#ifndef FACT_HeadersFAD #define FACT_HeadersFAD #ifdef __cplusplus #include // For debugging #include #include "ByteOrder.h" // ==================================================================== namespace FAD { #endif enum Enable { kCmdDrsEnable = 0x0600, // CMD_DENABLE/CMD_DISABLE kCmdDwrite = 0x0800, // CMD_DWRITE_RUN/CMD_DWRITE_STOP kCmdSclk = 0x1000, // CMD_SCLK_ON/OFF kCmdSrclk = 0x1500, // CMD_SRCLK_ON/OFF kCmdTriggerLine = 0x1800, // CMD_TRIGGERS_ON/CMD_TRIGGERS_OFF //kCmdContTrigger = 0x1f00, kCmdContTriggerOff = 0x2000, kCmdRun = 0x2200, // CMD_Start/Stop kCmdResetTriggerId = 0x2A00, // kCmdSocket = 0x3000, // CMD_mode_command/CMD_mode_all_sockets kCmdSingleTrigger = 0xA000, // CMD_Trigger kCmdContTriggerOn = 0xB000, }; enum Commands { kCmdWriteExecute = 0x0400, // Configure FAD with the current config ram kCmdWrite = 0x0500, // write to Config-RAM kCmdWriteRoi = kCmdWrite|0x00, // Baseaddress ROI-Values kCmdWriteDac = kCmdWrite|0x24, // Baseaddress DAC-Values kCmdWriteRate = kCmdWrite|0x2c, // Continous trigger rate kCmdWriteRunNumberMSW = kCmdWrite|0x2d, // Run Number most significant word kCmdWriteRunNumberLSW = kCmdWrite|0x2e, // Run Number least significant word /* kCmdRead = 0x0a00, // read from Config-RAM kCmdReadRoi = kCmdRead|0x00, // Baseaddress ROI-Values kCmdReadDac = kCmdRead|0x24, // Baseaddress DAC-Values */ kCmdPhaseIncrease = 0x1200, // CMD_PS_DIRINC kCmdPhaseDecrease = 0x1300, // CMD_PS_DIRDEC kCmdPhaseApply = 0x1400, // CMD_PS_DO kCmdPhaseReset = 0x1700, // CMD_PS_RESET }; enum States { // State Machine states kOffline = 1, kDisconnected, kConnecting, kConnected }; enum { kMaxBins = 1024, kNumTemp = 4, kNumDac = 8, kNumChips = 4, kNumChannelsPerChip = 9, kNumChannels = kNumChips*kNumChannelsPerChip, }; enum { kMaxRegAddr = 0xff, // Highest address in config-ram kMaxRegValue = 0xffff, kMaxDacAddr = kNumDac-1, kMaxDacValue = 0xffff, kMaxRoiAddr = kNumChannels-1, kMaxRoiValue = kMaxBins, kMaxRunNumber = 0xffffffff, }; enum { kDelimiterStart = 0xfb01, kDelimiterEnd = 0x04fe, }; // -------------------------------------------------------- struct EventHeader { #ifdef __cplusplus enum Bits { kDenable = 1<<11, kDwrite = 1<<10, kRefClkTooHigh = 1<< 9, kRefClkTooLow = 1<< 8, kDcmLocked = 1<< 7, kDcmReady = 1<< 6, kSpiSclk = 1<< 5, }; #endif // Einmalig: (new header changes entry in array --> send only if array changed) // ---------------------------------- // Event builder stores an array with all available values. // Disconnected boards are removed (replaced by def values) // Any received header information is immediately put in the array. // The array is transmitted whenever it changes. // This will usually happen only very rarely when a new connection // is opened. // // Array[40] of BoardId // Array[40] of Version // Array[40] of DNA // Slow changes: (new header changes entry in array --> send only if arra changed) // ------------------------------------------- // Event builder stores an array with all available values. // Disconnected boards can be kept in the arrays. // Any received header information is immediately put in the array. // The array is transmitted whenever it changes. // // Connection status (disconnected, connecting, connected) / Array[40] // Consistency of PLLLCK / Array[ 40] of PLLLCK // Consistency of Trigger type / Array[ 40] of trigger type // Consistency of ROI / Array[1440] of ROI // Consistency of RefClock / Array[ 40] of ref clock // Consistency of DAC values / Array[ 400] of DAC values // Consistency of run number / Array[ 40] of Run numbers // Fast changes (new header changes value --> send only if something changed) // ------------------- // Event builder stores an internal array of all boards and // transmits the min/max values determined from the array // only if they have changed. Disconnected boards are not considered. // // Maximum/minimum Event counter of all boards in memory + board id // Maximum/minimum time stamp of all boards in memory + board id // Maximum/minimum temp of all boards in memory + board id // Unknown: // ------------------ // Trigger Id ? // TriggerGeneratorPrescaler ? // Number of Triggers to generate ? // ------------------------------------------------------------ uint16_t fStartDelimiter; // 0x04FE uint16_t fPackageLength; uint16_t fVersion; uint16_t fStatus; // uint16_t fTriggerCrc; uint16_t fTriggerType; uint32_t fTriggerId; // uint32_t fEventCounter; uint32_t fFreqRefClock; // uint16_t fBoardId; uint16_t fAdcClockPhaseShift; uint16_t fNumTriggersToGenerate; uint16_t fTriggerGeneratorPrescaler; // uint64_t fDNA; // Xilinx DNA // uint32_t fTimeStamp; uint32_t fRunNumber; // int16_t fTempDrs[kNumTemp]; // In units of 1/16 deg(?) // uint16_t fDac[kNumDac]; // #ifdef __cplusplus EventHeader() { init(*this); } void operator=(const std::vector &vec) { ntohcpy(vec, *this); Reverse(((uint16_t*)fEventCounter)); Reverse(((uint16_t*)fEventCounter)+1); Reverse(&fEventCounter); Reverse(((uint16_t*)fFreqRefClock)); Reverse(((uint16_t*)fFreqRefClock)+1); Reverse(&fFreqRefClock); Reverse(((uint16_t*)&fTimeStamp)); Reverse(((uint16_t*)&fTimeStamp)+1); Reverse(&fTimeStamp); Reverse(((uint16_t*)&fRunNumber)); Reverse(((uint16_t*)&fRunNumber)+1); Reverse(&fRunNumber); Reverse(&fDNA); } std::vector HtoN() const { EventHeader h(*this); Reverse(((uint16_t*)h.fEventCounter)); Reverse(((uint16_t*)h.fEventCounter)+1); Reverse(&h.fEventCounter); Reverse(((uint16_t*)h.fFreqRefClock)); Reverse(((uint16_t*)h.fFreqRefClock)+1); Reverse(&h.fFreqRefClock); Reverse(((uint16_t*)&h.fTimeStamp)); Reverse(((uint16_t*)&h.fTimeStamp)+1); Reverse(&h.fTimeStamp); Reverse(((uint16_t*)&h.fRunNumber)); Reverse(((uint16_t*)&h.fRunNumber)+1); Reverse(&h.fRunNumber); Reverse(&h.fDNA); return htoncpy(h); } float GetTemp(int i) const { return (((fTempDrs[i]&0x8000) ? ((fTempDrs[i]&0x007fff)^0xffffffff) : (fTempDrs[i]&0x007fff))>>3)/16.; } uint8_t PLLLCK() const { return fStatus>>12; } bool HasDenable() const { return fStatus&kDenable; } bool HasDwrite() const { return fStatus&kDwrite; } bool IsRefClockTooHigh() const { return fStatus&kRefClkTooHigh; } bool IsRefClockTooLow() const { return fStatus&kRefClkTooLow; } bool IsDcmLocked() const { return fStatus&kDcmLocked; } bool IsDcmReady() const { return fStatus&kDcmReady; } bool HasSpiSclk() const { return fStatus&kSpiSclk; } uint16_t Crate() const { return fBoardId>>8; } uint16_t Board() const { return fBoardId&0xff; } void Enable(Bits pos, bool enable=true) { if (enable) fStatus |= pos; else fStatus &= ~pos; } void clear() { reset(*this); } void print(std::ostream &out) const; #endif } __attribute__((__packed__)); struct ChannelHeader { uint16_t fId; uint16_t fStartCell; uint16_t fRegionOfInterest; uint16_t fDummy; // uint16_t fData[]; #ifdef __cplusplus ChannelHeader() { init(*this); } void operator=(const std::vector &vec) { ntohcpy(vec, *this); } std::vector HtoN() const { ChannelHeader h(*this); return htoncpy(h); } void clear() { reset(*this); } void print(std::ostream &out) const; uint16_t Chip() const { return fId>>4; } uint16_t Channel() const { return fId&0xf; } #endif } __attribute__((__packed__)); // Package ends with: // 0x4242 // 0x04fe /* struct DimPassport { uint32_t fTimeStamp; uint16_t fVersion; uint16_t fBoardId; uint64_t fDNA; // Xilinx DNA DimPassport(const EventHeader &h) : fTimeStamp(h.fTimeStamp), fVersion(h.fVersion), fBoardId(h.fBoardId), fDNA(h.fDNA) { } } __attribute__((__packed__)); struct DimSetup { uint32_t fTimeStamp; uint32_t fFreqRefClock; uint16_t fStatus; uint16_t fAdcClockPhaseShift; uint16_t fNumTriggersToGenerate; uint16_t fTriggerGeneratorPrescaler; uint16_t fDac[kNumDac]; DimSetup(const EventHeader &h) : fTimeStamp(h.fTimeStamp), fFreqRefClock(h.fFreqRefClock), fStatus(h.fStatus), fAdcClockPhaseShift(h.fAdcClockPhaseShift), fNumTriggersToGenerate(h.fNumTriggersToGenerate), fTriggerGeneratorPrescaler(h.fTriggerGeneratorPrescaler) { memcpy(fDac, h.fDac, sizeof(fDac)); } uint8_t PLLLCK() const { return fStatus>>12; } bool HasDenable() const { return fStatus&EventHeader::kDenable; } bool HasDwrite() const { return fStatus&EventHeader::kDwrite; } bool IsRefClockTooHigh() const { return fStatus&EventHeader::kRefClkTooHigh; } bool IsRefClockTooLow() const { return fStatus&EventHeader::kRefClkTooLow; } bool IsDcmLocked() const { return fStatus&EventHeader::kDcmLocked; } bool IsDcmReady() const { return fStatus&EventHeader::kDcmReady; } bool HasSpiSclk() const { return fStatus&EventHeader::kSpiSclk; } } __attribute__((__packed__)); struct DimTemperatures { uint32_t fTimeStamp; float fTempDrs[kNumTemp]; DimTemperatures(const EventHeader &h) : fTimeStamp(h.fTimeStamp) { for (int i=0; i