source: trunk/FACT++/src/StateMachineImp.cc@ 10395

Last change on this file since 10395 was 10385, checked in by tbretz, 14 years ago
Moved setting of default states to a protected memeber function; made AddStateName virtual to allow StateMachineDim to overwrite it; changed color in PrintStateNames
File size: 38.4 KB
Line 
1// **************************************************************************
2/** @class StateMachineImp
3
4 @brief Base class for a state machine implementation
5
6 \dot
7 digraph example {
8 node [shape=record, fontname=Helvetica, fontsize=10];
9 s [ label="Constructor" style="rounded" color="red" URL="\ref StateMachineImp::StateMachineImp"];
10 a [ label="State -3 (kSM_NotReady)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
11 b [ label="State -2 (kSM_Initializing)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
12 c [ label="State -1 (kSM_Configuring)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
13 y [ label="State 0 (kSM_Ready)" URL="\ref StateMachineImp::Run"];
14 r [ label="User states (Running)" ];
15 e [ label="State 256 (kSM_Error)" ];
16 f [ label="State 65535 (kSM_FatalError)" color="red" URL="\ref StateMachineImp::Run"];
17
18 // ---- manual means: command or program introduced ----
19
20 // Startup from Run() to Ready
21 s -> a [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
22 a -> b [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
23 b -> c [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
24
25 c -> y [ arrowhead="open" color="red" style="solid" URL="\ref StateMachineImp::Run" ]; // prg: Run()
26
27 y -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
28 r -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
29 e -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
30
31 e -> y [ arrowhead="open" color="red" style="dashed" ]; // CMD: RESET (e.g.)
32
33 y -> e [ arrowhead="open" color="blue" style="solid" ]; // prg
34 r -> e [ arrowhead="open" color="blue" style="solid" ]; // prg
35
36 y -> r [ arrowhead="open" color="blue" style="dashed" ]; // CMD/PRG
37 r -> y [ arrowhead="open" color="blue" style="dashed" ]; // CMD/PRG
38
39 y -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
40 r -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
41 e -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
42 }
43 \enddot
44
45 - <B>Red box</B>: Internal states. Events which are received are
46 discarded.
47 - <B>Black box</B>: State machine running. Events are accepted and
48 processed according to the implemented functions Transition(),
49 Configuration() and Execute(). Events are accepted accoding to the
50 lookup table of allowed transitions.
51 - <B>Red solid arrow</B>: A transition initiated by the program itself.
52 - <b>Dashed arrows in general</b>: Transitions which can be initiated
53 by a dim-command or get inistiated by the program.
54 - <b>Solid arrows in general</b>: These transitions are always initiated by
55 the program.
56 - <B>Red dashed</B>: Suggested RESET event (should be implemented by
57 the derived class)
58 - <B>Black dashed arrow</B>: Exit from the main loop. This can either
59 happen by the Dim-provided EXIT-command or a call to StateMachineDim::Stop.
60 - <B>Black arrows</B>: Other events or transitions which can be
61 implemented by the derived class.
62 - <B>Dotted black arrow</B>: Exit from the main-loop which is initiated
63 by the program itself through StateMachineDim::Stop() and not by the
64 state machine itself (Execute(), Configure() and Transition())
65 - <b>Blue dashed arrows</b>: Transitions which happen either by receiving
66 a event or are initiated from the state machine itself
67 (by return values of (Execute(), Configure() and Transition())
68 - <b>Blue solid</b>: Transitions which cannot be initiated by dim
69 event but only by the state machine itself.
70 - From the program point of view the fatal error is identical with
71 the kSM_Configuring state, i.e. it is returned from the main-loop.
72 Usually this will result in program termination. However, depending
73 on the state the program might decide to use different cleaning
74 routines.
75
76@todo
77 - A proper and correct cleanup after an EXIT or Stop() is missing.
78 maybe we have to force a state 0 first?
79*/
80// **************************************************************************
81#include "StateMachineImp.h"
82
83#include "Time.h"
84#include "Event.h"
85
86#include "WindowLog.h"
87#include "Converter.h"
88
89#include "tools.h"
90
91using namespace std;
92
93// --------------------------------------------------------------------------
94//
95//! The state of the state machine (fCurrentState) is initialized with
96//! kSM_NotReady
97//!
98//! Default state names for kSM_NotReady, kSM_Ready, kSM_Error and
99//! kSM_FatalError are set via AddStateName.
100//!
101//! fExitRequested is set to 0, fRunning to false.
102//!
103//! Furthermore, the ostream is propagated to MessageImp, as well as
104//! stored in fOut.
105//!
106//! MessageImp is used for messages which are distributed (e.g. via DIM),
107//! fOut is used for messages which are only displayed on the local console.
108//!
109//! Subsequent, i.e. derived classes should setup all allowed state
110//! transitions as well as all allowed configuration event by
111//! AddTransition, AddConfiguration and AddStateName.
112//!
113//! @param out
114//! A refrence to an ostream which allows to redirect the log-output
115//! to something else than cout. The default is cout. The reference
116//! is propagated to fLog
117//!
118//! @param name
119//! The server name stored in fName
120//!
121//
122StateMachineImp::StateMachineImp(ostream &out, const std::string &name)
123 : MessageImp(out), fName(name), fCurrentState(kSM_NotReady),
124 fRunning(false), fExitRequested(0)
125{
126 SetDefaultStateNames();
127}
128
129// --------------------------------------------------------------------------
130//
131//! delete all object stored in fListOfEvent and in fEventQueue
132//
133StateMachineImp::~StateMachineImp()
134{
135 // For this to work EventImp must be the first class from which
136 // the object inherits
137 for (vector<EventImp*>::iterator cmd=fListOfEvents.begin(); cmd!=fListOfEvents.end(); cmd++)
138 delete *cmd;
139
140 // Unfortunately, front() doesn't necessarily return 0 if
141 // queue is empty
142 if (fEventQueue.size())
143 for (Event *q=fEventQueue.front(); q; fEventQueue.pop())
144 delete q;
145}
146
147// --------------------------------------------------------------------------
148//
149//! Sets the default state names. This function should be called in
150//! derived classes again if they overwrite SetStateName().
151//
152void StateMachineImp::SetDefaultStateNames()
153{
154 AddStateName(kSM_NotReady, "NotReady", "State machine not ready, events are ignored.");
155 AddStateName(kSM_Ready, "Ready", "State machine ready to receive events.");
156 AddStateName(kSM_Error, "ERROR", "Common error state.");
157 AddStateName(kSM_FatalError, "FATAL", "A fatal error occured, the eventloop is stopped.");
158}
159
160// --------------------------------------------------------------------------
161//
162//! Puts the given event into the fifo. The fifo will take over ownership.
163//! Access to fEventQueue is encapsulated by fMutex.
164//!
165//! @param cmd
166//! Pointer to an object of type Event to be stored in the fifo
167//!
168//! @todo
169//! Can we also allow EventImp?
170//
171void StateMachineImp::PushEvent(Event *cmd)
172{
173 fMutex.lock();
174 fEventQueue.push(cmd);
175 fMutex.unlock();
176}
177
178// --------------------------------------------------------------------------
179//
180//! Get an event from the fifo. We will take over the owenership of the
181//! object. The pointer is deleted from the fifo. Access of fEventQueue
182//! is encapsulated by fMutex.
183//!
184//! @returns
185//! A pointer to an Event object
186//
187Event *StateMachineImp::PopEvent()
188{
189 fMutex.lock();
190
191 // Get the next event from the stack
192 // and remove event from the stack
193 Event *cmd = fEventQueue.front();
194 fEventQueue.pop();
195
196 fMutex.unlock();
197
198 return cmd;
199}
200
201// --------------------------------------------------------------------------
202//
203//! With this function commands are posted to the event queue. The data
204//! is not given as binary data but as a string instead. It is converted
205//! according to the format of the corresponding event and an event
206//! is posted to the queue if successfull.
207//!
208//! @param lout
209//! Stream to which output should be redirected
210//! event should be for.
211//!
212//! @param str
213//! Command with data, e.g. "COMMAND 1 2 3 4 5 test"
214//!
215//! @returns
216//! false if no event was posted to the queue. If
217//! PostEvent(EventImp&,const char*, size_t) was called return its
218//! return value
219//
220bool StateMachineImp::PostEvent(ostream &lout, const string &str)
221{
222 // Find the delimiter between the command name and the data
223 size_t p0 = str.find_first_of(' ');
224 if (p0==string::npos)
225 p0 = str.length();
226
227 // Compile the command which will be sent to the state-machine
228 const string name = fName + "/" + str.substr(0, p0);
229
230 // Check if this command is existing at all
231 EventImp *evt = FindEvent(name);
232 if (!evt)
233 {
234 lout << kRed << "Unknown command '" << name << "'" << endl;
235 return false;
236 }
237
238 // Get the format of the event data
239 const string fmt = evt->GetFormat();
240
241 // Convert the user enetered data according to the format string
242 // into a data block which will be attached to the event
243 const Converter conv(lout, fmt, false);
244 if (!conv)
245 {
246 lout << kRed << "Couldn't properly parse the format... ignored." << endl;
247 return false;
248 }
249
250 try
251 {
252 lout << kBlue << name;
253 const vector<char> v = conv.GetVector(str.substr(p0));
254 lout << endl;
255
256 return PostEvent(*evt, v.data(), v.size());
257 }
258 catch (const std::runtime_error &e)
259 {
260 lout << endl << kRed << e.what() << endl;
261 }
262
263 return false;
264}
265
266// --------------------------------------------------------------------------
267//
268//! With this function commands are posted to the event queue. If the
269//! event loop has not yet been started with Run() the command is directly
270//! handled by HandleEvent.
271//!
272//! Events posted when the state machine is in a negative state or
273//! kSM_FatalError are ignored.
274//!
275//! A new event is created and its data contents initialized with the
276//! specified memory.
277//!
278//! @param evt
279//! The event to be posted. The precise contents depend on what the
280//! event should be for.
281//!
282//! @param ptr
283//! pointer to the memory which should be attached to the event
284//!
285//! @param siz
286//! size of the memory which should be attached to the event
287//!
288//! @todo
289//! - Shell we check for the validity of a command at the current state, too?
290//! - should we also get the output stream as an argument here?
291//
292bool StateMachineImp::PostEvent(const EventImp &evt, const char *ptr, size_t siz)
293{
294 if (GetCurrentState()<0 || GetCurrentState()==kSM_FatalError)
295 {
296 Out() << kYellow << "Event ignored." << endl;
297 return false;
298 }
299
300 if (IsRunning())
301 PushEvent(new Event(evt, ptr, siz));
302 else
303 {
304 // FIXME: Is this thread safe? (Yes, because the data is copied)
305 // But two handlers could be called at the same time. Do we
306 // need to lock the handlers?
307 const Event event(evt, ptr, siz);
308 HandleEvent(event);
309 }
310 return true;
311}
312
313// --------------------------------------------------------------------------
314//
315//! With this function commands are posted to the event queue. If the
316//! event loop has not yet been started with Run() the command is directly
317//! handled by HandleEvent.
318//!
319//! Events posted when the state machine is in a negative state or
320//! kSM_FatalError are ignored.
321//!
322//! @param evt
323//! The event to be posted. The precise contents depend on what the
324//! event should be for.
325//!
326//! @todo
327//! - Shell we check for the validity of a command at the current state, too?
328//! - should we also get the output stream as an argument here?
329//
330bool StateMachineImp::PostEvent(const EventImp &evt)
331{
332 if (GetCurrentState()<0 || GetCurrentState()==kSM_FatalError)
333 {
334 Out() << kYellow << "Event ignored." << endl;
335 return false;
336 }
337
338 if (IsRunning())
339 PushEvent(new Event(evt));
340 else
341 {
342 // FIXME: Is this thread safe? (Yes, because it is only used
343 // by Dim and this is thread safe) But two handlers could
344 // be called at the same time. Do we need to lock the handlers?
345 HandleEvent(evt);
346 }
347 return true;
348}
349
350const vector<string> StateMachineImp::GetEventNames() const
351{
352 vector<string> v;
353
354 const string &name = fName + "/";
355 const int len = name.length();
356
357 for (vector<EventImp*>::const_iterator i=fListOfEvents.begin();
358 i!=fListOfEvents.end(); i++)
359 {
360 const string evt = (*i)->GetName();
361
362 v.push_back(evt.substr(0, len)==name ? evt.substr(len) : evt);
363 }
364
365 return v;
366}
367
368// --------------------------------------------------------------------------
369//
370//! Call for each event in fListEvents its Print function with the given
371//! stream.
372//!
373//! @param out
374//! ostream to which the output should be redirected
375//!
376//! @param evt
377//! if given only the given event is selected
378//
379void StateMachineImp::PrintListOfEvents(ostream &out, const string &evt) const
380{
381 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
382 if (evt.empty() || GetName()+'/'+evt==(*c)->GetName())
383 (*c)->Print(out);
384}
385
386// --------------------------------------------------------------------------
387//
388//! Call PrintListOfEvents with fOut as the output stream
389//!
390//! @param str
391//! if given only the given event is selected
392//
393//
394void StateMachineImp::PrintListOfEvents(const string &str) const
395{
396 PrintListOfEvents(Out(), str);
397}
398
399// --------------------------------------------------------------------------
400//
401//! Print a list of all states with descriptions.
402//!
403//! @param out
404//! ostream to which the output should be redirected
405//
406void StateMachineImp::PrintListOfStates(std::ostream &out) const
407{
408 out << endl;
409 out << kBold << "List of available states:" << endl;
410 out << endl;
411 for (StateNames::const_iterator i=fStateNames.begin(); i!=fStateNames.end(); i++)
412 out << kBold << setw(5) << i->first << kReset << ": " << kYellow << i->second.first << kBlue << " (" << i->second.second << ")" << endl;
413 out << endl;
414}
415
416// --------------------------------------------------------------------------
417//
418//! Print a list of all states with descriptions.
419//
420void StateMachineImp::PrintListOfStates() const
421{
422 PrintListOfStates(Out());
423}
424
425// --------------------------------------------------------------------------
426//
427//! Check whether an event (same pointer!) is in fListOfEvents
428//!
429//! @returns
430//! true if the event was found, false otherwise
431//
432bool StateMachineImp::HasEvent(const EventImp *cmd) const
433{
434 // Find the event from the list of commands and queue it
435 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
436 if (*c == cmd)
437 return true;
438
439 return false;
440}
441
442// --------------------------------------------------------------------------
443//
444//! Check whether an event with the given name is found in fListOfEvents.
445//! Note that currently there is no mechanism which ensures that not two
446//! events have the same name.
447//!
448//! @returns
449//! true if the event was found, false otherwise
450//
451EventImp *StateMachineImp::FindEvent(const std::string &evt) const
452{
453 // Find the command from the list of commands and queue it
454 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
455 if (evt == (*c)->GetName())
456 return *c;
457
458 return 0;
459}
460
461// --------------------------------------------------------------------------
462//
463//! Returns a pointer to a newly allocated object of base EventImp.
464//! It is meant to be overloaded by derived classes to create their
465//! own kind of events.
466//!
467//! @param targetstate
468//! Defines the target state of the new transition. If \b must be
469//! greater or equal zero. A negative target state is used to flag
470//! commands which do not initiate a state transition. If this is
471//! desired use AddConfiguration instead.
472//!
473//! @param name
474//! The command name which should initiate the transition. The DimCommand
475//! will be constructed with the name given to the constructor and this
476//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
477//!
478//! @param fmt
479//! A format as defined by the dim system can be given for the command.
480//! However, it has no real meaning except that it is stored within the
481//! DimCommand object. However, the user must make sure that the data of
482//! received commands is properly extracted. No check is done.
483//
484EventImp *StateMachineImp::CreateEvent(int targetstate, const char *, const char *)
485{
486 return new EventImp(targetstate);
487}
488
489// --------------------------------------------------------------------------
490//
491//! Calling this function a new allowed transition is added to the state
492//! machine. Via a call to CreateEvent a new event is created with the
493//! given targetstate, name and format.
494//!
495//! The allowed states are passed to the new event and a message
496//! is written to the output-stream.
497//!
498//! @param targetstate
499//! Defines the target state of the new transition. If \b must be
500//! greater or equal zero. A negative target state is used to flag
501//! commands which do not initiate a state transition. If this is
502//! desired use AddConfiguration instead.
503//!
504//! @param name
505//! The command name which should initiate the transition. The DimCommand
506//! will be constructed with the name given to the constructor and this
507//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
508//!
509//! @param states
510//! A comma sepeareted list of ints, e.g. "1, 4, 5, 9" with states
511//! in which this new state transition is allowed and will be accepted.
512//!
513//! @param fmt
514//! A format as defined by the dim system can be given for the command.
515//! However, it has no real meaning except that it is stored within the
516//! DimCommand object. However, the user must make sure that the data of
517//! received commands is properly extracted. No check is done.
518//
519EventImp &StateMachineImp::AddTransition(int targetstate, const char *name, const char *states, const char *fmt)
520{
521 EventImp *evt = CreateEvent(targetstate, name, fmt);
522
523 evt->AddAllowedStates(states);
524
525 Out() << ": " << Time().GetAsStr() << " - Adding command " << evt->GetName();
526 Out() << " (transition to " << GetStateDescription(evt->GetTargetState()) << ")" << endl;
527
528 fListOfEvents.push_back(evt);
529
530 return *evt;
531}
532
533// --------------------------------------------------------------------------
534//
535//! Calling this function a new allowed transition is added to the state
536//! machine. Therefore an instance of type DimEvent is created and added
537//! to the list of available commands fListOfEvents.
538//!
539//! @param targetstate
540//! Defines the target state of the new transition. If \b must be
541//! greater or equal zero. A negative target state is used to flag
542//! commands which do not initiate a state transition. If this is
543//! desired use AddConfiguration instead.
544//!
545//! @param name
546//! The command name which should initiate the transition. The DimCommand
547//! will be constructed with the name given to the constructor and this
548//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
549//!
550//! @param s1, s2, s3, s4, s5
551//! A list of states from which a transition to targetstate is allowed
552//! by this command.
553//
554EventImp &StateMachineImp::AddTransition(int targetstate, const char *name, int s1, int s2, int s3, int s4, int s5)
555{
556 return AddTransition(targetstate, name, Form("%d %d %d %d %d", s1, s2, s3, s4, s5).c_str(), "");
557}
558
559// --------------------------------------------------------------------------
560//
561//! Calling this function a new allowed transition is added to the state
562//! machine. Therefore an instance of type DimEvent is created and added
563//! to the list of available commands fListOfEvents.
564//!
565//! @param targetstate
566//! Defines the target state of the new transition. If \b must be
567//! greater or equal zero. A negative target state is used to flag
568//! commands which do not initiate a state transition. If this is
569//! desired use AddConfiguration instead.
570//!
571//! @param name
572//! The command name which should initiate the transition. The DimCommand
573//! will be constructed with the name given to the constructor and this
574//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
575//!
576//! @param fmt
577//! A format as defined by the dim system can be given for the command.
578//! However, it has no real meaning except that it is stored within the
579//! DimCommand object. However, the user must make sure that the data of
580//! received commands is properly extracted. No check is done.
581//!
582//! @param s1, s2, s3, s4, s5
583//! A list of states from which a transition to targetstate is allowed
584//! by this command.
585//
586EventImp &StateMachineImp::AddTransition(int targetstate, const char *name, const char *fmt, int s1, int s2, int s3, int s4, int s5)
587{
588 return AddTransition(targetstate, name, Form("%d %d %d %d %d", s1, s2, s3, s4, s5).c_str(), fmt);
589}
590
591// --------------------------------------------------------------------------
592//
593//! This function calls AddTransition with a target-state of -1 which means
594//! that the command will not change the state at all. This shell be used
595//! for configuration commands. As well as in AddTransition the states in
596//! which such a configuration command is accepted can be given.
597//!
598//! @param name
599//! The command name which should initiate the transition. The DimCommand
600//! will be constructed with the name given to the constructor and this
601//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
602//!
603//! @param states
604//! A comma sepeareted list of ints, e.g. "1, 4, 5, 9" with states
605//! in which this new state transition is allowed and will be accepted.
606//!
607//! @param fmt
608//! A format as defined by the dim system can be given for the command.
609//! However, it has no real meaning except that it is stored within the
610//! DimCommand object. However, the user must make sure that the data of
611//! received commands is properly extracted. No check is done.
612//!
613EventImp &StateMachineImp::AddConfiguration(const char *name, const char *states, const char *fmt)
614{
615 return AddTransition(-1, name, states, fmt);
616}
617
618// --------------------------------------------------------------------------
619//
620//! This function calls AddTransition with a target-state of -1 which means
621//! that the command will not change the state at all. This shell be used
622//! for configuration commands. As well as in AddTransition the states in
623//! which such a configuration command is accepted can be given.
624//!
625//! @param name
626//! The command name which should initiate the transition. The DimCommand
627//! will be constructed with the name given to the constructor and this
628//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
629//!
630//! @param s1, s2, s3, s4, s5
631//! A list of states from which a transition to targetstate is allowed
632//! by this command.
633//
634EventImp &StateMachineImp::AddConfiguration(const char *name, int s1, int s2, int s3, int s4, int s5)
635{
636 return AddTransition(-1, name, s1, s2, s3, s4, s5);
637}
638
639// --------------------------------------------------------------------------
640//
641//! This function calls AddTransition with a target-state of -1 which means
642//! that the command will not change the state at all. This shell be used
643//! for configuration commands. As well as in AddTransition the states in
644//! which such a configuration command is accepted can be given.
645//!
646//! @param name
647//! The command name which should initiate the transition. The DimCommand
648//! will be constructed with the name given to the constructor and this
649//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
650//!
651//! @param fmt
652//! A format as defined by the dim system can be given for the command.
653//! However, it has no real meaning except that it is stored within the
654//! DimCommand object. However, the user must make sure that the data of
655//! received commands is properly extracted. No check is done.
656//!
657//! @param s1, s2, s3, s4, s5
658//! A list of states from which a transition to targetstate is allowed
659//! by this command.
660//
661EventImp &StateMachineImp::AddConfiguration(const char *name, const char *fmt, int s1, int s2, int s3, int s4, int s5)
662{
663 return AddTransition(-1, name, fmt, s1, s2, s3, s4, s5);
664}
665
666// --------------------------------------------------------------------------
667//
668//! To be able to name states, i.e. present the current state in human
669//! readable for to the user, a string can be assigned to each state.
670//! For each state this function can be called only once, i.e. state name
671//! cannot be overwritten.
672//!
673//! Be aware that two states should not have the same name!
674//!
675//! @param state
676//! Number of the state to which a name should be assigned
677//!
678//! @param name
679//! A name which should be assigned to the state, e.g. "Tracking"
680//!
681//! @param doc
682//! A explanatory text describing the state
683//!
684void StateMachineImp::AddStateName(const int state, const std::string &name, const std::string &doc)
685{
686 if (fStateNames[state].first.empty())
687 fStateNames[state] = make_pair(name, doc);
688}
689
690// --------------------------------------------------------------------------
691//
692//! @param state
693//! The state for which the name should be returned.
694//!
695//! @returns
696//! The state name as stored in fStateNames is returned, corresponding
697//! to the state given. If no name exists the number is returned
698//! as string.
699//!
700const string StateMachineImp::GetStateName(int state) const
701{
702 const StateNames::const_iterator i = fStateNames.find(state);
703 return i==fStateNames.end() || i->second.first.empty() ? Form("%d", state) : i->second.first;
704}
705
706// --------------------------------------------------------------------------
707//
708//! @param state
709//! The state for which the name should be returned.
710//!
711//! @returns
712//! The description of a state name as stored in fStateNames is returned,
713//! corresponding to the state given. If no name exists an empty string is
714//! returned.
715//!
716const string StateMachineImp::GetStateDesc(int state) const
717{
718 const StateNames::const_iterator i = fStateNames.find(state);
719 return i==fStateNames.end() ? "" : i->second.second;
720}
721
722// --------------------------------------------------------------------------
723//
724//! This functions works in analogy to GetStateName, but the state number
725//! is added in []-parenthesis after the state name if it is available.
726//!
727//! @param state
728//! The state for which the name should be returned.
729//!
730//! @returns
731//! The state name as stored in fStateName is returned corresponding
732//! to the state given plus the state number added in []-parenthesis.
733//! If no name exists the number is returned as string.
734//!
735//
736const string StateMachineImp::GetStateDescription(int state) const
737{
738 const string &str = GetStateName(state);
739 if (str==Form("%d", state))
740 return str;
741 return str.empty() ? Form("%d", state) : (str+Form("[%d]", state));
742}
743
744// --------------------------------------------------------------------------
745//
746//! This function is a helpter function to do all the corresponding action
747//! if the state machine decides to change its state.
748//!
749//! If state is equal to the current state (fCurrentState) nothing is done.
750//! Then the service STATE (fSrcState) is updated with the new state
751//! and the text message and updateService() is called to distribute
752//! the update to all clients.
753//!
754//! In addition a log message is created and set via UpdateMsg.
755//!
756//! @param state
757//! The new state which should be applied
758//!
759//! @param txt
760//! A text corresponding to the state change which is distributed
761//! together with the state itself for convinience.
762//!
763//! @param cmd
764//! This argument can be used to give an additional name of the function
765//! which is reponsible for the state change. It will be included in the
766//! message
767//!
768//! @return
769//! return the new state which was set or -1 in case of no change
770//
771string StateMachineImp::SetCurrentState(int state, const char *txt, const std::string &cmd)
772{
773 if (state==fCurrentState)
774 {
775 Out() << " -- " << Time().GetAsStr() << ": State " << GetStateDescription(state) << " already set... ";
776 if (!cmd.empty())
777 Out() << "'" << cmd << "' ignored.";
778 Out() << endl;
779 return "";
780 }
781
782 const int old = fCurrentState;
783
784 const string nold = GetStateDescription(old);
785 const string nnew = GetStateDescription(state);
786
787 string msg = nnew + " " + txt;
788 if (!cmd.empty())
789 msg += " (" + cmd + ")";
790
791 fCurrentState = state;
792
793 // State might have changed already again...
794 // Not very likely, but possible. That's why state is used
795 // instead of fCurrentState.
796
797 stringstream str;
798 str << "State Transition from " << nold << " to " << nnew << " (" << txt;
799 if (!cmd.empty())
800 str << ": " << cmd;
801 str << ")";
802 Message(str);
803
804 return msg;
805}
806
807// --------------------------------------------------------------------------
808//
809//! This function handles a new state issued by one of the event handlers.
810//!
811//! @param newstate
812//! A possible new state
813//!
814//! @param evt
815//! A pointer to the event which was responsible for the state change,
816//! NULL if no event was responsible.
817//!
818//! @param txt
819//! Text which is issued if the current state has changed and the new
820//! state is identical to the target state as stored in the event
821//! reference, or when no alternative text was given, or the pointer to
822//! evt is NULL.
823//!
824//! @param alt
825//! An alternative text which is issues when the newstate of a state change
826//! doesn't match the expected target state.
827//!
828//! @returns
829//! false if newstate is kSM_FatalError, true otherwise
830//
831bool StateMachineImp::HandleNewState(int newstate, const EventImp *evt,
832 const char *txt, const char *alt)
833{
834 if (newstate==kSM_FatalError)
835 return false;
836
837 if (newstate==fCurrentState)
838 return true;
839
840 if (!evt || !alt || newstate==evt->GetTargetState())
841 SetCurrentState(newstate, txt, evt ? evt->GetName() : "");
842 else
843 SetCurrentState(newstate, alt, evt->GetName());
844
845 return true;
846}
847
848// --------------------------------------------------------------------------
849//
850//! This is the event handler. Depending on the type of event it calles
851//! the function associated with the evenet, the Transition() or
852//! Configure() function.
853//!
854//! It first checks if the given even is valid in the current state. If
855//! it is not valid the function returns with true.
856//!
857//! If it is valid, it is checked whether a function is associated with
858//! the event. If this is the case, evt.Exec() is called and HandleNewState
859//! called with its return value.
860//!
861//! If the event's target state is negative the Configure() function is
862//! called with the event as argument and HandleNewState with its
863//! returned new state.
864//!
865//! If the event's target state is 0 or positive the Transition() function is
866//! called with the event as argument and HandleNewState with its
867//! returned new state.
868//!
869//! In all three cases the return value of HandleNewState is returned.
870//!
871//! Any of the three commands should usually return the current state
872//! or (in case of the Transition() command) return the new state. However,
873//! all three command can issue a state change by returning a new state.
874//! However, this will just change the internal state. Any action which
875//! is connected with the state change must have been executed already.
876//!
877//! @param evt
878//! a reference to the event which should be handled
879//!
880//! @returns
881//! false in case one of the commands changed the state to kSM_FataError,
882//! true otherwise
883//
884bool StateMachineImp::HandleEvent(const EventImp &evt)
885{
886 // Get the new state from the command
887 const int commandstate = evt.GetTargetState();
888
889 // Check if the received command is allow in the current state
890 if (!evt.IsStateAllowed(fCurrentState))
891 {
892 stringstream msg;
893 msg << evt.GetName() << ": Not allowed in state ";
894 msg << GetStateDescription() << "... ignored.";
895 Warn(msg);
896 return true;
897 }
898
899 if (evt.HasFunc())
900 return HandleNewState(evt.ExecFunc(), &evt,
901 "by ExecFunc function-call");
902
903 // Check if this is a configuration command (a command which
904 // intention is not to change the state of our state-machine
905 if (commandstate<0)
906 return HandleNewState(Configure(evt), &evt, "by Configure-command");
907 else
908 return HandleNewState(Transition(evt), &evt,
909 "by Transition-command (expected)",
910 "by Transition-command (unexpected)");
911
912 // This is a fatal error, because it can never happen
913 return false;
914}
915
916// --------------------------------------------------------------------------
917//
918//! This is the main loop, or what could be called the running state
919//! machine. The flow diagram below shows what the loop is actually doing.
920//! It's main purpose is to serialize command excecution and the main
921//! loop in the state machine (e.g. the tracking loop)
922//!
923//! Leaving the loop can be forced by setting fExitRequested to another
924//! value than zero. This is done automatically if dim's EXIT command
925//! is received or can be forced by calling Stop().
926//!
927//! As long as no new command arrives the Execute() command is called
928//! continously. This should implement the current action which
929//! should be performed in the current state, e.g. calculating a
930//! new command value and sending it to the hardware.
931//!
932//! If a command is received it is put into the fifo by the commandHandler().
933//! The main loop now checks the fifo. If commands are in the fifo, it is
934//! checked whether the command is valid ithin this state or not. If it is
935//! not valid it is ignored. If it is valid the corresponding action
936//! is performed. This can either be a call to Configure() (when no state
937//! change is connected to the command) or Transition() (if the command
938//! involves a state change).
939//! In both cases areference to the received command (Command) is
940//! passed to the function. Note that after the functions have finished
941//! the command will go out of scope and be deleted.
942//!
943//! None of the commands should take to long for execution. Otherwise the
944//! response time of the main loop will become too slow.
945//!
946//! Any of the three commands should usually return the current state
947//! or (in case of the Transition() command) return the new state. However,
948//! all three command can issue a state change by returning a new state.
949//! However, this will just change the internal state. Any action which
950//! is connected with the state change must have been executed already.
951//!
952//!
953//!
954//! \dot
955//! digraph Run {
956//! node [ shape=record, fontname=Helvetica, fontsize=10 ];
957//! edge [ labelfontname=Helvetica, labelfontsize=8 ];
958//! start0 [ label="Run()" style="rounded"];
959//! start1 [ label="fExitRequested=0\nfRunning=true\nSetCurrentState(kSM_Ready)"];
960//! cond1 [ label="Is fExitRequested==0?"];
961//! exec [ label="HandleNewState(Execute())"];
962//! fifo [ label="Any event in FIFO?"];
963//! get [ label="Get event from FIFO\n Is event allowed within the current state?" ];
964//! handle [ label="HandleEvent()" ];
965//! exit1 [ label="fRunning=false\nSetCurrentState(kSM_FatalError)\n return -1" style="rounded"];
966//! exit2 [ label="fRunning=false\nSetCurrentState(kSM_NotReady)\n return fExitRequested-1" style="rounded"];
967//!
968//! start0 -> start1 [ weight=8 ];
969//! start1 -> cond1 [ weight=8 ];
970//!
971//! cond1:e -> exit2:n [ taillabel="true" ];
972//! cond1 -> exec [ taillabel="false" weight=8 ];
973//!
974//! exec -> fifo [ taillabel="true" weight=8 ];
975//! exec:e -> exit1:e [ taillabel="false" ];
976//!
977//! fifo -> cond1 [ taillabel="false" ];
978//! fifo -> get [ taillabel="true" weight=8 ];
979//!
980//! get -> handle [ taillabel="true" ];
981//!
982//! handle:s -> exit1:n [ taillabel="false" weight=8 ];
983//! handle -> cond1 [ taillabel="true" ];
984//! }
985//! \enddot
986//!
987//! @param dummy
988//! If this parameter is set to treu then no action is executed
989//! and now events are dispatched from the event list. It is usefull
990//! if functions are assigned directly to any event to simulate
991//! a running loop (e.g. block until Stop() was called or fExitRequested
992//! was set by an EXIT command.
993//!
994//! @returns
995//! In the case of a a fatal error -1 is returned, fExitRequested-1 in all
996//! other cases (This corresponds to the exit code either received by the
997//! EXIT event or given to the Stop() function)
998//!
999//! @todo Fix docu (kSM_SetReady, HandleEvent)
1000//
1001int StateMachineImp::Run(bool dummy)
1002{
1003 if (fCurrentState>=kSM_Ready)
1004 {
1005 Error("Run() can only be called in the NotReady state.");
1006 return -1;
1007 }
1008
1009 fRunning = true;
1010 fExitRequested = 0;
1011
1012 SetCurrentState(kSM_Ready, "by constructor");
1013
1014 while (!fExitRequested)
1015 {
1016 usleep(1);
1017 if (dummy)
1018 continue;
1019
1020 // Execute a step in the current state of the state machine
1021 if (!HandleNewState(Execute(), "by Execute-command"))
1022 break;
1023
1024 // If the command stack is empty go on with processing in the
1025 // current state
1026 if (IsQueueEmpty())
1027 continue;
1028
1029 // Pop the next command which arrived from the stack
1030 const auto_ptr<Event> cmd(PopEvent());
1031
1032 if (!HandleEvent(*cmd))
1033 break;
1034 }
1035
1036 fRunning = false;
1037
1038 if (!fExitRequested)
1039 {
1040 Fatal("Fatal Error occured... shutting down.");
1041 return -1;
1042 }
1043
1044 SetCurrentState(kSM_NotReady, "due to return from Run().");
1045
1046 return fExitRequested-1;
1047}
1048
1049// --------------------------------------------------------------------------
1050//
1051//! This function can be called to stop the loop of a running state machine.
1052//! Run() will then return with a return value corresponding to the value
1053//! given as argument.
1054//!
1055//! Note that this is a dangerous operation, because as soon as one of the
1056//! three state machine commands returns (Execute(), Configure() and
1057//! Transition()) the loop will be left and Run(9 will return. The program
1058//! is then responsible of correctly cleaning up the mess which might be left
1059//! behind.
1060//!
1061//! @param code
1062//! int with which Run() should return when returning.
1063//
1064void StateMachineImp::Stop(int code)
1065{
1066 fExitRequested = code+1;
1067}
Note: See TracBrowser for help on using the repository browser.