#include "DataCalib.h" #include "FAD.h" #include "FitsFile.h" #include "DimDescriptionService.h" #include "externals/fits.h" using namespace std; DrsCalibration DataCalib::fData; bool DataCalib::fProcessing = false; vector DataCalib::fStats(1440*1024*6+160*1024*2+4); void DataCalib::Restart() { fData.Clear(); reinterpret_cast(fStats.data())[0] = 0; reinterpret_cast(fStats.data())[1] = 0; reinterpret_cast(fStats.data())[2] = 0; reinterpret_cast(fStats.data())[3] = 0; int i=0; while (i<1024*1440*2+4) // Set mean and RMS to 0 fStats[i++] = 0; while (i<1024*1440*3+4) fStats[i++] = 2000./4096; // Set mean to 0.5 while (i<1440*1024*6+160*1024*2+4) fStats[i++] = 0; // Set everything else to 0 fProcessing = false; } bool DataCalib::ResetTrgOff(DimDescribedService &dim, DimDescribedService &runs) { if (fData.fStep!=3) return false; for (int i=1024*1440*3+4; i<1440*1024*6+160*1024*2+4; i++) fStats[i] = 0; reinterpret_cast(fStats.data())[0] = 0; reinterpret_cast(fStats.data())[3] = 0; fData.fStep = 1; Update(dim, runs); fData.fStep = 2; return true; } void DataCalib::Update(DimDescribedService &dim, DimDescribedService &runs) { const uint16_t roi = fData.fRoi; const uint16_t ntm = fData.fNumTm; vector buf(1440*1024*6+160*1024*2+4); memcpy(buf.data(), fStats.data(), (4*1024*1440+4)*sizeof(float)); for (int i=0; i<1440; i++) { memcpy(buf.data()+4+1440*1024*4 + i*1024, fStats.data()+4 + 4*1024*1440 + roi*i, roi*sizeof(float)); memcpy(buf.data()+4+1440*1024*5 + i*1024, fStats.data()+4 + 4*1024*1440 + roi*1440 + roi*i, roi*sizeof(float)); } /* for (int i=0; iNPix != 1440) { fMsg.Error("Number of pixels in header not 1440."); return false; } if (fProcessing) { fMsg.Warn("Previous DRS calibration run not yet finished!"); return false; } if (fData.fStep==3) { fMsg.Warn("DRS Calibration already finished... please restart!"); return false; } if (fData.fStep!=2 && h->Nroi != 1024) { ostringstream msg; msg << "Region of interest not 1024, but " << h->Nroi << " in step " << fData.fStep << " ... as it ought to be."; fMsg.Error(msg); return false; } vector dac(8); /* // We don't check consistency over several boards because this is done // by the eventCheck routine already for (int i=0; iNBoard; i++) { const PEVNT_HEADER &hh = h->FADhead[i]; if (hh.start_package_flag==0) continue; for (int j=0; j<8; j++) dac[j] = hh.dac[j]; break; } for (int i=1; i<7; i++) { if (i==3 || dac[i]==dac[i+1]) continue; ostringstream msg; msg << "Values of DAC" << i << " (" << dac[i] << ") and DAC" << i+1 <<" (" << dac[i+1] << ") do not match... cannot take DRS calibration!"; fMsg.Error(msg); return false; } if (fData.fStep>0) { for (int j=0; j<8; j++) { if (fData.fDAC[j]==dac[j]) continue; ostringstream msg; msg << "DAC value from previous run (DAC" << j << "=" << fData.fDAC[j] << ") and current run "; msg << "(DAC" << j << "=" << dac[j] << ") inconsistent... cannot take DRS calibration!"; fMsg.Error(msg); return false; } } memcpy(fData.fDAC, dac.data(), 8*sizeof(uint16_t)); */ fProcessing = true; const bool hastm = h->Nroi<=512 && h->NroiTM>=2*h->Nroi; Reset(); InitSize(hastm ? 1600 : 1440, h->Nroi); fData.fRoi = fNumSamples; fData.fNumTm = hastm ? 160 : 0; return DataWriteFits::Open(h, d); } bool DataCalib::WriteEvt(EVENT *e) { // FIXME: SET StartPix to 0 if StartPix is -1 if (fData.fStep==0) { AddRel(e->Adc_Data, e->StartPix); } if (fData.fStep==1) { AddRel(e->Adc_Data, e->StartPix, fData.fOffset.data(), fData.fNumOffset); } if (fData.fStep==2) { AddAbs(e->Adc_Data, e->StartPix, fData.fOffset.data(), fData.fNumOffset); } return DataWriteFits::WriteEvt(e); } bool DataCalib::ReadFits(const string &str, MessageImp &msg) { if (fProcessing) { msg.Error("Reading "+str+" failed: DRS calibration in process."); return false; } try { const string txt = fData.ReadFitsImp(str, fStats); if (txt.empty()) return true; msg.Error(txt); return false; } catch (const runtime_error &e) { msg.Error("Exception reading "+str+": "+e.what()); return false; } } void ReverseCopy(const void *src, void *dest) { reverse_copy(reinterpret_cast(src), reinterpret_cast(src)+sizeof(float), reinterpret_cast(dest)); } void DataCalib::WriteFits() { #ifdef HAVE_FITS FitsFile file(fMsg); const uint16_t roi = fData.fRoi; const uint16_t ntm = fData.fNumTm; file.AddColumn('I', "RunNumberBaseline"); file.AddColumn('I', "RunNumberGain"); file.AddColumn('I', "RunNumberTriggerOffset"); file.AddColumn('F', "BaselineMean", 1024*1440, "mV"); file.AddColumn('F', "BaselineRms", 1024*1440, "mV"); file.AddColumn('F', "GainMean", 1024*1440, "mV"); file.AddColumn('F', "GainRms", 1024*1440, "mV"); file.AddColumn('F', "TriggerOffsetMean", roi*1440, "mV"); file.AddColumn('F', "TriggerOffsetRms", roi*1440, "mV"); file.AddColumn('F', "TriggerOffsetTMMean", roi*ntm, "mV"); file.AddColumn('F', "TriggerOffsetTMRms", roi*ntm, "mV"); const string filename = FormFileName("drs.fits"); if (!file.OpenFile(filename)) return; if (!file.OpenTable("DrsCalibration")) return; if (!file.WriteDefaultKeys("fadctrl")) return; if (!file.WriteKeyNT("STEP", fData.fStep, "") || !file.WriteKeyNT("ADCRANGE", 2000, "Dynamic range of the ADC in mV") || !file.WriteKeyNT("DACRANGE", 2500, "Dynamic range of the DAC in mV") || !file.WriteKeyNT("ADC", 12, "Resolution of ADC in bits") || !file.WriteKeyNT("DAC", 16, "Resolution of DAC in bits") || // !file.WriteKeyNT("DAC_A", fData.fDAC[0], "Level of DAC 0 in DAC counts") || // !file.WriteKeyNT("DAC_B", fData.fDAC[1], "Leval of DAC 1-3 in DAC counts") || // !file.WriteKeyNT("DAC_C", fData.fDAC[4], "Leval of DAC 4-7 in DAC counts") || !file.WriteKeyNT("NBOFFSET", fData.fNumOffset, "Number of entries for offset calibration") || !file.WriteKeyNT("NBGAIN", fData.fNumGain/1953125, "Number of entries for gain calibration") || !file.WriteKeyNT("NBTRGOFF", fData.fNumTrgOff, "Number of entries for trigger offset calibration") || !file.WriteKeyNT("NPIX", 1440, "Number of channels in the camera") || !file.WriteKeyNT("NTM", ntm, "Number of time marker channels") || !file.WriteKeyNT("NROI", roi, "Region of interest") ) return; vector buf(fStats.size()*sizeof(float)); char *src = reinterpret_cast(fStats.data()); char *end = reinterpret_cast(fStats.data()+fStats.size()); char *dest = buf.data(); while (src(fStats.data())[1] = GetRunId();; } if (fData.fStep==1) { fData.fGain.assign(fSum.begin(), fSum.end()); fData.fNumGain = fNumEntries; // DAC: 0..2.5V == 0..65535 2500*50000 625*50000 625*3125 // V-mV: 1000 ---------- --------- -------- //fNumGain *= 2500*50000; 65536 16384 1024 //for (int i=0; i<1024*1440; i++) // fGain[i] *= 65536; fData.fNumGain *= 1953125; for (int i=0; i<1024*1440; i++) fData.fGain[i] *= 1024; // Scale ADC data from 12bit to 2000mV GetSampleStats(fStats.data()+1024*1440*2+4, 2000./4096/fData.fNumOffset);//0.5); reinterpret_cast(fStats.data())[2] = GetRunId();; } if (fData.fStep==2) { fData.fTrgOff.assign(fSum.begin(), fSum.end()); fData.fNumTrgOff = fNumEntries; // Scale ADC data from 12bit to 2000mV GetSampleStats(fStats.data()+1024*1440*4+4, 2000./4096/fData.fNumOffset);//0.5); reinterpret_cast(fStats.data())[0] = fNumSamples; reinterpret_cast(fStats.data())[3] = GetRunId(); } if (fData.fStep<=2) WriteFits(); Update(fDim, fDimRuns); fData.fStep++; fProcessing = false; return DataWriteFits::Close(tail); }