#include "DataCalib.h" #include "FAD.h" #include "FitsFile.h" #include "DimDescriptionService.h" #include "externals/fits.h" using namespace std; int DataCalib::fStep = 0; bool DataCalib::fProcessing = false; vector DataCalib::fOffset(1440*1024, 0); vector DataCalib::fGain (1440*1024, 4096); vector DataCalib::fTrgOff(1440*1024, 0); vector DataCalib::fStats (1440*1024*6+3); uint64_t DataCalib::fNumOffset = 1; uint64_t DataCalib::fNumGain = 2000; uint64_t DataCalib::fNumTrgOff = 1; void DataCalib::Restart() { // Default gain: // 0.575*[45590]*2.5V / 2^16 = 0.99999 V fOffset.assign(1440*1024, 0); fGain.assign (1440*1024, 4096); fTrgOff.assign(1440*1024, 0); fNumOffset = 1; fNumGain = 2000; fNumTrgOff = 1; reinterpret_cast(fStats.data())[0] = 0; reinterpret_cast(fStats.data())[1] = 0; reinterpret_cast(fStats.data())[2] = 0; int i=0; while (i<1024*1440*2+3) // Set mean and RMS to 0 fStats[i++] = 0; while (i<1024*1440*3+3) fStats[i++] = 2000./4096; // Set mean to 0.5 while (i<1024*1440*6+3) fStats[i++] = 0; // Set everything else to 0 fStep = 0; fProcessing = false; } void DataCalib::Update(DimDescribedService &dim) { dim.Update(fStats); } bool DataCalib::Open(RUN_HEAD* h) { if (h->NPix != 1440) { fMsg.Error("Number of pixels in header not 1440."); return false; } if (h->Nroi != 1024) { fMsg.Error("Region of interest not 1024."); return false; } if (fProcessing) { fMsg.Warn("Previous run not yet finished!"); return false; } if (fStep==4) { fMsg.Warn("DRS Calibration already finished... please restart!"); return false; } fProcessing = true; ostringstream name; name << "drs-calib-" << fStep; fFileName = name.str(); Reset(); InitSize(1440, 1024); return true; } bool DataCalib::WriteEvt(EVENT *e) { // FIXME: SET StartPix to 0 if StartPix is -1 if (fStep==0) { AddRel(e->Adc_Data, e->StartPix); } if (fStep==1) { AddRel(e->Adc_Data, e->StartPix, fOffset.data(), fNumOffset); } if (fStep==2) { AddAbs(e->Adc_Data, e->StartPix, fOffset.data(), fNumOffset); } return true; } bool DataCalib::ReadFits(const string &str) { try { fits file(str); if (!file) return false; if (file.GetStr("TELESCOP")!="FACT") { Error("Reading "+str+" failed: Not a valid FACT file (TELESCOP not FACT in header)"); return false; } if (!file.HasKey("STEP")) { Error("Reading "+str+" failed: Is not a DRS calib file (STEP not found in header)"); return false; } if (file.GetNumRows()!=1) { Error("Reading "+str+" failed: Number of rows in table is not 1."); return false; } vector data(1440*1024*6+3); float *base = data.data(); file.SetPtrAddress("RunNumberBaseline", base, sizeof(float)); file.SetPtrAddress("RunNumberGain", base+1, sizeof(float)); file.SetPtrAddress("RunNumberTriggerOffset", base+2, sizeof(float)); file.SetPtrAddress("BaselineMean", base+0*1024*1440+3, sizeof(float)*1024*1440); file.SetPtrAddress("BaselineRms", base+1*1024*1440+3, sizeof(float)*1024*1440); file.SetPtrAddress("GainMean", base+2*1024*1440+3, sizeof(float)*1024*1440); file.SetPtrAddress("GainRms", base+3*1024*1440+3, sizeof(float)*1024*1440); file.SetPtrAddress("TriggerOffsetMean", base+4*1024*1440+3, sizeof(float)*1024*1440); file.SetPtrAddress("TriggerOffsetRms", base+5*1024*1440+3, sizeof(float)*1024*1440); if (!file.GetNextRow()) { Error("Reading data from "+str+" failed."); return false; } fStep = file.GetUInt("STEP"); memcpy(fStats.data(), base, fStats.size()*sizeof(float)); return true; } catch (const runtime_error &e) { Error("Exception reading "+str+": "+e.what()); return false; } } void DataCalib::WriteFits() { #ifdef HAVE_FITS FitsFile file(fMsg); file.AddColumn('I', "RunNumberBaseline"); file.AddColumn('I', "RunNumberGain"); file.AddColumn('I', "RunNumberTriggerOffset"); file.AddColumn('F', "BaselineMean", 1024*1440); file.AddColumn('F', "BaselineRms", 1024*1440); file.AddColumn('F', "GainMean", 1024*1440); file.AddColumn('F', "GainRms", 1024*1440); file.AddColumn('F', "TriggerOffsetMean", 1024*1440); file.AddColumn('F', "TriggerOffsetRms", 1024*1440); fFileName = FormFileName(GetRunId(), "drs.fits"); if (!file.OpenFile(fFileName)) return; if (!file.OpenTable("DrsCalibration")) return; if (!file.WriteDefaultKeys("fadctrl")) return; if (!file.WriteKeyNT("STEP", fStep, "")) return; vector buf; buf.reserve(fStats.size()*sizeof(float)); char *src = reinterpret_cast(fStats.data()); char *end = reinterpret_cast(fStats.data()+1024*1440*6+3); char *dest = buf.data(); while (src(fStats.data())[0] = GetRunId();; } if (fStep==1) { fGain.assign(fSum.begin(), fSum.end()); fNumGain = fNumEntries*fNumOffset; // DAC: 0..2.5V == 0..65535 // V-mV: 1000 //fNumGain *= 2500*50000; //for (int i=0; i<1024*1440; i++) // fGain[i] *= 65536; fNumGain *= 1953125; for (int i=0; i<1024*1440; i++) fGain[i] *= 1024; // Scale ADC data from 12bit to 2000mV GetSampleStats(fStats.data()+1024*1440*2+3, 2000./4096/fNumOffset);//0.5); reinterpret_cast(fStats.data())[1] = GetRunId();; } if (fStep==2) { fTrgOff.assign(fSum.begin(), fSum.end()); fNumTrgOff = fNumEntries*fNumOffset; // Scale ADC data from 12bit to 2000mV GetSampleStats(fStats.data()+1024*1440*4+3, 2000./4096/fNumOffset);//0.5); reinterpret_cast(fStats.data())[2] = GetRunId();; } if (fStep>=0 && fStep<=2) WriteFits(); fProcessing = false; fDim.Update(fStats); fStep++; return true; } void DataCalib::Apply(int16_t *val, const int16_t *start, uint32_t roi) { CalibData::Apply(val, start, roi, fOffset.data(), fNumOffset, fGain.data(), fNumGain, fTrgOff.data(), fNumTrgOff); } void DataCalib::Apply(float *vec, int16_t *val, const int16_t *start, uint32_t roi) { CalibData::Apply(vec, val, start, roi, fOffset.data(), fNumOffset, fGain.data(), fNumGain, fTrgOff.data(), fNumTrgOff); }