source: trunk/FACT++/src/StateMachineImp.cc@ 14098

Last change on this file since 14098 was 14072, checked in by tbretz, 12 years ago
I don't know what exactly it is about the deque I am using, but it seems that what is returned by front() is not 0 even if the queue is empty (size()==0); I hope that this now fixes the problem.
File size: 34.6 KB
Line 
1// **************************************************************************
2/** @class StateMachineImp
3
4 @brief Base class for a state machine implementation
5
6 \dot
7 digraph example {
8 node [shape=record, fontname=Helvetica, fontsize=10];
9 s [ label="Constructor" style="rounded" color="red" URL="\ref StateMachineImp::StateMachineImp"];
10 a [ label="State -3 (kSM_NotReady)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
11 b [ label="State -2 (kSM_Initializing)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
12 c [ label="State -1 (kSM_Configuring)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
13 y [ label="State 0 (kSM_Ready)" URL="\ref StateMachineImp::Run"];
14 r [ label="User states (Running)" ];
15 e [ label="State 256 (kSM_Error)" ];
16 f [ label="State 65535 (kSM_FatalError)" color="red" URL="\ref StateMachineImp::Run"];
17
18 // ---- manual means: command or program introduced ----
19
20 // Startup from Run() to Ready
21 s -> a [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
22 a -> b [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
23 b -> c [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
24
25 c -> y [ arrowhead="open" color="red" style="solid" URL="\ref StateMachineImp::Run" ]; // prg: Run()
26
27 y -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
28 r -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
29 e -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
30
31 e -> y [ arrowhead="open" color="red" style="dashed" ]; // CMD: RESET (e.g.)
32
33 y -> e [ arrowhead="open" color="blue" style="solid" ]; // prg
34 r -> e [ arrowhead="open" color="blue" style="solid" ]; // prg
35
36 y -> r [ arrowhead="open" color="blue" style="dashed" ]; // CMD/PRG
37 r -> y [ arrowhead="open" color="blue" style="dashed" ]; // CMD/PRG
38
39 y -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
40 r -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
41 e -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
42 }
43 \enddot
44
45 - <B>Red box</B>: Internal states. Events which are received are
46 discarded.
47 - <B>Black box</B>: State machine running. Events are accepted and
48 processed according to the implemented functions Transition(),
49 Configuration() and Execute(). Events are accepted accoding to the
50 lookup table of allowed transitions.
51 - <B>Red solid arrow</B>: A transition initiated by the program itself.
52 - <b>Dashed arrows in general</b>: Transitions which can be initiated
53 by a dim-command or get inistiated by the program.
54 - <b>Solid arrows in general</b>: These transitions are always initiated by
55 the program.
56 - <B>Red dashed</B>: Suggested RESET event (should be implemented by
57 the derived class)
58 - <B>Black dashed arrow</B>: Exit from the main loop. This can either
59 happen by the Dim-provided EXIT-command or a call to StateMachineDim::Stop.
60 - <B>Black arrows</B>: Other events or transitions which can be
61 implemented by the derived class.
62 - <B>Dotted black arrow</B>: Exit from the main-loop which is initiated
63 by the program itself through StateMachineDim::Stop() and not by the
64 state machine itself (Execute(), Configure() and Transition())
65 - <b>Blue dashed arrows</b>: Transitions which happen either by receiving
66 a event or are initiated from the state machine itself
67 (by return values of (Execute(), Configure() and Transition())
68 - <b>Blue solid</b>: Transitions which cannot be initiated by dim
69 event but only by the state machine itself.
70 - From the program point of view the fatal error is identical with
71 the kSM_Configuring state, i.e. it is returned from the main-loop.
72 Usually this will result in program termination. However, depending
73 on the state the program might decide to use different cleaning
74 routines.
75
76@todo
77 - A proper and correct cleanup after an EXIT or Stop() is missing.
78 maybe we have to force a state 0 first?
79*/
80// **************************************************************************
81#include "StateMachineImp.h"
82
83#include "Time.h"
84#include "Event.h"
85
86#include "WindowLog.h"
87#include "Converter.h"
88
89#include "tools.h"
90
91using namespace std;
92
93// --------------------------------------------------------------------------
94//
95//! The state of the state machine (fCurrentState) is initialized with
96//! kSM_NotReady
97//!
98//! Default state names for kSM_NotReady, kSM_Ready, kSM_Error and
99//! kSM_FatalError are set via AddStateName.
100//!
101//! fExitRequested is set to 0, fRunning to false.
102//!
103//! Furthermore, the ostream is propagated to MessageImp, as well as
104//! stored in fOut.
105//!
106//! MessageImp is used for messages which are distributed (e.g. via DIM),
107//! fOut is used for messages which are only displayed on the local console.
108//!
109//! Subsequent, i.e. derived classes should setup all allowed state
110//! transitions as well as all allowed configuration event by
111//! AddEvent and AddStateName.
112//!
113//! @param out
114//! A refrence to an ostream which allows to redirect the log-output
115//! to something else than cout. The default is cout. The reference
116//! is propagated to fLog
117//!
118//! @param name
119//! The server name stored in fName
120//!
121//
122StateMachineImp::StateMachineImp(ostream &out, const std::string &name)
123 : MessageImp(out), fName(name), fCurrentState(kSM_NotReady),
124 fRunning(false), fBufferEvents(true), fExitRequested(0)
125{
126 SetDefaultStateNames();
127}
128
129// --------------------------------------------------------------------------
130//
131//! delete all object stored in fListOfEvent and in fEventQueue
132//
133StateMachineImp::~StateMachineImp()
134{
135 // For this to work EventImp must be the first class from which
136 // the object inherits
137 for (vector<EventImp*>::iterator cmd=fListOfEvents.begin(); cmd!=fListOfEvents.end(); cmd++)
138 delete *cmd;
139
140 // Unfortunately, front() doesn't necessarily return 0 if
141 // queue is empty
142 while (fEventQueue.size())
143 {
144 Event *q=fEventQueue.front();
145 if (!q)
146 break;
147
148 fEventQueue.pop();
149 delete q;
150 }
151}
152
153// --------------------------------------------------------------------------
154//
155//! Sets the default state names. This function should be called in
156//! derived classes again if they overwrite SetStateName().
157//
158void StateMachineImp::SetDefaultStateNames()
159{
160 AddStateName(kSM_NotReady, "NotReady", "State machine not ready, events are ignored.");
161 AddStateName(kSM_Ready, "Ready", "State machine ready to receive events.");
162 AddStateName(kSM_Error, "ERROR", "Common error state.");
163 AddStateName(kSM_FatalError, "FATAL", "A fatal error occured, the eventloop is stopped.");
164}
165
166// --------------------------------------------------------------------------
167//
168//! Puts the given event into the fifo. The fifo will take over ownership.
169//! Access to fEventQueue is encapsulated by fMutex.
170//!
171//! @param cmd
172//! Pointer to an object of type Event to be stored in the fifo
173//!
174//! @todo
175//! Can we also allow EventImp?
176//
177void StateMachineImp::PushEvent(Event *cmd)
178{
179 fMutex.lock();
180 fEventQueue.push(cmd);
181 fMutex.unlock();
182}
183
184// --------------------------------------------------------------------------
185//
186//! Get an event from the fifo. We will take over the owenership of the
187//! object. The pointer is deleted from the fifo. Access of fEventQueue
188//! is encapsulated by fMutex.
189//!
190//! @returns
191//! A pointer to an Event object
192//
193Event *StateMachineImp::PopEvent()
194{
195 fMutex.lock();
196
197 // Get the next event from the stack
198 // and remove event from the stack
199 Event *cmd = fEventQueue.front();
200 fEventQueue.pop();
201
202 fMutex.unlock();
203
204 return cmd;
205}
206
207// --------------------------------------------------------------------------
208//
209//! With this function commands are posted to the event queue. The data
210//! is not given as binary data but as a string instead. It is converted
211//! according to the format of the corresponding event and an event
212//! is posted to the queue if successfull.
213//!
214//! @param lout
215//! Stream to which output should be redirected
216//! event should be for.
217//!
218//! @param str
219//! Command with data, e.g. "COMMAND 1 2 3 4 5 test"
220//!
221//! @returns
222//! false if no event was posted to the queue. If
223//! PostEvent(EventImp&,const char*, size_t) was called return its
224//! return value
225//
226bool StateMachineImp::PostEvent(ostream &lout, const string &str)
227{
228 // Find the delimiter between the command name and the data
229 size_t p0 = str.find_first_of(' ');
230 if (p0==string::npos)
231 p0 = str.length();
232
233 // Compile the command which will be sent to the state-machine
234 const string name = fName + "/" + str.substr(0, p0);
235
236 // Check if this command is existing at all
237 EventImp *evt = FindEvent(name);
238 if (!evt)
239 {
240 lout << kRed << "Unknown command '" << name << "'" << endl;
241 return false;
242 }
243
244 // Get the format of the event data
245 const string fmt = evt->GetFormat();
246
247 // Convert the user entered data according to the format string
248 // into a data block which will be attached to the event
249#ifndef DEBUG
250 ostringstream sout;
251 const Converter conv(sout, fmt, false);
252#else
253 const Converter conv(lout, fmt, false);
254#endif
255 if (!conv)
256 {
257 lout << kRed << "Couldn't properly parse the format... ignored." << endl;
258 return false;
259 }
260
261 try
262 {
263#ifdef DEBUG
264 lout << kBlue << name;
265#endif
266 const vector<char> v = conv.GetVector(str.substr(p0));
267#ifdef DEBUG
268 lout << endl;
269#endif
270
271 return PostEvent(*evt, v.data(), v.size());
272 }
273 catch (const std::runtime_error &e)
274 {
275 lout << endl << kRed << e.what() << endl;
276 }
277
278 return false;
279}
280
281// --------------------------------------------------------------------------
282//
283//! With this function commands are posted to the event queue. If the
284//! event loop has not yet been started with Run() the command is directly
285//! handled by HandleEvent.
286//!
287//! Events posted when the state machine is in a negative state or
288//! kSM_FatalError are ignored.
289//!
290//! A new event is created and its data contents initialized with the
291//! specified memory.
292//!
293//! @param evt
294//! The event to be posted. The precise contents depend on what the
295//! event should be for.
296//!
297//! @param ptr
298//! pointer to the memory which should be attached to the event
299//!
300//! @param siz
301//! size of the memory which should be attached to the event
302//!
303//! @returns
304//! false if the event is ignored, true otherwise.
305//!
306//! @todo
307//! - Shell we check for the validity of a command at the current state, too?
308//! - should we also get the output stream as an argument here?
309//
310bool StateMachineImp::PostEvent(const EventImp &evt, const char *ptr, size_t siz)
311{
312 if (/*GetCurrentState()<0 ||*/ GetCurrentState()==kSM_FatalError)
313 {
314 Out() << kYellow << "State<0 or FatalError: Event ignored." << endl;
315 return false;
316 }
317
318 if (IsRunning() || fBufferEvents)
319 {
320 Event *event = new Event(evt, ptr, siz);
321 //Debug("Posted: "+event->GetName());
322 PushEvent(event);
323 }
324 else
325 {
326 // FIXME: Is this thread safe? (Yes, because the data is copied)
327 // But two handlers could be called at the same time. Do we
328 // need to lock the handlers? (Dim + console)
329 // FIXME: Is copying of the data necessary?
330 const Event event(evt, ptr, siz);
331 Lock();
332 HandleEvent(event);
333 UnLock();
334 }
335 return true;
336}
337
338// --------------------------------------------------------------------------
339//
340//! With this function commands are posted to the event queue. If the
341//! event loop has not yet been started with Run() the command is directly
342//! handled by HandleEvent.
343//!
344//! Events posted when the state machine is in a negative state or
345//! kSM_FatalError are ignored.
346//!
347//! @param evt
348//! The event to be posted. The precise contents depend on what the
349//! event should be for.
350//!
351//! @returns
352//! false if the event is ignored, true otherwise.
353//!
354//! @todo
355//! - Shell we check for the validity of a command at the current state, too?
356//! - should we also get the output stream as an argument here?
357//
358bool StateMachineImp::PostEvent(const EventImp &evt)
359{
360 if (/*GetCurrentState()<0 ||*/ GetCurrentState()==kSM_FatalError)
361 {
362 Out() << kYellow << "State<0 or FatalError: Event ignored." << endl;
363 return false;
364 }
365
366 if (IsRunning() || fBufferEvents)
367 PushEvent(new Event(evt));
368 else
369 {
370 // FIXME: Is this thread safe? (Yes, because it is only used
371 // by Dim and this is thread safe) But two handlers could
372 // be called at the same time. Do we need to lock the handlers?
373 HandleEvent(evt);
374 }
375 return true;
376}
377
378// --------------------------------------------------------------------------
379//
380//! Return all event names of the StateMachine
381//!
382//! @returns
383//! A vector of strings with all event names of the state machine.
384//! The event names all have the SERVER/ pre-fix removed.
385//
386const vector<string> StateMachineImp::GetEventNames() const
387{
388 vector<string> v;
389
390 const string &name = fName + "/";
391 const int len = name.length();
392
393 for (vector<EventImp*>::const_iterator i=fListOfEvents.begin();
394 i!=fListOfEvents.end(); i++)
395 {
396 const string evt = (*i)->GetName();
397
398 v.push_back(evt.substr(0, len)==name ? evt.substr(len) : evt);
399 }
400
401 return v;
402}
403
404// --------------------------------------------------------------------------
405//
406//! Call for each event in fListEvents its Print function with the given
407//! stream.
408//!
409//! @param out
410//! ostream to which the output should be redirected
411//!
412//! @param evt
413//! if given only the given event is selected
414//
415void StateMachineImp::PrintListOfEvents(ostream &out, const string &evt) const
416{
417 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
418 if (evt.empty() || GetName()+'/'+evt==(*c)->GetName())
419 (*c)->Print(out, true);
420}
421
422// --------------------------------------------------------------------------
423//
424//! Call for each event in fListEvents its Print function with the given
425//! stream if it is an allowed event in the current state.
426//!
427//! @param out
428//! ostream to which the output should be redirected
429//!
430//
431void StateMachineImp::PrintListOfAllowedEvents(ostream &out) const
432{
433 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
434 if ((*c)->IsStateAllowed(fCurrentState))
435 (*c)->Print(out, true);
436}
437
438// --------------------------------------------------------------------------
439//
440//! Call PrintListOfEvents with fOut as the output stream
441//!
442//! @param str
443//! if given only the given event is selected
444//
445//
446void StateMachineImp::PrintListOfEvents(const string &str) const
447{
448 PrintListOfEvents(Out(), str);
449}
450
451// --------------------------------------------------------------------------
452//
453//! Print a list of all states with descriptions.
454//!
455//! @param out
456//! ostream to which the output should be redirected
457//
458void StateMachineImp::PrintListOfStates(std::ostream &out) const
459{
460 out << endl;
461 out << kBold << "List of available states:" << endl;
462 for (StateNames::const_iterator i=fStateNames.begin(); i!=fStateNames.end(); i++)
463 {
464 ostringstream state;
465 state << i->first;
466 out << " -[" << kBold << state.str() << kReset << "]:" << setfill(' ') << setw(6-state.str().length()) << ' ' << kYellow << i->second.first << kBlue << " (" << i->second.second << ")" << endl;
467 }
468 out << endl;
469}
470
471// --------------------------------------------------------------------------
472//
473//! Print a list of all states with descriptions.
474//
475void StateMachineImp::PrintListOfStates() const
476{
477 PrintListOfStates(Out());
478}
479
480// --------------------------------------------------------------------------
481//
482//! Check whether an event (same pointer!) is in fListOfEvents
483//!
484//! @returns
485//! true if the event was found, false otherwise
486//
487bool StateMachineImp::HasEvent(const EventImp *cmd) const
488{
489 // Find the event from the list of commands and queue it
490 return find(fListOfEvents.begin(), fListOfEvents.end(), cmd)!=fListOfEvents.end();
491}
492
493// --------------------------------------------------------------------------
494//
495//! Check whether an event with the given name is found in fListOfEvents.
496//! Note that currently there is no mechanism which ensures that not two
497//! events have the same name.
498//!
499//! @returns
500//! true if the event was found, false otherwise
501//
502EventImp *StateMachineImp::FindEvent(const string &evt) const
503{
504 // Find the command from the list of commands and queue it
505 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
506 if (evt == (*c)->GetName())
507 return *c;
508
509 return 0;
510}
511
512// --------------------------------------------------------------------------
513//
514//! Calling this function, a new (named) event is added to the state
515//! machine. Via a call to CreateEvent a new event is created with the
516//! given targetstate, name and format.
517//!
518//! The allowed states are passed to the new event and a message
519//! is written to the output-stream.
520//!
521//! @param name
522//! The command name which should initiate the transition. The DimCommand
523//! will be constructed with the name given to the constructor and this
524//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
525//!
526//! @param states
527//! A comma sepeareted list of ints, e.g. "1, 4, 5, 9" with states
528//! in which this new state transition is allowed and will be accepted.
529//!
530//! @param fmt
531//! A format as defined by the dim system can be given for the command.
532//! However, it has no real meaning except that it is stored within the
533//! DimCommand object. However, the user must make sure that the data of
534//! received commands is properly extracted. No check is done.
535//
536EventImp &StateMachineImp::AddEvent(const string &name, const string &states, const string &fmt)
537{
538 EventImp *evt = CreateEvent(name, fmt);
539
540 evt->AddAllowedStates(states);
541
542#ifdef DEBUG
543 Out() << ": " << Time().GetAsStr("%H:%M:%S.%f");
544 Out() << " - Adding command " << evt->GetName();
545 Out() << endl;
546#endif
547
548 fListOfEvents.push_back(evt);
549
550 return *evt;
551}
552
553// --------------------------------------------------------------------------
554//
555//! Calling this function, a new (named) event is added to the state
556//! machine. Therefore an instance of type DimEvent is created and added
557//! to the list of available commands fListOfEvents.
558//!
559//! @param name
560//! The command name which should initiate the transition. The DimCommand
561//! will be constructed with the name given to the constructor and this
562//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
563//!
564//! @param s1, s2, s3, s4, s5
565//! A list of states from which a transition to targetstate is allowed
566//! by this command.
567//
568EventImp &StateMachineImp::AddEvent(const string &name, int s1, int s2, int s3, int s4, int s5)
569{
570 ostringstream str;
571 str << s1 << ' ' << s2 << ' ' << s3 << ' ' << s4 << ' ' << s5;
572 return AddEvent(name, str.str(), "");
573}
574
575// --------------------------------------------------------------------------
576//
577//! Calling this function, a new (named) event is added to the state
578//! machine. Therefore an instance of type DimEvent is created and added
579//! to the list of available commands fListOfEvents.
580//!
581//! @param name
582//! The command name which should initiate the transition. The DimCommand
583//! will be constructed with the name given to the constructor and this
584//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
585//!
586//! @param fmt
587//! A format as defined by the dim system can be given for the command.
588//! However, it has no real meaning except that it is stored within the
589//! DimCommand object. However, the user must make sure that the data of
590//! received commands is properly extracted. No check is done.
591//!
592//! @param s1, s2, s3, s4, s5
593//! A list of states from which a transition to targetstate is allowed
594//! by this command.
595//
596EventImp &StateMachineImp::AddEvent(const string &name, const string &fmt, int s1, int s2, int s3, int s4, int s5)
597{
598 ostringstream str;
599 str << s1 << ' ' << s2 << ' ' << s3 << ' ' << s4 << ' ' << s5;
600 return AddEvent(name, str.str(), fmt);
601}
602
603EventImp *StateMachineImp::CreateService(const string &)
604{
605 return new EventImp();
606}
607
608// --------------------------------------------------------------------------
609//
610EventImp &StateMachineImp::Subscribe(const string &name)
611{
612 EventImp *evt = CreateService(name);
613 fListOfEvents.push_back(evt);
614 return *evt;
615}
616
617// --------------------------------------------------------------------------
618//
619//! To be able to name states, i.e. present the current state in human
620//! readable for to the user, a string can be assigned to each state.
621//! For each state this function can be called only once, i.e. state name
622//! cannot be overwritten.
623//!
624//! Be aware that two states should not have the same name!
625//!
626//! @param state
627//! Number of the state to which a name should be assigned
628//!
629//! @param name
630//! A name which should be assigned to the state, e.g. "Tracking"
631//!
632//! @param doc
633//! A explanatory text describing the state
634//!
635void StateMachineImp::AddStateName(const int state, const std::string &name, const std::string &doc)
636{
637 if (fStateNames[state].first.empty())
638 fStateNames[state] = make_pair(name, doc);
639}
640
641// --------------------------------------------------------------------------
642//
643//! @param state
644//! The state for which the name should be returned.
645//!
646//! @returns
647//! The state name as stored in fStateNames is returned, corresponding
648//! to the state given. If no name exists the number is returned
649//! as string.
650//!
651const string StateMachineImp::GetStateName(int state) const
652{
653 const StateNames::const_iterator i = fStateNames.find(state);
654
655 ostringstream s;
656 s << state;
657 return i==fStateNames.end() || i->second.first.empty() ? s.str() : i->second.first;
658}
659
660// --------------------------------------------------------------------------
661//
662//! @param state
663//! The state for which the name should be returned.
664//!
665//! @returns
666//! The description of a state name as stored in fStateNames is returned,
667//! corresponding to the state given. If no name exists an empty string is
668//! returned.
669//!
670const string StateMachineImp::GetStateDesc(int state) const
671{
672 const StateNames::const_iterator i = fStateNames.find(state);
673 return i==fStateNames.end() ? "" : i->second.second;
674}
675
676// --------------------------------------------------------------------------
677//
678//! This functions works in analogy to GetStateName, but the state number
679//! is added in []-parenthesis after the state name if it is available.
680//!
681//! @param state
682//! The state for which the name should be returned.
683//!
684//! @returns
685//! The state name as stored in fStateName is returned corresponding
686//! to the state given plus the state number added in []-parenthesis.
687//! If no name exists the number is returned as string.
688//!
689//
690const string StateMachineImp::GetStateDescription(int state) const
691{
692 const string &str = GetStateName(state);
693
694 ostringstream s;
695 s << state;
696 if (str==s.str())
697 return str;
698
699 return str.empty() ? s.str() : (str+'['+s.str()+']');
700}
701
702// --------------------------------------------------------------------------
703//
704//! This function is a helpter function to do all the corresponding action
705//! if the state machine decides to change its state.
706//!
707//! If state is equal to the current state (fCurrentState) nothing is done.
708//! Then the service STATE (fSrcState) is updated with the new state
709//! and the text message and updateService() is called to distribute
710//! the update to all clients.
711//!
712//! In addition a log message is created and set via UpdateMsg.
713//!
714//! @param state
715//! The new state which should be applied
716//!
717//! @param txt
718//! A text corresponding to the state change which is distributed
719//! together with the state itself for convinience.
720//!
721//! @param cmd
722//! This argument can be used to give an additional name of the function
723//! which is reponsible for the state change. It will be included in the
724//! message
725//!
726//! @return
727//! return the new state which was set or -1 in case of no change
728//
729string StateMachineImp::SetCurrentState(int state, const char *txt, const std::string &cmd)
730{
731 if (state==fCurrentState)
732 {
733 Out() << " -- " << Time().GetAsStr() << ": State " << GetStateDescription(state) << " already set... ";
734 if (!cmd.empty())
735 Out() << "'" << cmd << "' ignored.";
736 Out() << endl;
737 return "";
738 }
739
740 const int old = fCurrentState;
741
742 const string nold = GetStateDescription(old);
743 const string nnew = GetStateDescription(state);
744
745 string msg = nnew + " " + txt;
746 if (!cmd.empty())
747 msg += " (" + cmd + ")";
748
749 fCurrentState = state;
750
751 // State might have changed already again...
752 // Not very likely, but possible. That's why state is used
753 // instead of fCurrentState.
754
755 ostringstream str;
756 str << "State Transition from " << nold << " to " << nnew << " (" << txt;
757 if (!cmd.empty())
758 str << ": " << cmd;
759 str << ")";
760 Message(str);
761
762 return msg;
763}
764
765// --------------------------------------------------------------------------
766//
767//! This function handles a new state issued by one of the event handlers.
768//!
769//! @param newstate
770//! A possible new state
771//!
772//! @param evt
773//! A pointer to the event which was responsible for the state change,
774//! NULL if no event was responsible.
775//!
776//! @param txt
777//! Text which is issued if the current state has changed and the new
778//! state is identical to the target state as stored in the event
779//! reference, or when no alternative text was given, or the pointer to
780//! evt is NULL.
781//!
782//! @param alt
783//! An alternative text which is issues when the newstate of a state change
784//! doesn't match the expected target state.
785//!
786//! @returns
787//! false if newstate is kSM_FatalError, true otherwise
788//
789bool StateMachineImp::HandleNewState(int newstate, const EventImp *evt,
790 const char *txt)
791{
792 if (newstate==kSM_FatalError)
793 return false;
794
795 if (newstate==fCurrentState)
796 return true;
797
798 SetCurrentState(newstate, txt, evt ? evt->GetName() : "");
799
800 return true;
801}
802
803// --------------------------------------------------------------------------
804//
805//! This is the event handler. Depending on the type of event it calles
806//! the function associated with the event, the Transition() or
807//! Configure() function.
808//!
809//! It first checks if the given even is valid in the current state. If
810//! it is not valid the function returns with true.
811//!
812//! If it is valid, it is checked whether a function is associated with
813//! the event. If this is the case, evt.Exec() is called and HandleNewState
814//! called with its return value.
815//!
816//! If the event's target state is negative (unnamed Event) the Configure()
817//! function is called with the event as argument and HandleNewState with
818//! its returned new state.
819//!
820//! If the event's target state is 0 or positive (named Event) the
821//! Transition() function is called with the event as argument and
822//! HandleNewState with its returned new state.
823//!
824//! In all three cases the return value of HandleNewState is returned.
825//!
826//! Any of the three commands should usually return the current state
827//! or (in case of the Transition() command) return the new state. However,
828//! all three command can issue a state change by returning a new state.
829//! However, this will just change the internal state. Any action which
830//! is connected with the state change must have been executed already.
831//!
832//! @param evt
833//! a reference to the event which should be handled
834//!
835//! @returns
836//! false in case one of the commands changed the state to kSM_FataError,
837//! true otherwise
838//
839bool StateMachineImp::HandleEvent(const EventImp &evt)
840{
841 if (!evt.HasFunc())
842 {
843 Warn(evt.GetName()+": No function assigned... ignored.");
844 return true;
845
846 }
847
848#ifdef DEBUG
849 ostringstream out;
850 out << "Handle: " << evt.GetName() << "[" << evt.GetSize() << "]";
851 Debug(out);
852#endif
853
854 // Check if the received command is allow in the current state
855 if (!evt.IsStateAllowed(fCurrentState))
856 {
857 Warn(evt.GetName()+": Not allowed in state "+GetStateDescription()+"... ignored.");
858 return true;
859 }
860
861 return HandleNewState(evt.ExecFunc(), &evt,
862 "by ExecFunc function-call");
863}
864
865// --------------------------------------------------------------------------
866//
867//! This is the main loop, or what could be called the running state
868//! machine. The flow diagram below shows what the loop is actually doing.
869//! It's main purpose is to serialize command excecution and the main
870//! loop in the state machine (e.g. the tracking loop)
871//!
872//! Leaving the loop can be forced by setting fExitRequested to another
873//! value than zero. This is done automatically if dim's EXIT command
874//! is received or can be forced by calling Stop().
875//!
876//! As long as no new command arrives the Execute() command is called
877//! continously. This should implement the current action which
878//! should be performed in the current state, e.g. calculating a
879//! new command value and sending it to the hardware.
880//!
881//! If a command is received it is put into the fifo by the commandHandler().
882//! The main loop now checks the fifo. If commands are in the fifo, it is
883//! checked whether the command is valid ithin this state or not. If it is
884//! not valid it is ignored. If it is valid the corresponding action
885//! is performed. This can either be a call to Configure() (when no state
886//! change is connected to the command) or Transition() (if the command
887//! involves a state change).
888//! In both cases areference to the received command (Command) is
889//! passed to the function. Note that after the functions have finished
890//! the command will go out of scope and be deleted.
891//!
892//! None of the commands should take to long for execution. Otherwise the
893//! response time of the main loop will become too slow.
894//!
895//! Any of the three commands should usually return the current state
896//! or (in case of the Transition() command) return the new state. However,
897//! all three command can issue a state change by returning a new state.
898//! However, this will just change the internal state. Any action which
899//! is connected with the state change must have been executed already.
900//!
901//!
902//!
903//! \dot
904//! digraph Run {
905//! node [ shape=record, fontname=Helvetica, fontsize=10 ];
906//! edge [ labelfontname=Helvetica, labelfontsize=8 ];
907//! start0 [ label="Run()" style="rounded"];
908//! start1 [ label="fExitRequested=0\nfRunning=true\nSetCurrentState(kSM_Ready)"];
909//! cond1 [ label="Is fExitRequested==0?"];
910//! exec [ label="HandleNewState(Execute())"];
911//! fifo [ label="Any event in FIFO?"];
912//! get [ label="Get event from FIFO\n Is event allowed within the current state?" ];
913//! handle [ label="HandleEvent()" ];
914//! exit1 [ label="fRunning=false\nSetCurrentState(kSM_FatalError)\n return -1" style="rounded"];
915//! exit2 [ label="fRunning=false\nSetCurrentState(kSM_NotReady)\n return fExitRequested-1" style="rounded"];
916//!
917//! start0 -> start1 [ weight=8 ];
918//! start1 -> cond1 [ weight=8 ];
919//!
920//! cond1:e -> exit2:n [ taillabel="true" ];
921//! cond1 -> exec [ taillabel="false" weight=8 ];
922//!
923//! exec -> fifo [ taillabel="true" weight=8 ];
924//! exec:e -> exit1:e [ taillabel="false" ];
925//!
926//! fifo -> cond1 [ taillabel="false" ];
927//! fifo -> get [ taillabel="true" weight=8 ];
928//!
929//! get -> handle [ taillabel="true" ];
930//!
931//! handle:s -> exit1:n [ taillabel="false" weight=8 ];
932//! handle -> cond1 [ taillabel="true" ];
933//! }
934//! \enddot
935//!
936//! @param dummy
937//! If this parameter is set to treu then no action is executed
938//! and now events are dispatched from the event list. It is usefull
939//! if functions are assigned directly to any event to simulate
940//! a running loop (e.g. block until Stop() was called or fExitRequested
941//! was set by an EXIT command. If dummy==true, fRunning is not set
942//! to true to allow handling events directly from the event handler.
943//!
944//! @returns
945//! In the case of a a fatal error -1 is returned, fExitRequested-1 in all
946//! other cases (This corresponds to the exit code either received by the
947//! EXIT event or given to the Stop() function)
948//!
949//! @todo Fix docu (kSM_SetReady, HandleEvent)
950//
951int StateMachineImp::Run(bool dummy)
952{
953 if (fCurrentState>=kSM_Ready)
954 {
955 Error("Run() can only be called in the NotReady state.");
956 return -1;
957 }
958
959 if (!fExitRequested)
960 {
961 fRunning = !dummy;
962
963 SetCurrentState(kSM_Ready, "by Run()");
964
965 while (!fExitRequested)
966 {
967 usleep(1);
968 if (dummy)
969 continue;
970
971 // Execute a step in the current state of the state machine
972 if (!HandleNewState(Execute(), 0, "by Execute-command"))
973 break;
974
975 // If the command stack is empty go on with processing in the
976 // current state
977 if (IsQueueEmpty())
978 continue;
979
980 // Pop the next command which arrived from the stack
981 const auto_ptr<Event> cmd(PopEvent());
982
983 if (!HandleEvent(*cmd))
984 break;
985 }
986
987 fRunning = false;
988
989 if (!fExitRequested)
990 {
991 Fatal("Fatal Error occured... shutting down.");
992 return -1;
993 }
994
995 SetCurrentState(kSM_NotReady, "due to return from Run().");
996 }
997
998 const int exitcode = fExitRequested-1;
999
1000 // Prepare for next call
1001 fExitRequested = 0;
1002
1003 return exitcode;
1004}
1005
1006// --------------------------------------------------------------------------
1007//
1008//! This function can be called to stop the loop of a running state machine.
1009//! Run() will then return with a return value corresponding to the value
1010//! given as argument.
1011//!
1012//! Note that this is a dangerous operation, because as soon as one of the
1013//! three state machine commands returns (Execute(), Configure() and
1014//! Transition()) the loop will be left and Run(9 will return. The program
1015//! is then responsible of correctly cleaning up the mess which might be left
1016//! behind.
1017//!
1018//! @param code
1019//! int with which Run() should return when returning.
1020//
1021void StateMachineImp::Stop(int code)
1022{
1023 fExitRequested = code+1;
1024}
Note: See TracBrowser for help on using the repository browser.