source: trunk/FACT++/src/HeadersFTM.h@ 11519

Last change on this file since 11519 was 11519, checked in by tbretz, 13 years ago
Added new command to configure a single FTU and use this in SetThreshold and in EnablePixel.
File size: 22.8 KB
Line 
1#ifndef FACT_HeadersFTM
2#define FACT_HeadersFTM
3
4#include <ostream>
5
6// For debugging
7#include <iostream>
8
9#include "ByteOrder.h"
10
11// ====================================================================
12
13
14namespace FTM
15{
16 enum States
17 {
18 kFtmUndefined = 0,
19
20 // FTM internal states
21 kFtmIdle = 1, ///< Trigger output disabled, configuration possible
22 kFtmConfig = 2, ///< FTM and FTUs are being reconfigured
23 kFtmRunning = 3, ///< Trigger output enabled, configuration ignored
24 kFtmCalib = 4,
25 };
26
27 enum StateMachine
28 {
29 kDisconnected = 1, //ConnectionFTM::kDisconnected,
30 kConnected ,//= ConnectionFTM::kConnected,
31 kIdle ,//= ConnectionFTM::kIdle,
32 kTakingData ,//= ConnectionFTM::kTakingData,
33 kConfiguring1,
34 kConfiguring2,
35 kConfigured,
36
37 kConfigError1 = 0x101,
38 kConfigError2 = 0x102,
39
40 kCmdTest
41 };
42
43 /// Command codes for FTM communication
44 enum Commands
45 {
46 // First word
47 kCmdRead = 0x0001, ///< Request data
48 kCmdWrite = 0x0002, ///< Send data
49 kCmdStartRun = 0x0004, ///< Enable the trigger output
50 kCmdStopRun = 0x0008, ///< Disable the trigger output
51 kCmdPing = 0x0010, ///< Ping all FTUs (get FTU list)
52 kCmdCrateReset = 0x0020, ///< Reboot (no power cycle) all FTUs and FADs of one crate
53 kCmdDisableReports = 0x0040, ///< Disable transmission of rate-reports (dynamic data)
54 kCmdConfigFTU = 0x0080, ///< Configure single FTU board
55 kCmdToggleLed = 0xc000,
56
57 // second word for read and write
58 kCmdStaticData = 0x0001, ///< Specifies that static (configuration) data is read/written
59 kCmdDynamicData = 0x0002, ///< Specifies that dynamic data is read/written
60 kCmdRegister = 0x0004, ///< Specifies that a register is read/written
61
62 // second word for StartRun
63 kStartRun = 0x0001, ///< ...until kCmdStopRun
64 kTakeNevents = 0x0002, ///< ...fixed number of events
65
66 // second word for kCmdCrateReset
67 kResetCrate0 = 0x0001,
68 kResetCrate1 = 0x0002,
69 kResetCrate2 = 0x0004,
70 kResetCrate3 = 0x0008,
71 };
72
73
74 /// Types sent in the header of the following data
75 enum Types
76 {
77 kHeader = 0, ///< Local extension to identify a header in fCounter
78 kStaticData = 1, ///< Static (configuration) data
79 kDynamicData = 2, ///< Dynamic data (rates)
80 kFtuList = 3, ///< FTU list (answer of ping)
81 kErrorList = 4, ///< Error list (error when FTU communication failed)
82 kRegister = 5, ///< A requested register value
83 };
84
85 // --------------------------------------------------------------------
86
87 enum Delimiter
88 {
89 kDelimiterStart = 0xfb01, ///< Start delimiter send before each header
90 kDelimiterEnd = 0x04fe ///< End delimiter send after each data block
91 };
92
93 struct Header
94 {
95 uint16_t fDelimiter; ///< Start delimiter
96 uint16_t fType; ///< Type of the data to be received after the header
97 uint16_t fDataSize; ///< Size in words to be received after the header (incl end delim.)
98 uint16_t fState; ///< State of the FTM central state machine
99 uint64_t fBoardId; ///< FPGA device DNA (unique chip id)
100 uint16_t fFirmwareId; ///< Version number
101 uint32_t fTriggerCounter; ///< FTM internal counter of all trigger decision independant of trigger-line enable/disable (reset: start/stop run)
102 uint64_t fTimeStamp; ///< Internal counter (micro-seconds, reset: start/stop run)
103
104 Header() { init(*this); }
105
106 std::vector<uint16_t> HtoN() const
107 {
108 Header h(*this);
109
110 Reverse(&h.fBoardId);
111 Reverse(&h.fTriggerCounter);
112 Reverse(&h.fTimeStamp);
113
114 return htoncpy(h);
115 }
116 void operator=(const std::vector<uint16_t> &vec)
117 {
118 ntohcpy(vec, *this);
119
120 Reverse(&fBoardId);
121 Reverse(&fTriggerCounter);
122 Reverse(&fTimeStamp);
123 }
124
125 void clear() { reset(*this); }
126 void print(std::ostream &out) const;
127
128 } __attribute__((__packed__));
129
130 struct DimPassport
131 {
132 uint64_t fBoardId;
133 uint16_t fFirmwareId;
134
135 DimPassport(const Header &h) :
136 fBoardId(h.fBoardId),
137 fFirmwareId(h.fFirmwareId)
138 {
139 }
140 } __attribute__((__packed__));
141
142 struct DimTriggerCounter
143 {
144 uint64_t fTimeStamp;
145 uint32_t fTriggerCounter;
146
147 DimTriggerCounter(const Header &h) :
148 fTimeStamp(h.fTimeStamp),
149 fTriggerCounter(h.fTriggerCounter)
150 {
151 }
152 } __attribute__((__packed__));
153
154
155 struct StaticDataBoard
156 {
157 uint16_t fEnable[4]; /// enable of 4x9 pixels coded as 4x9bits
158 uint16_t fDAC[5]; /// 0-3 (A-D) Threshold of patches, 4 (H) Threshold for N out of 4 (12 bit each)
159 uint16_t fPrescaling; /// Internal readout time of FTUs for trigger counter
160
161 StaticDataBoard() { init(*this); }
162
163 void print(std::ostream &out) const;
164
165 } __attribute__((__packed__));
166
167 struct StaticData
168 {
169 enum Limits
170 {
171 kMaxMultiplicity = 40, ///< Minimum required trigger multiplicity
172 kMaxWindow = 0xf, ///< (4ns * x + 8ns) At least N (multiplicity) rising edges (trigger signal) within this window
173 kMaxDeadTime = 0xffff, ///< (4ns * x + 8ns)
174 kMaxDelayTimeMarker = 0x3ff, ///< (4ns * x + 8ns)
175 kMaxDelayTrigger = 0x3ff, ///< (4ns * x + 8ns)
176 kMaxTriggerInterval = 0x3ff, ///<
177 kMaxSequence = 0x1f,
178 kMaxDAC = 0xfff,
179 kMaxAddr = 0xfff,
180 kMaxPatchIdx = 159,
181 kMaxPixelIdx = 1439,
182 kMaskSettings = 0xf,
183 kMaskLEDs = 0xf,
184 };
185
186 enum GeneralSettings
187 {
188 kTrigger = 0x80, ///< Physics trigger decision (PhysicTrigger)
189 kPedestal = 0x40, ///< Pedestal trigger (artifical)
190 kLPint = 0x20, ///< Enable artificial trigger after light pulse (LP2)
191 kLPext = 0x10, ///< Enable trigger decision after light pulse (CalibrationTrigger, LP1)
192 kExt2 = 0x08, ///< External trigger signal 2
193 kExt1 = 0x04, ///< External trigger signal 1
194 kVeto = 0x02, ///< Veto trigger decision / artifical triggers
195 kClockConditioner = 0x01, ///< Select clock conditioner frequency (1) / time marker (0) as output
196 };
197
198 uint16_t fGeneralSettings; // Enable for different trigger types / select for TIM/ClockConditioner output (only 8 bit used)
199 uint16_t fStatusLEDs; // only 8 bit used
200 uint16_t fTriggerInterval; // [ms] Interval between two artificial triggers (no matter which type) minimum 1ms, 10 bit
201 uint16_t fTriggerSequence; // Ratio between trigger types send as artificial trigger (in this order) 3x5bit
202 uint64_t fDummy0;
203 uint16_t fMultiplicityPhysics; /// Required trigger multiplicity for physcis triggers (0-40)
204 uint16_t fMultiplicityCalib; /// Required trigger multiplicity calibration (LPext) triggers (0-40)
205 uint16_t fDelayTrigger; /// (4ns * x + 8ns) FTM internal programmable delay between trigger decision and output
206 uint16_t fDelayTimeMarker; /// (4ns * x + 8ns) FTM internal programmable delay between trigger descision and time marker output
207 uint16_t fDeadTime; /// (4ns * x + 8ns) FTM internal programmable dead time after trigger decision
208 uint32_t fClockConditioner[8]; /// R0, R1, R8, R9, R11, R13, R14, R15
209 uint16_t fWindowPhysics; /// (4ns * x + 8ns) At least N (multiplicity) rising edges (trigger signal) within this window
210 uint16_t fWindowCalib; /// (4ns * x + 8ns) At least N (multiplicity) rising edges (trigger signal) within this window
211 uint16_t fDummy1;
212
213 StaticDataBoard fBoard[4][10]; // 4 crates * 10 boards (Crate0/FTU0 == readout time of FTUs)
214
215 uint16_t fActiveFTU[4]; // 4 crates * 10 bits (FTU enable)
216
217 StaticData() { init(*this); }
218 StaticData(const std::vector<uint16_t> &vec)
219 {
220 ntohcpy(vec, *this);
221
222 for (int i=0; i<8; i++)
223 Reverse(fClockConditioner+i);
224 }
225
226 std::vector<uint16_t> HtoN() const
227 {
228 StaticData d(*this);
229 for (int i=0; i<8; i++)
230 Reverse(d.fClockConditioner+i);
231
232 return htoncpy(d);
233 }
234
235 bool operator==(const StaticData &d) const
236 {
237 return memcmp(this, &d, sizeof(StaticData))==0;
238 }
239
240 void clear() { reset(*this); }
241 void print(std::ostream &out) const;
242
243 StaticDataBoard &operator[](int i) { return fBoard[i/10][i%10]; }
244 const StaticDataBoard &operator[](int i) const { return fBoard[i/10][i%10]; }
245
246 void EnableFTU(int i) { fActiveFTU[i/10] |= (1<<(i%10)); }
247 void DisableFTU(int i) { fActiveFTU[i/10] &= ~(1<<(i%10)); }
248
249 void EnableAllFTU() { for (int i=0; i<4; i++) fActiveFTU[i] = 0x3ff; }
250 void DisableAllFTU() { for (int i=0; i<4; i++) fActiveFTU[i] = 0; }
251
252 void ToggleFTU(int i) { fActiveFTU[i/10] ^= (1<<(i%10)); }
253
254 void Enable(GeneralSettings type, bool enable)
255 {
256 if (enable)
257 fGeneralSettings |= uint16_t(type);
258 else
259 fGeneralSettings &= ~uint16_t(type); }
260
261 bool IsEnabled(GeneralSettings type) const { return fGeneralSettings&uint16_t(type); }
262
263 uint16_t *EnablePixel(int idx, bool enable)
264 {
265 const int pixel = idx%9;
266 const int patch = (idx/9)%4;
267 const int board = (idx/9)/4;
268
269 uint16_t &pix = fBoard[board/10][board%10].fEnable[patch];
270
271 if (enable)
272 pix |= (1<<pixel);
273 else
274 pix &= ~(1<<pixel);
275
276 return &pix;
277 }
278
279 void EnableAllPixel()
280 {
281 for (int c=0; c<4; c++)
282 for (int b=0; b<10; b++)
283 for (int p=0; p<4; p++)
284 fBoard[c][b].fEnable[p] = 0x1ff;
285 }
286
287 bool Enabled(uint16_t idx) const
288 {
289 const int pixel = idx%9;
290 const int patch = (idx/9)%4;
291 const int board = (idx/9)/4;
292
293 return (fBoard[board/10][board%10].fEnable[patch]>>pixel)&1;
294 }
295
296 uint8_t GetSequencePed() const { return (fTriggerSequence>>10)&0x1f; }
297 uint8_t GetSequenceLPint() const { return (fTriggerSequence>> 5)&0x1f; }
298 uint8_t GetSequenceLPext() const { return (fTriggerSequence) &0x1f; }
299
300 void SetSequence(uint8_t ped, uint8_t lpint, uint8_t lpext)
301 {
302 fTriggerSequence = ((ped&0x1f)<<10)|((lpint&0x1f)<<5)|(lpext&0x1f);
303
304 Enable(kPedestal, ped >0);
305 Enable(kLPext, lpext>0);
306 Enable(kLPint, lpint>0);
307 }
308
309 void SetClockRegister(const uint64_t reg[])
310 {
311 for (int i=0; i<8; i++)
312 fClockConditioner[i] = reg[i];
313 }
314
315 void SetPrescaling(uint16_t val)
316 {
317 for (int c=0; c<4; c++)
318 for (int b=0; b<10; b++)
319 fBoard[c][b].fPrescaling = val;
320 }
321
322 } __attribute__((__packed__));
323
324 // DimStructures must be a multiple of two... I don't know why
325 struct DimStaticData
326 {
327 uint64_t fTimeStamp;
328 //8
329 uint16_t fGeneralSettings; // only 8 bit used
330 uint16_t fStatusLEDs; // only 8 bit used
331 uint64_t fActiveFTU; // 40 bits in row
332 //20
333 uint16_t fTriggerInterval; // only 10 bit used
334 //22
335 uint16_t fTriggerSeqLPint; // only 5bits used
336 uint16_t fTriggerSeqLPext; // only 5bits used
337 uint16_t fTriggerSeqPed; // only 5bits used
338 //28
339 uint16_t fMultiplicityPhysics; // 0-40
340 uint16_t fMultiplicityCalib; // 0-40
341 //32
342 uint16_t fWindowPhysics;
343 uint16_t fWindowCalib;
344 //36
345 uint16_t fDelayTrigger;
346 uint16_t fDelayTimeMarker;
347 uint32_t fDeadTime;
348 //44
349 uint32_t fClockConditioner[8];
350 //60
351 uint16_t fEnable[90]; // 160*9bit = 180byte
352 uint16_t fThreshold[160];
353 uint16_t fMultiplicity[40]; // N out of 4
354 uint16_t fPrescaling[40];
355 // 640+60 = 700
356
357 bool HasTrigger() const { return fGeneralSettings & StaticData::kTrigger; }
358 bool HasPedestal() const { return fGeneralSettings & StaticData::kPedestal; }
359 bool HasLPext() const { return fGeneralSettings & StaticData::kLPext; }
360 bool HasLPint() const { return fGeneralSettings & StaticData::kLPint; }
361 bool HasExt2() const { return fGeneralSettings & StaticData::kExt2; }
362 bool HasExt1() const { return fGeneralSettings & StaticData::kExt1; }
363 bool HasVeto() const { return fGeneralSettings & StaticData::kVeto; }
364 bool HasClockConditioner() const { return fGeneralSettings & StaticData::kClockConditioner; }
365
366 bool IsActive(int i) const { return fActiveFTU&(uint64_t(1)<<i); }
367 bool IsEnabled(int i) const { return fEnable[i/16]&(1<<(i%16)); }
368
369 DimStaticData() { memset(this, 0, sizeof(DimStaticData)); }
370
371 DimStaticData(const Header &h, const StaticData &d) :
372 fTimeStamp(h.fTimeStamp),
373 fGeneralSettings(d.fGeneralSettings),
374 fStatusLEDs(d.fStatusLEDs),
375 fActiveFTU( uint64_t(d.fActiveFTU[0]) |
376 (uint64_t(d.fActiveFTU[1])<<10) |
377 (uint64_t(d.fActiveFTU[2])<<20) |
378 (uint64_t(d.fActiveFTU[3])<<30)),
379 fTriggerInterval(d.fTriggerInterval),
380 fTriggerSeqLPint((d.fTriggerSequence>>5)&0x1f),
381 fTriggerSeqLPext((d.fTriggerSequence)&0x1f),
382 fTriggerSeqPed((d.fTriggerSequence>>10)&0x1f),
383 fMultiplicityPhysics(d.fMultiplicityPhysics),
384 fMultiplicityCalib(d.fMultiplicityCalib),
385 fWindowPhysics(d.fWindowPhysics*4+8),
386 fWindowCalib(d.fWindowCalib*4+8),
387 fDelayTrigger(d.fDelayTrigger*4+8),
388 fDelayTimeMarker(d.fDelayTimeMarker*4+8),
389 fDeadTime(uint32_t(d.fDeadTime)*4+8)
390 {
391 memcpy(fClockConditioner, d.fClockConditioner, sizeof(uint32_t)*8);
392
393 uint16_t src[160];
394 for (int i=0; i<40; i++)
395 {
396 for (int j=0; j<4; j++)
397 {
398 src[i*4+j] = d[i].fEnable[j];
399 fThreshold[i*4+j] = d[i].fDAC[j];
400 }
401
402 fMultiplicity[i] = d[i].fDAC[4];
403 fPrescaling[i] = d[i].fPrescaling+1;
404 }
405 bitcpy(fEnable, 90, src, 160, 9);
406 }
407
408 } __attribute__((__packed__));
409
410
411 struct DynamicDataBoard
412 {
413 uint32_t fRatePatch[4]; // Patch 0,1,2,3
414 uint32_t fRateTotal; // Sum
415
416 uint16_t fOverflow; // Patches: bits 0-3, total 4
417 uint16_t fCrcError;
418
419 void print(std::ostream &out) const;
420
421 void reverse()
422 {
423 for (int i=0; i<4; i++)
424 Reverse(fRatePatch+i);
425
426 Reverse(&fRateTotal);
427 }
428
429 uint32_t &operator[](int i) { return fRatePatch[i]; }
430
431 } __attribute__((__packed__));
432
433
434 struct DynamicData
435 {
436 uint64_t fOnTimeCounter;
437 uint16_t fTempSensor[4]; // U45, U46, U48, U49
438
439 DynamicDataBoard fBoard[4][10]; // 4 crates * 10 boards
440
441 DynamicData() { init(*this); }
442
443 std::vector<uint16_t> HtoN() const
444 {
445 DynamicData d(*this);
446
447 Reverse(&d.fOnTimeCounter);
448
449 for (int c=0; c<4; c++)
450 for (int b=0; b<10; b++)
451 d.fBoard[c][b].reverse();
452
453 return htoncpy(d);
454 }
455
456 void operator=(const std::vector<uint16_t> &vec)
457 {
458 ntohcpy(vec, *this);
459
460 Reverse(&fOnTimeCounter);
461
462 for (int c=0; c<4; c++)
463 for (int b=0; b<10; b++)
464 fBoard[c][b].reverse();
465 }
466
467 void clear() { reset(*this); }
468 void print(std::ostream &out) const;
469
470 DynamicDataBoard &operator[](int i) { return fBoard[i/10][i%10]; }
471 const DynamicDataBoard &operator[](int i) const { return fBoard[i/10][i%10]; }
472
473 } __attribute__((__packed__));
474
475
476 struct DimDynamicData
477 {
478 uint64_t fTimeStamp;
479
480 uint64_t fOnTimeCounter;
481 float fTempSensor[4];
482
483 uint32_t fRatePatch[160];
484
485 uint32_t fRateBoard[40];
486 uint16_t fRateOverflow[40];
487
488 uint16_t fCrcError[40];
489
490 DimDynamicData(const Header &h, const DynamicData &d) :
491 fTimeStamp(h.fTimeStamp),
492 fOnTimeCounter(d.fOnTimeCounter)
493 {
494 for (int i=0; i<4; i++)
495 fTempSensor[i] = d.fTempSensor[i];
496
497 for (int i=0; i<40; i++)
498 {
499 fRateBoard[i] = d[i].fRateTotal;
500 fRateOverflow[i] = d[i].fOverflow;
501 fCrcError[i] = d[i].fCrcError;
502 for (int j=0; j<4; j++)
503 fRatePatch[i*4+j] = d[i].fRatePatch[j];
504 }
505 }
506
507 } __attribute__((__packed__));
508
509
510 struct FtuResponse
511 {
512 uint16_t fPingAddr; // Number of Pings and addr (pings= see error)
513 uint64_t fDNA;
514 uint16_t fErrorCounter; //
515
516 void reverse() { Reverse(&fDNA); }
517
518 void print(std::ostream &out) const;
519
520 } __attribute__((__packed__));
521
522 struct FtuList
523 {
524 uint16_t fNumBoards; /// Total number of boards responded
525 uint16_t fNumBoardsCrate[4]; /// Num of board responded in crate 0-3
526 uint16_t fActiveFTU[4]; /// List of active FTU boards in crate 0-3
527
528 FtuResponse fFTU[4][10];
529
530 FtuList() { init(*this); }
531
532 std::vector<uint16_t> HtoN() const
533 {
534 FtuList d(*this);
535
536 for (int c=0; c<4; c++)
537 for (int b=0; b<10; b++)
538 d.fFTU[c][b].reverse();
539
540 return htoncpy(d);
541 }
542
543 void operator=(const std::vector<uint16_t> &vec)
544 {
545 ntohcpy(vec, *this);
546
547 for (int c=0; c<4; c++)
548 for (int b=0; b<10; b++)
549 fFTU[c][b].reverse();
550 }
551
552 void clear() { reset(*this); }
553 void print(std::ostream &out) const;
554
555 FtuResponse &operator[](int i) { return fFTU[i/10][i%10]; }
556 const FtuResponse &operator[](int i) const { return fFTU[i/10][i%10]; }
557
558 } __attribute__((__packed__));
559
560 struct DimFtuList
561 {
562 uint64_t fTimeStamp;
563 uint64_t fActiveFTU;
564
565 uint16_t fNumBoards; /// Number of boards answered in total
566 uint8_t fNumBoardsCrate[4]; /// Number of boards answered per crate
567
568 uint64_t fDNA[40]; /// DNA of FTU board
569 uint8_t fAddr[40]; /// Address of FTU board
570 uint8_t fPing[40]; /// Number of pings until response (same as in Error)
571
572 DimFtuList(const Header &h, const FtuList &d) :
573 fTimeStamp(h.fTimeStamp),
574 fActiveFTU( uint64_t(d.fActiveFTU[0]) |
575 (uint64_t(d.fActiveFTU[1])<<10) |
576 (uint64_t(d.fActiveFTU[2])<<20) |
577 (uint64_t(d.fActiveFTU[3])<<30)),
578 fNumBoards(d.fNumBoards)
579 {
580 for (int i=0; i<4; i++)
581 fNumBoardsCrate[i] = d.fNumBoardsCrate[i];
582
583 for (int i=0; i<40; i++)
584 {
585 fDNA[i] = d[i].fDNA;
586 fAddr[i] = d[i].fPingAddr&0x3f;
587 fPing[i] = (d[i].fPingAddr>>8)&0x3;
588 }
589 }
590
591 bool IsActive(int i) const { return fActiveFTU&(uint64_t(1)<<i); }
592
593 } __attribute__((__packed__));
594
595
596 struct Error
597 {
598 uint16_t fNumCalls; // 0=error, >1 needed repetition but successfull
599
600 uint16_t fDelimiter;
601 uint16_t fDestAddress;
602 uint16_t fSrcAddress;
603 uint16_t fFirmwareId;
604 uint16_t fCommand;
605 uint16_t fData[21];
606 uint16_t fCrcErrorCounter;
607 uint16_t fCrcCheckSum;
608
609 Error() { init(*this); }
610
611 std::vector<uint16_t> HtoN() const
612 {
613 return htoncpy(*this);
614 }
615
616 void operator=(const std::vector<uint16_t> &vec) { ntohcpy(vec, *this); }
617
618 void clear() { reset(*this); }
619
620 uint16_t &operator[](int idx) { return fData[idx]; }
621 const uint16_t &operator[](int idx) const { return fData[idx]; }
622
623 void print(std::ostream &out) const;
624
625 } __attribute__((__packed__));
626
627 struct DimError
628 {
629 uint64_t fTimeStamp;
630 Error fError;
631
632 DimError(const Header &h, const Error &e) :
633 fTimeStamp(h.fTimeStamp),
634 fError(e)
635 {
636 fError.fDestAddress = (e.fDestAddress&0x3)*10 + ((e.fDestAddress>>2)&0xf);
637 fError.fSrcAddress = (e.fSrcAddress &0x3)*10 + ((e.fSrcAddress >>2)&0xf);
638 }
639
640 } __attribute__((__packed__));
641
642 /*
643 struct Command
644 {
645 uint16_t fStartDelimiter;
646 uint16_t fCommand;
647 uint16_t fParam[3];
648
649 Command() { init(*this); }
650
651 void HtoN() { hton(*this); }
652 void NtoH() { ntoh(*this); }
653
654 void operator=(const std::vector<uint16_t> &vec) { ntohcpy(vec, *this); }
655
656 void clear() { reset(*this); }
657
658
659 } __attribute__((__packed__));
660 */
661
662 // --------------------------------------------------------------------
663
664 inline std::ostream &operator<<(std::ostream &out, const FtuResponse &h)
665 {
666 h.print(out);
667 return out;
668 }
669
670 inline std::ostream &operator<<(std::ostream &out, const Header &h)
671 {
672 h.print(out);
673 return out;
674 }
675
676
677 inline std::ostream &operator<<(std::ostream &out, const FtuList &h)
678 {
679 h.print(out);
680 return out;
681 }
682
683 inline std::ostream &operator<<(std::ostream &out, const DynamicDataBoard &h)
684 {
685 h.print(out);
686 return out;
687 }
688
689 inline std::ostream &operator<<(std::ostream &out, const DynamicData &h)
690 {
691 h.print(out);
692 return out;
693 }
694
695 inline std::ostream &operator<<(std::ostream &out, const StaticDataBoard &h)
696 {
697 h.print(out);
698 return out;
699 }
700
701 inline std::ostream &operator<<(std::ostream &out, const StaticData &h)
702 {
703 h.print(out);
704 return out;
705 }
706
707 inline std::ostream &operator<<(std::ostream &out, const Error &h)
708 {
709 h.print(out);
710 return out;
711 }
712};
713
714#endif
Note: See TracBrowser for help on using the repository browser.