source: trunk/FACT++/src/StateMachineImp.cc@ 13920

Last change on this file since 13920 was 13909, checked in by tbretz, 13 years ago
Du buffer events outside of the loop. Note that if you stay to long outside of the loop, you might run into memory problems. This is necessary to buffer service events before the loop is started.
File size: 34.6 KB
Line 
1// **************************************************************************
2/** @class StateMachineImp
3
4 @brief Base class for a state machine implementation
5
6 \dot
7 digraph example {
8 node [shape=record, fontname=Helvetica, fontsize=10];
9 s [ label="Constructor" style="rounded" color="red" URL="\ref StateMachineImp::StateMachineImp"];
10 a [ label="State -3 (kSM_NotReady)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
11 b [ label="State -2 (kSM_Initializing)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
12 c [ label="State -1 (kSM_Configuring)" color="red" URL="\ref StateMachineImp::StateMachineImp"];
13 y [ label="State 0 (kSM_Ready)" URL="\ref StateMachineImp::Run"];
14 r [ label="User states (Running)" ];
15 e [ label="State 256 (kSM_Error)" ];
16 f [ label="State 65535 (kSM_FatalError)" color="red" URL="\ref StateMachineImp::Run"];
17
18 // ---- manual means: command or program introduced ----
19
20 // Startup from Run() to Ready
21 s -> a [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
22 a -> b [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
23 b -> c [ arrowhead="open" color="red" style="solid" ]; // automatic (mandatory)
24
25 c -> y [ arrowhead="open" color="red" style="solid" URL="\ref StateMachineImp::Run" ]; // prg: Run()
26
27 y -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
28 r -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
29 e -> c [ arrowhead="open" style="dashed" URL="\ref StateMachineDim::exitHandler" ]; // CMD: EXIT
30
31 e -> y [ arrowhead="open" color="red" style="dashed" ]; // CMD: RESET (e.g.)
32
33 y -> e [ arrowhead="open" color="blue" style="solid" ]; // prg
34 r -> e [ arrowhead="open" color="blue" style="solid" ]; // prg
35
36 y -> r [ arrowhead="open" color="blue" style="dashed" ]; // CMD/PRG
37 r -> y [ arrowhead="open" color="blue" style="dashed" ]; // CMD/PRG
38
39 y -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
40 r -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
41 e -> f [ arrowhead="open" color="blue" style="solid" ]; // prg
42 }
43 \enddot
44
45 - <B>Red box</B>: Internal states. Events which are received are
46 discarded.
47 - <B>Black box</B>: State machine running. Events are accepted and
48 processed according to the implemented functions Transition(),
49 Configuration() and Execute(). Events are accepted accoding to the
50 lookup table of allowed transitions.
51 - <B>Red solid arrow</B>: A transition initiated by the program itself.
52 - <b>Dashed arrows in general</b>: Transitions which can be initiated
53 by a dim-command or get inistiated by the program.
54 - <b>Solid arrows in general</b>: These transitions are always initiated by
55 the program.
56 - <B>Red dashed</B>: Suggested RESET event (should be implemented by
57 the derived class)
58 - <B>Black dashed arrow</B>: Exit from the main loop. This can either
59 happen by the Dim-provided EXIT-command or a call to StateMachineDim::Stop.
60 - <B>Black arrows</B>: Other events or transitions which can be
61 implemented by the derived class.
62 - <B>Dotted black arrow</B>: Exit from the main-loop which is initiated
63 by the program itself through StateMachineDim::Stop() and not by the
64 state machine itself (Execute(), Configure() and Transition())
65 - <b>Blue dashed arrows</b>: Transitions which happen either by receiving
66 a event or are initiated from the state machine itself
67 (by return values of (Execute(), Configure() and Transition())
68 - <b>Blue solid</b>: Transitions which cannot be initiated by dim
69 event but only by the state machine itself.
70 - From the program point of view the fatal error is identical with
71 the kSM_Configuring state, i.e. it is returned from the main-loop.
72 Usually this will result in program termination. However, depending
73 on the state the program might decide to use different cleaning
74 routines.
75
76@todo
77 - A proper and correct cleanup after an EXIT or Stop() is missing.
78 maybe we have to force a state 0 first?
79*/
80// **************************************************************************
81#include "StateMachineImp.h"
82
83#include "Time.h"
84#include "Event.h"
85
86#include "WindowLog.h"
87#include "Converter.h"
88
89#include "tools.h"
90
91using namespace std;
92
93// --------------------------------------------------------------------------
94//
95//! The state of the state machine (fCurrentState) is initialized with
96//! kSM_NotReady
97//!
98//! Default state names for kSM_NotReady, kSM_Ready, kSM_Error and
99//! kSM_FatalError are set via AddStateName.
100//!
101//! fExitRequested is set to 0, fRunning to false.
102//!
103//! Furthermore, the ostream is propagated to MessageImp, as well as
104//! stored in fOut.
105//!
106//! MessageImp is used for messages which are distributed (e.g. via DIM),
107//! fOut is used for messages which are only displayed on the local console.
108//!
109//! Subsequent, i.e. derived classes should setup all allowed state
110//! transitions as well as all allowed configuration event by
111//! AddEvent and AddStateName.
112//!
113//! @param out
114//! A refrence to an ostream which allows to redirect the log-output
115//! to something else than cout. The default is cout. The reference
116//! is propagated to fLog
117//!
118//! @param name
119//! The server name stored in fName
120//!
121//
122StateMachineImp::StateMachineImp(ostream &out, const std::string &name)
123 : MessageImp(out), fName(name), fCurrentState(kSM_NotReady),
124 fRunning(false), fExitRequested(0)
125{
126 SetDefaultStateNames();
127}
128
129// --------------------------------------------------------------------------
130//
131//! delete all object stored in fListOfEvent and in fEventQueue
132//
133StateMachineImp::~StateMachineImp()
134{
135 // For this to work EventImp must be the first class from which
136 // the object inherits
137 for (vector<EventImp*>::iterator cmd=fListOfEvents.begin(); cmd!=fListOfEvents.end(); cmd++)
138 delete *cmd;
139
140 // Unfortunately, front() doesn't necessarily return 0 if
141 // queue is empty
142 if (fEventQueue.size())
143 {
144 while (1)
145 {
146 Event *q=fEventQueue.front();
147 if (!q)
148 break;
149
150 fEventQueue.pop();
151 delete q;
152 }
153 }
154}
155
156// --------------------------------------------------------------------------
157//
158//! Sets the default state names. This function should be called in
159//! derived classes again if they overwrite SetStateName().
160//
161void StateMachineImp::SetDefaultStateNames()
162{
163 AddStateName(kSM_NotReady, "NotReady", "State machine not ready, events are ignored.");
164 AddStateName(kSM_Ready, "Ready", "State machine ready to receive events.");
165 AddStateName(kSM_Error, "ERROR", "Common error state.");
166 AddStateName(kSM_FatalError, "FATAL", "A fatal error occured, the eventloop is stopped.");
167}
168
169// --------------------------------------------------------------------------
170//
171//! Puts the given event into the fifo. The fifo will take over ownership.
172//! Access to fEventQueue is encapsulated by fMutex.
173//!
174//! @param cmd
175//! Pointer to an object of type Event to be stored in the fifo
176//!
177//! @todo
178//! Can we also allow EventImp?
179//
180void StateMachineImp::PushEvent(Event *cmd)
181{
182 fMutex.lock();
183 fEventQueue.push(cmd);
184 fMutex.unlock();
185}
186
187// --------------------------------------------------------------------------
188//
189//! Get an event from the fifo. We will take over the owenership of the
190//! object. The pointer is deleted from the fifo. Access of fEventQueue
191//! is encapsulated by fMutex.
192//!
193//! @returns
194//! A pointer to an Event object
195//
196Event *StateMachineImp::PopEvent()
197{
198 fMutex.lock();
199
200 // Get the next event from the stack
201 // and remove event from the stack
202 Event *cmd = fEventQueue.front();
203 fEventQueue.pop();
204
205 fMutex.unlock();
206
207 return cmd;
208}
209
210// --------------------------------------------------------------------------
211//
212//! With this function commands are posted to the event queue. The data
213//! is not given as binary data but as a string instead. It is converted
214//! according to the format of the corresponding event and an event
215//! is posted to the queue if successfull.
216//!
217//! @param lout
218//! Stream to which output should be redirected
219//! event should be for.
220//!
221//! @param str
222//! Command with data, e.g. "COMMAND 1 2 3 4 5 test"
223//!
224//! @returns
225//! false if no event was posted to the queue. If
226//! PostEvent(EventImp&,const char*, size_t) was called return its
227//! return value
228//
229bool StateMachineImp::PostEvent(ostream &lout, const string &str)
230{
231 // Find the delimiter between the command name and the data
232 size_t p0 = str.find_first_of(' ');
233 if (p0==string::npos)
234 p0 = str.length();
235
236 // Compile the command which will be sent to the state-machine
237 const string name = fName + "/" + str.substr(0, p0);
238
239 // Check if this command is existing at all
240 EventImp *evt = FindEvent(name);
241 if (!evt)
242 {
243 lout << kRed << "Unknown command '" << name << "'" << endl;
244 return false;
245 }
246
247 // Get the format of the event data
248 const string fmt = evt->GetFormat();
249
250 // Convert the user entered data according to the format string
251 // into a data block which will be attached to the event
252#ifndef DEBUG
253 ostringstream sout;
254 const Converter conv(sout, fmt, false);
255#else
256 const Converter conv(lout, fmt, false);
257#endif
258 if (!conv)
259 {
260 lout << kRed << "Couldn't properly parse the format... ignored." << endl;
261 return false;
262 }
263
264 try
265 {
266#ifdef DEBUG
267 lout << kBlue << name;
268#endif
269 const vector<char> v = conv.GetVector(str.substr(p0));
270#ifdef DEBUG
271 lout << endl;
272#endif
273
274 return PostEvent(*evt, v.data(), v.size());
275 }
276 catch (const std::runtime_error &e)
277 {
278 lout << endl << kRed << e.what() << endl;
279 }
280
281 return false;
282}
283
284// --------------------------------------------------------------------------
285//
286//! With this function commands are posted to the event queue. If the
287//! event loop has not yet been started with Run() the command is directly
288//! handled by HandleEvent.
289//!
290//! Events posted when the state machine is in a negative state or
291//! kSM_FatalError are ignored.
292//!
293//! A new event is created and its data contents initialized with the
294//! specified memory.
295//!
296//! @param evt
297//! The event to be posted. The precise contents depend on what the
298//! event should be for.
299//!
300//! @param ptr
301//! pointer to the memory which should be attached to the event
302//!
303//! @param siz
304//! size of the memory which should be attached to the event
305//!
306//! @returns
307//! false if the event is ignored, true otherwise.
308//!
309//! @todo
310//! - Shell we check for the validity of a command at the current state, too?
311//! - should we also get the output stream as an argument here?
312//
313bool StateMachineImp::PostEvent(const EventImp &evt, const char *ptr, size_t siz)
314{
315 if (/*GetCurrentState()<0 ||*/ GetCurrentState()==kSM_FatalError)
316 {
317 Out() << kYellow << "State<0 or FatalError: Event ignored." << endl;
318 return false;
319 }
320
321 if (IsRunning())
322 {
323 Event *event = new Event(evt, ptr, siz);
324 //Debug("Posted: "+event->GetName());
325 PushEvent(event);
326 }
327 else
328 {
329 // FIXME: Is this thread safe? (Yes, because the data is copied)
330 // But two handlers could be called at the same time. Do we
331 // need to lock the handlers? (Dim + console)
332 // FIXME: Is copying of the data necessary?
333 const Event event(evt, ptr, siz);
334 Lock();
335 HandleEvent(event);
336 UnLock();
337 }
338 return true;
339}
340
341// --------------------------------------------------------------------------
342//
343//! With this function commands are posted to the event queue. If the
344//! event loop has not yet been started with Run() the command is directly
345//! handled by HandleEvent.
346//!
347//! Events posted when the state machine is in a negative state or
348//! kSM_FatalError are ignored.
349//!
350//! @param evt
351//! The event to be posted. The precise contents depend on what the
352//! event should be for.
353//!
354//! @returns
355//! false if the event is ignored, true otherwise.
356//!
357//! @todo
358//! - Shell we check for the validity of a command at the current state, too?
359//! - should we also get the output stream as an argument here?
360//
361bool StateMachineImp::PostEvent(const EventImp &evt)
362{
363 if (/*GetCurrentState()<0 ||*/ GetCurrentState()==kSM_FatalError)
364 {
365 Out() << kYellow << "State<0 or FatalError: Event ignored." << endl;
366 return false;
367 }
368
369 if (IsRunning())
370 PushEvent(new Event(evt));
371 else
372 {
373 // FIXME: Is this thread safe? (Yes, because it is only used
374 // by Dim and this is thread safe) But two handlers could
375 // be called at the same time. Do we need to lock the handlers?
376 HandleEvent(evt);
377 }
378 return true;
379}
380
381// --------------------------------------------------------------------------
382//
383//! Return all event names of the StateMachine
384//!
385//! @returns
386//! A vector of strings with all event names of the state machine.
387//! The event names all have the SERVER/ pre-fix removed.
388//
389const vector<string> StateMachineImp::GetEventNames() const
390{
391 vector<string> v;
392
393 const string &name = fName + "/";
394 const int len = name.length();
395
396 for (vector<EventImp*>::const_iterator i=fListOfEvents.begin();
397 i!=fListOfEvents.end(); i++)
398 {
399 const string evt = (*i)->GetName();
400
401 v.push_back(evt.substr(0, len)==name ? evt.substr(len) : evt);
402 }
403
404 return v;
405}
406
407// --------------------------------------------------------------------------
408//
409//! Call for each event in fListEvents its Print function with the given
410//! stream.
411//!
412//! @param out
413//! ostream to which the output should be redirected
414//!
415//! @param evt
416//! if given only the given event is selected
417//
418void StateMachineImp::PrintListOfEvents(ostream &out, const string &evt) const
419{
420 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
421 if (evt.empty() || GetName()+'/'+evt==(*c)->GetName())
422 (*c)->Print(out, true);
423}
424
425// --------------------------------------------------------------------------
426//
427//! Call for each event in fListEvents its Print function with the given
428//! stream if it is an allowed event in the current state.
429//!
430//! @param out
431//! ostream to which the output should be redirected
432//!
433//
434void StateMachineImp::PrintListOfAllowedEvents(ostream &out) const
435{
436 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
437 if ((*c)->IsStateAllowed(fCurrentState))
438 (*c)->Print(out, true);
439}
440
441// --------------------------------------------------------------------------
442//
443//! Call PrintListOfEvents with fOut as the output stream
444//!
445//! @param str
446//! if given only the given event is selected
447//
448//
449void StateMachineImp::PrintListOfEvents(const string &str) const
450{
451 PrintListOfEvents(Out(), str);
452}
453
454// --------------------------------------------------------------------------
455//
456//! Print a list of all states with descriptions.
457//!
458//! @param out
459//! ostream to which the output should be redirected
460//
461void StateMachineImp::PrintListOfStates(std::ostream &out) const
462{
463 out << endl;
464 out << kBold << "List of available states:" << endl;
465 for (StateNames::const_iterator i=fStateNames.begin(); i!=fStateNames.end(); i++)
466 {
467 ostringstream state;
468 state << i->first;
469 out << " -[" << kBold << state.str() << kReset << "]:" << setfill(' ') << setw(6-state.str().length()) << ' ' << kYellow << i->second.first << kBlue << " (" << i->second.second << ")" << endl;
470 }
471 out << endl;
472}
473
474// --------------------------------------------------------------------------
475//
476//! Print a list of all states with descriptions.
477//
478void StateMachineImp::PrintListOfStates() const
479{
480 PrintListOfStates(Out());
481}
482
483// --------------------------------------------------------------------------
484//
485//! Check whether an event (same pointer!) is in fListOfEvents
486//!
487//! @returns
488//! true if the event was found, false otherwise
489//
490bool StateMachineImp::HasEvent(const EventImp *cmd) const
491{
492 // Find the event from the list of commands and queue it
493 return find(fListOfEvents.begin(), fListOfEvents.end(), cmd)!=fListOfEvents.end();
494}
495
496// --------------------------------------------------------------------------
497//
498//! Check whether an event with the given name is found in fListOfEvents.
499//! Note that currently there is no mechanism which ensures that not two
500//! events have the same name.
501//!
502//! @returns
503//! true if the event was found, false otherwise
504//
505EventImp *StateMachineImp::FindEvent(const std::string &evt) const
506{
507 // Find the command from the list of commands and queue it
508 for (vector<EventImp*>::const_iterator c=fListOfEvents.begin(); c!=fListOfEvents.end(); c++)
509 if (evt == (*c)->GetName())
510 return *c;
511
512 return 0;
513}
514
515// --------------------------------------------------------------------------
516//
517//! Calling this function, a new (named) event is added to the state
518//! machine. Via a call to CreateEvent a new event is created with the
519//! given targetstate, name and format.
520//!
521//! The allowed states are passed to the new event and a message
522//! is written to the output-stream.
523//!
524//! @param name
525//! The command name which should initiate the transition. The DimCommand
526//! will be constructed with the name given to the constructor and this
527//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
528//!
529//! @param states
530//! A comma sepeareted list of ints, e.g. "1, 4, 5, 9" with states
531//! in which this new state transition is allowed and will be accepted.
532//!
533//! @param fmt
534//! A format as defined by the dim system can be given for the command.
535//! However, it has no real meaning except that it is stored within the
536//! DimCommand object. However, the user must make sure that the data of
537//! received commands is properly extracted. No check is done.
538//
539EventImp &StateMachineImp::AddEvent(const char *name, const char *states, const char *fmt)
540{
541 EventImp *evt = CreateEvent(name, fmt);
542
543 evt->AddAllowedStates(states);
544
545#ifdef DEBUG
546 Out() << ": " << Time().GetAsStr("%H:%M:%S.%f");
547 Out() << " - Adding command " << evt->GetName();
548 Out() << endl;
549#endif
550
551 fListOfEvents.push_back(evt);
552
553 return *evt;
554}
555
556// --------------------------------------------------------------------------
557//
558//! Calling this function, a new (named) event is added to the state
559//! machine. Therefore an instance of type DimEvent is created and added
560//! to the list of available commands fListOfEvents.
561//!
562//! @param name
563//! The command name which should initiate the transition. The DimCommand
564//! will be constructed with the name given to the constructor and this
565//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
566//!
567//! @param s1, s2, s3, s4, s5
568//! A list of states from which a transition to targetstate is allowed
569//! by this command.
570//
571EventImp &StateMachineImp::AddEvent(const char *name, int s1, int s2, int s3, int s4, int s5)
572{
573 ostringstream str;
574 str << s1 << ' ' << s2 << ' ' << s3 << ' ' << s4 << ' ' << s5;
575 return AddEvent(name, str.str().c_str(), "");
576}
577
578// --------------------------------------------------------------------------
579//
580//! Calling this function, a new (named) event is added to the state
581//! machine. Therefore an instance of type DimEvent is created and added
582//! to the list of available commands fListOfEvents.
583//!
584//! @param name
585//! The command name which should initiate the transition. The DimCommand
586//! will be constructed with the name given to the constructor and this
587//! name, e.g. "DRIVE/CHANGE_STATE_TO_NEW_STATE"
588//!
589//! @param fmt
590//! A format as defined by the dim system can be given for the command.
591//! However, it has no real meaning except that it is stored within the
592//! DimCommand object. However, the user must make sure that the data of
593//! received commands is properly extracted. No check is done.
594//!
595//! @param s1, s2, s3, s4, s5
596//! A list of states from which a transition to targetstate is allowed
597//! by this command.
598//
599EventImp &StateMachineImp::AddEvent(const char *name, const char *fmt, int s1, int s2, int s3, int s4, int s5)
600{
601 ostringstream str;
602 str << s1 << ' ' << s2 << ' ' << s3 << ' ' << s4 << ' ' << s5;
603 return AddEvent(name, str.str().c_str(), fmt);
604}
605
606EventImp *StateMachineImp::CreateService(const char *)
607{
608 return new EventImp();
609}
610
611// --------------------------------------------------------------------------
612//
613EventImp &StateMachineImp::Subscribe(const char *name)
614{
615 EventImp *evt = CreateService(name);
616 fListOfEvents.push_back(evt);
617 return *evt;
618}
619
620// --------------------------------------------------------------------------
621//
622//! To be able to name states, i.e. present the current state in human
623//! readable for to the user, a string can be assigned to each state.
624//! For each state this function can be called only once, i.e. state name
625//! cannot be overwritten.
626//!
627//! Be aware that two states should not have the same name!
628//!
629//! @param state
630//! Number of the state to which a name should be assigned
631//!
632//! @param name
633//! A name which should be assigned to the state, e.g. "Tracking"
634//!
635//! @param doc
636//! A explanatory text describing the state
637//!
638void StateMachineImp::AddStateName(const int state, const std::string &name, const std::string &doc)
639{
640 if (fStateNames[state].first.empty())
641 fStateNames[state] = make_pair(name, doc);
642}
643
644// --------------------------------------------------------------------------
645//
646//! @param state
647//! The state for which the name should be returned.
648//!
649//! @returns
650//! The state name as stored in fStateNames is returned, corresponding
651//! to the state given. If no name exists the number is returned
652//! as string.
653//!
654const string StateMachineImp::GetStateName(int state) const
655{
656 const StateNames::const_iterator i = fStateNames.find(state);
657
658 ostringstream s;
659 s << state;
660 return i==fStateNames.end() || i->second.first.empty() ? s.str() : i->second.first;
661}
662
663// --------------------------------------------------------------------------
664//
665//! @param state
666//! The state for which the name should be returned.
667//!
668//! @returns
669//! The description of a state name as stored in fStateNames is returned,
670//! corresponding to the state given. If no name exists an empty string is
671//! returned.
672//!
673const string StateMachineImp::GetStateDesc(int state) const
674{
675 const StateNames::const_iterator i = fStateNames.find(state);
676 return i==fStateNames.end() ? "" : i->second.second;
677}
678
679// --------------------------------------------------------------------------
680//
681//! This functions works in analogy to GetStateName, but the state number
682//! is added in []-parenthesis after the state name if it is available.
683//!
684//! @param state
685//! The state for which the name should be returned.
686//!
687//! @returns
688//! The state name as stored in fStateName is returned corresponding
689//! to the state given plus the state number added in []-parenthesis.
690//! If no name exists the number is returned as string.
691//!
692//
693const string StateMachineImp::GetStateDescription(int state) const
694{
695 const string &str = GetStateName(state);
696
697 ostringstream s;
698 s << state;
699 if (str==s.str())
700 return str;
701
702 return str.empty() ? s.str() : (str+'['+s.str()+']');
703}
704
705// --------------------------------------------------------------------------
706//
707//! This function is a helpter function to do all the corresponding action
708//! if the state machine decides to change its state.
709//!
710//! If state is equal to the current state (fCurrentState) nothing is done.
711//! Then the service STATE (fSrcState) is updated with the new state
712//! and the text message and updateService() is called to distribute
713//! the update to all clients.
714//!
715//! In addition a log message is created and set via UpdateMsg.
716//!
717//! @param state
718//! The new state which should be applied
719//!
720//! @param txt
721//! A text corresponding to the state change which is distributed
722//! together with the state itself for convinience.
723//!
724//! @param cmd
725//! This argument can be used to give an additional name of the function
726//! which is reponsible for the state change. It will be included in the
727//! message
728//!
729//! @return
730//! return the new state which was set or -1 in case of no change
731//
732string StateMachineImp::SetCurrentState(int state, const char *txt, const std::string &cmd)
733{
734 if (state==fCurrentState)
735 {
736 Out() << " -- " << Time().GetAsStr() << ": State " << GetStateDescription(state) << " already set... ";
737 if (!cmd.empty())
738 Out() << "'" << cmd << "' ignored.";
739 Out() << endl;
740 return "";
741 }
742
743 const int old = fCurrentState;
744
745 const string nold = GetStateDescription(old);
746 const string nnew = GetStateDescription(state);
747
748 string msg = nnew + " " + txt;
749 if (!cmd.empty())
750 msg += " (" + cmd + ")";
751
752 fCurrentState = state;
753
754 // State might have changed already again...
755 // Not very likely, but possible. That's why state is used
756 // instead of fCurrentState.
757
758 ostringstream str;
759 str << "State Transition from " << nold << " to " << nnew << " (" << txt;
760 if (!cmd.empty())
761 str << ": " << cmd;
762 str << ")";
763 Message(str);
764
765 return msg;
766}
767
768// --------------------------------------------------------------------------
769//
770//! This function handles a new state issued by one of the event handlers.
771//!
772//! @param newstate
773//! A possible new state
774//!
775//! @param evt
776//! A pointer to the event which was responsible for the state change,
777//! NULL if no event was responsible.
778//!
779//! @param txt
780//! Text which is issued if the current state has changed and the new
781//! state is identical to the target state as stored in the event
782//! reference, or when no alternative text was given, or the pointer to
783//! evt is NULL.
784//!
785//! @param alt
786//! An alternative text which is issues when the newstate of a state change
787//! doesn't match the expected target state.
788//!
789//! @returns
790//! false if newstate is kSM_FatalError, true otherwise
791//
792bool StateMachineImp::HandleNewState(int newstate, const EventImp *evt,
793 const char *txt)
794{
795 if (newstate==kSM_FatalError)
796 return false;
797
798 if (newstate==fCurrentState)
799 return true;
800
801 SetCurrentState(newstate, txt, evt ? evt->GetName() : "");
802
803 return true;
804}
805
806// --------------------------------------------------------------------------
807//
808//! This is the event handler. Depending on the type of event it calles
809//! the function associated with the event, the Transition() or
810//! Configure() function.
811//!
812//! It first checks if the given even is valid in the current state. If
813//! it is not valid the function returns with true.
814//!
815//! If it is valid, it is checked whether a function is associated with
816//! the event. If this is the case, evt.Exec() is called and HandleNewState
817//! called with its return value.
818//!
819//! If the event's target state is negative (unnamed Event) the Configure()
820//! function is called with the event as argument and HandleNewState with
821//! its returned new state.
822//!
823//! If the event's target state is 0 or positive (named Event) the
824//! Transition() function is called with the event as argument and
825//! HandleNewState with its returned new state.
826//!
827//! In all three cases the return value of HandleNewState is returned.
828//!
829//! Any of the three commands should usually return the current state
830//! or (in case of the Transition() command) return the new state. However,
831//! all three command can issue a state change by returning a new state.
832//! However, this will just change the internal state. Any action which
833//! is connected with the state change must have been executed already.
834//!
835//! @param evt
836//! a reference to the event which should be handled
837//!
838//! @returns
839//! false in case one of the commands changed the state to kSM_FataError,
840//! true otherwise
841//
842bool StateMachineImp::HandleEvent(const EventImp &evt)
843{
844 if (!evt.HasFunc())
845 {
846 Warn(evt.GetName()+": No function assigned... ignored.");
847 return true;
848
849 }
850
851#ifdef DEBUG
852 ostringstream out;
853 out << "Handle: " << evt.GetName() << "[" << evt.GetSize() << "]";
854 Debug(out);
855#endif
856
857 // Check if the received command is allow in the current state
858 if (!evt.IsStateAllowed(fCurrentState))
859 {
860 Warn(evt.GetName()+": Not allowed in state "+GetStateDescription()+"... ignored.");
861 return true;
862 }
863
864 return HandleNewState(evt.ExecFunc(), &evt,
865 "by ExecFunc function-call");
866}
867
868// --------------------------------------------------------------------------
869//
870//! This is the main loop, or what could be called the running state
871//! machine. The flow diagram below shows what the loop is actually doing.
872//! It's main purpose is to serialize command excecution and the main
873//! loop in the state machine (e.g. the tracking loop)
874//!
875//! Leaving the loop can be forced by setting fExitRequested to another
876//! value than zero. This is done automatically if dim's EXIT command
877//! is received or can be forced by calling Stop().
878//!
879//! As long as no new command arrives the Execute() command is called
880//! continously. This should implement the current action which
881//! should be performed in the current state, e.g. calculating a
882//! new command value and sending it to the hardware.
883//!
884//! If a command is received it is put into the fifo by the commandHandler().
885//! The main loop now checks the fifo. If commands are in the fifo, it is
886//! checked whether the command is valid ithin this state or not. If it is
887//! not valid it is ignored. If it is valid the corresponding action
888//! is performed. This can either be a call to Configure() (when no state
889//! change is connected to the command) or Transition() (if the command
890//! involves a state change).
891//! In both cases areference to the received command (Command) is
892//! passed to the function. Note that after the functions have finished
893//! the command will go out of scope and be deleted.
894//!
895//! None of the commands should take to long for execution. Otherwise the
896//! response time of the main loop will become too slow.
897//!
898//! Any of the three commands should usually return the current state
899//! or (in case of the Transition() command) return the new state. However,
900//! all three command can issue a state change by returning a new state.
901//! However, this will just change the internal state. Any action which
902//! is connected with the state change must have been executed already.
903//!
904//!
905//!
906//! \dot
907//! digraph Run {
908//! node [ shape=record, fontname=Helvetica, fontsize=10 ];
909//! edge [ labelfontname=Helvetica, labelfontsize=8 ];
910//! start0 [ label="Run()" style="rounded"];
911//! start1 [ label="fExitRequested=0\nfRunning=true\nSetCurrentState(kSM_Ready)"];
912//! cond1 [ label="Is fExitRequested==0?"];
913//! exec [ label="HandleNewState(Execute())"];
914//! fifo [ label="Any event in FIFO?"];
915//! get [ label="Get event from FIFO\n Is event allowed within the current state?" ];
916//! handle [ label="HandleEvent()" ];
917//! exit1 [ label="fRunning=false\nSetCurrentState(kSM_FatalError)\n return -1" style="rounded"];
918//! exit2 [ label="fRunning=false\nSetCurrentState(kSM_NotReady)\n return fExitRequested-1" style="rounded"];
919//!
920//! start0 -> start1 [ weight=8 ];
921//! start1 -> cond1 [ weight=8 ];
922//!
923//! cond1:e -> exit2:n [ taillabel="true" ];
924//! cond1 -> exec [ taillabel="false" weight=8 ];
925//!
926//! exec -> fifo [ taillabel="true" weight=8 ];
927//! exec:e -> exit1:e [ taillabel="false" ];
928//!
929//! fifo -> cond1 [ taillabel="false" ];
930//! fifo -> get [ taillabel="true" weight=8 ];
931//!
932//! get -> handle [ taillabel="true" ];
933//!
934//! handle:s -> exit1:n [ taillabel="false" weight=8 ];
935//! handle -> cond1 [ taillabel="true" ];
936//! }
937//! \enddot
938//!
939//! @param dummy
940//! If this parameter is set to treu then no action is executed
941//! and now events are dispatched from the event list. It is usefull
942//! if functions are assigned directly to any event to simulate
943//! a running loop (e.g. block until Stop() was called or fExitRequested
944//! was set by an EXIT command. If dummy==true, fRunning is not set
945//! to true to allow handling events directly from the event handler.
946//!
947//! @returns
948//! In the case of a a fatal error -1 is returned, fExitRequested-1 in all
949//! other cases (This corresponds to the exit code either received by the
950//! EXIT event or given to the Stop() function)
951//!
952//! @todo Fix docu (kSM_SetReady, HandleEvent)
953//
954int StateMachineImp::Run(bool dummy)
955{
956 if (fCurrentState>=kSM_Ready)
957 {
958 Error("Run() can only be called in the NotReady state.");
959 return -1;
960 }
961
962 if (!fExitRequested)
963 {
964 fRunning = !dummy;
965
966 SetCurrentState(kSM_Ready, "by Run()");
967
968 while (!fExitRequested)
969 {
970 usleep(1);
971 if (dummy)
972 continue;
973
974 // Execute a step in the current state of the state machine
975 if (!HandleNewState(Execute(), 0, "by Execute-command"))
976 break;
977
978 // If the command stack is empty go on with processing in the
979 // current state
980 if (IsQueueEmpty())
981 continue;
982
983 // Pop the next command which arrived from the stack
984 const auto_ptr<Event> cmd(PopEvent());
985
986 if (!HandleEvent(*cmd))
987 break;
988 }
989
990 fRunning = false;
991
992 if (!fExitRequested)
993 {
994 Fatal("Fatal Error occured... shutting down.");
995 return -1;
996 }
997
998 SetCurrentState(kSM_NotReady, "due to return from Run().");
999 }
1000
1001 const int exitcode = fExitRequested-1;
1002
1003 // Prepare for next call
1004 fExitRequested = 0;
1005
1006 return exitcode;
1007}
1008
1009// --------------------------------------------------------------------------
1010//
1011//! This function can be called to stop the loop of a running state machine.
1012//! Run() will then return with a return value corresponding to the value
1013//! given as argument.
1014//!
1015//! Note that this is a dangerous operation, because as soon as one of the
1016//! three state machine commands returns (Execute(), Configure() and
1017//! Transition()) the loop will be left and Run(9 will return. The program
1018//! is then responsible of correctly cleaning up the mess which might be left
1019//! behind.
1020//!
1021//! @param code
1022//! int with which Run() should return when returning.
1023//
1024void StateMachineImp::Stop(int code)
1025{
1026 fExitRequested = code+1;
1027}
Note: See TracBrowser for help on using the repository browser.