---|
58 | * - -5 = numerical error
|
---|
59 |
|
---|
60 | * Description:
|
---|
61 | * Heliocentric position and velocity of a planet, asteroid or comet,
|
---|
62 | * starting from orbital elements.
|
---|
63 |
|
---|
64 | * Authors:
|
---|
65 | * PTW: Pat Wallace (STFC)
|
---|
66 | * TIMJ: Tim Jenness (JAC, Hawaii)
|
---|
67 | * {enter_new_authors_here}
|
---|
68 |
|
---|
69 | * Notes:
|
---|
70 | * - DATE is the instant for which the prediction is required. It is
|
---|
71 | * in the TT timescale (formerly Ephemeris Time, ET) and is a
|
---|
72 | * Modified Julian Date (JD-2400000.5).
|
---|
73 | * - The elements are with respect to the J2000 ecliptic and equinox.
|
---|
74 | * - A choice of three different element-set options is available:
|
---|
75 | *
|
---|
76 | * Option JFORM = 1, suitable for the major planets:
|
---|
77 | *
|
---|
78 | * EPOCH = epoch of elements (TT MJD)
|
---|
79 | * ORBINC = inclination i (radians)
|
---|
80 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
81 | * PERIH = longitude of perihelion, curly pi (radians)
|
---|
82 | * AORQ = mean distance, a (AU)
|
---|
83 | * E = eccentricity, e (range 0 to <1)
|
---|
84 | * AORL = mean longitude L (radians)
|
---|
85 | * DM = daily motion (radians)
|
---|
86 | *
|
---|
87 | * Option JFORM = 2, suitable for minor planets:
|
---|
88 | *
|
---|
89 | * EPOCH = epoch of elements (TT MJD)
|
---|
90 | * ORBINC = inclination i (radians)
|
---|
91 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
92 | * PERIH = argument of perihelion, little omega (radians)
|
---|
93 | * AORQ = mean distance, a (AU)
|
---|
94 | * E = eccentricity, e (range 0 to <1)
|
---|
95 | * AORL = mean anomaly M (radians)
|
---|
96 | *
|
---|
97 | * Option JFORM = 3, suitable for comets:
|
---|
98 | *
|
---|
99 | * EPOCH = epoch of elements and perihelion (TT MJD)
|
---|
100 | * ORBINC = inclination i (radians)
|
---|
101 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
102 | * PERIH = argument of perihelion, little omega (radians)
|
---|
103 | * AORQ = perihelion distance, q (AU)
|
---|
104 | * E = eccentricity, e (range 0 to 10)
|
---|
105 | *
|
---|
106 | * Unused arguments (DM for JFORM=2, AORL and DM for JFORM=3) are not
|
---|
107 | * accessed.
|
---|
108 | * - Each of the three element sets defines an unperturbed heliocentric
|
---|
109 | * orbit. For a given epoch of observation, the position of the body
|
---|
110 | * in its orbit can be predicted from these elements, which are
|
---|
111 | * called "osculating elements", using standard two-body analytical
|
---|
112 | * solutions. However, due to planetary perturbations, a given set
|
---|
113 | * of osculating elements remains usable for only as long as the
|
---|
114 | * unperturbed orbit that it describes is an adequate approximation
|
---|
115 | * to reality. Attached to such a set of elements is a date called
|
---|
116 | * the "osculating epoch", at which the elements are, momentarily,
|
---|
117 | * a perfect representation of the instantaneous position and
|
---|
118 | * velocity of the body.
|
---|
119 | *
|
---|
120 | * Therefore, for any given problem there are up to three different
|
---|
121 | * epochs in play, and it is vital to distinguish clearly between
|
---|
122 | * them:
|
---|
123 | *
|
---|
124 | * . The epoch of observation: the moment in time for which the
|
---|
125 | * position of the body is to be predicted.
|
---|
126 | *
|
---|
127 | * . The epoch defining the position of the body: the moment in time
|
---|
128 | * at which, in the absence of purturbations, the specified
|
---|
129 | * position (mean longitude, mean anomaly, or perihelion) is
|
---|
130 | * reached.
|
---|
131 | *
|
---|
132 | * . The osculating epoch: the moment in time at which the given
|
---|
133 | * elements are correct.
|
---|
134 | *
|
---|
135 | * For the major-planet and minor-planet cases it is usual to make
|
---|
136 | * the epoch that defines the position of the body the same as the
|
---|
137 | * epoch of osculation. Thus, only two different epochs are
|
---|
138 | * involved: the epoch of the elements and the epoch of observation.
|
---|
139 | *
|
---|
140 | * For comets, the epoch of perihelion fixes the position in the
|
---|
141 | * orbit and in general a different epoch of osculation will be
|
---|
142 | * chosen. Thus, all three types of epoch are involved.
|
---|
143 | *
|
---|
144 | * For the present routine:
|
---|
145 | *
|
---|
146 | * . The epoch of observation is the argument DATE.
|
---|
147 | *
|
---|
148 | * . The epoch defining the position of the body is the argument
|
---|
149 | * EPOCH.
|
---|
150 | *
|
---|
151 | * . The osculating epoch is not used and is assumed to be close
|
---|
152 | * enough to the epoch of observation to deliver adequate accuracy.
|
---|
153 | * If not, a preliminary call to palPertel may be used to update
|
---|
154 | * the element-set (and its associated osculating epoch) by
|
---|
155 | * applying planetary perturbations.
|
---|
156 | * - The reference frame for the result is with respect to the mean
|
---|
157 | * equator and equinox of epoch J2000.
|
---|
158 | * - The algorithm was originally adapted from the EPHSLA program of
|
---|
159 | * D.H.P.Jones (private communication, 1996). The method is based
|
---|
160 | * on Stumpff's Universal Variables.
|
---|
161 |
|
---|
162 | * See Also:
|
---|
163 | * Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983.
|
---|
164 |
|
---|
165 | * History:
|
---|
166 | * 2012-03-12 (TIMJ):
|
---|
167 | * Initial version taken directly from SLA/F.
|
---|
168 | * Adapted with permission from the Fortran SLALIB library.
|
---|
169 | * {enter_further_changes_here}
|
---|
170 |
|
---|
171 | * Copyright:
|
---|
172 | * Copyright (C) 2002 Rutherford Appleton Laboratory
|
---|
173 | * Copyright (C) 2012 Science and Technology Facilities Council.
|
---|
174 | * All Rights Reserved.
|
---|
175 |
|
---|
176 | * Licence:
|
---|
177 | * This program is free software; you can redistribute it and/or
|
---|
178 | * modify it under the terms of the GNU General Public License as
|
---|
179 | * published by the Free Software Foundation; either version 3 of
|
---|
180 | * the License, or (at your option) any later version.
|
---|
181 | *
|
---|
182 | * This program is distributed in the hope that it will be
|
---|
183 | * useful, but WITHOUT ANY WARRANTY; without even the implied
|
---|
184 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
---|
185 | * PURPOSE. See the GNU General Public License for more details.
|
---|
186 | *
|
---|
187 | * You should have received a copy of the GNU General Public License
|
---|
188 | * along with this program; if not, write to the Free Software
|
---|
189 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
---|
190 | * MA 02110-1301, USA.
|
---|
191 |
|
---|
192 | * Bugs:
|
---|
193 | * {note_any_bugs_here}
|
---|
194 | *-
|
---|
195 | */
|
---|
196 |
|
---|
197 | #include "pal.h"
|
---|
198 |
|
---|
199 |
|
---|
200 | void palPlanel ( double date, int jform, double epoch, double orbinc,
|
---|
201 | double anode, double perih, double aorq, double e,
|
---|
202 | double aorl, double dm, double pv[6], int *jstat ) {
|
---|
203 |
|
---|
204 | int j;
|
---|
205 | double u[13];
|
---|
206 |
|
---|
207 | /* Validate elements and convert to "universal variables" parameters. */
|
---|
208 | palEl2ue( date, jform, epoch, orbinc, anode, perih, aorq, e, aorl,
|
---|
209 | dm, u, &j );
|
---|
210 |
|
---|
211 | /* Determine the position and velocity */
|
---|
212 | if (j == 0) {
|
---|
213 | palUe2pv( date, u, pv, &j);
|
---|
214 | if (j != 0) j = -5;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /* Wrap up */
|
---|
218 | *jstat = j;
|
---|
219 |
|
---|
220 | }
|
---|