source: trunk/FACT++/src/drivectrl.cc@ 18414

Last change on this file since 18414 was 18412, checked in by tbretz, 9 years ago
Added const qualifiers, added a warning in case of an unexpected SDO.
File size: 109.6 KB
Line 
1#include <boost/regex.hpp>
2#include <boost/algorithm/string.hpp>
3
4#ifdef HAVE_SQL
5#include "Database.h"
6#endif
7
8#include "FACT.h"
9#include "Dim.h"
10#include "Event.h"
11#include "Shell.h"
12#include "StateMachineDim.h"
13#include "StateMachineAsio.h"
14#include "Connection.h"
15#include "LocalControl.h"
16#include "Configuration.h"
17#include "Timers.h"
18#include "Console.h"
19
20#include "HeadersDrive.h"
21
22#include "pal.h"
23#include "externals/nova.h"
24
25namespace ba = boost::asio;
26namespace bs = boost::system;
27
28using namespace std;
29using namespace Drive;
30
31// ------------------------------------------------------------------------
32
33// The Nova classes are in degree. This is to be used in rad
34struct RaDec
35{
36 double ra; // [rad]
37 double dec; // [rad]
38 RaDec() : ra(0), dec(0) { }
39 RaDec(double _ra, double _dec) : ra(_ra), dec(_dec) { }
40};
41
42struct RaDecHa : RaDec
43{
44 double ha; // [rad]
45 RaDecHa() : ha(0) { }
46 RaDecHa(double _ra, double _dec, double _ha) : RaDec(_ra, _dec), ha(_ha) { }
47};
48
49struct Local
50{
51 double zd;
52 double az;
53
54 Local(double _zd=0, double _az=0) : zd(_zd), az(_az) { }
55};
56
57struct Velocity : Local
58{
59 Velocity(double _zd=0, double _az=0) : Local(_zd, _az) { }
60 Velocity operator/(double f) const { return Velocity(zd/f, az/f); }
61 Velocity operator*(double f) const { return Velocity(zd*f, az*f); }
62};
63
64struct Encoder : Local // [units: revolutions]
65{
66 Encoder(double _zd=0, double _az=0) : Local(_zd, _az) { }
67
68 Encoder &operator*=(double f) { zd*=f; az*=f; return *this; }
69 Encoder &operator-=(const Encoder &enc) { zd-=enc.zd; az-=enc.az; return *this; }
70 Encoder operator*(double f) const { return Encoder(zd*f, az*f); }
71 Velocity operator/(double t) const { return Velocity(zd/t, az/t); }
72 Encoder Abs() const { return Encoder(fabs(zd), fabs(az)); }
73};
74
75struct ZdAz : Local // [units: rad]
76{
77 ZdAz(double _zd=0, double _az=0) : Local(_zd, _az) { }
78 ZdAz operator*(const double &f) const { return ZdAz(zd*f, az*f); }
79};
80
81struct Acceleration : Local
82{
83 Acceleration(double _zd=0, double _az=0) : Local(_zd, _az) { }
84 bool operator>(const Acceleration &a) const
85 {
86 return zd>a.zd || az>a.az;
87 }
88};
89
90Encoder operator-(const Encoder &a, const Encoder &b)
91{
92 return Encoder(a.zd-b.zd, a.az-b.az);
93}
94Velocity operator-(const Encoder &a, const Velocity &b)
95{
96 return Velocity(a.zd-b.zd, a.az-b.az);
97}
98Velocity operator-(const Velocity &a, const Velocity &b)
99{
100 return Velocity(a.zd-b.zd, a.az-b.az);
101}
102Encoder operator/(const Encoder &a, const Encoder &b)
103{
104 return Encoder(a.zd/b.zd, a.az/b.az);
105}
106
107struct Weather
108{
109 float hum;
110 float temp;
111 float press;
112 Time time;
113};
114
115struct Source
116{
117 Source() : ra(0), dec(0), mag(0), offset(0)
118 {
119 angles[0] = -90;
120 angles[1] = 90;
121 }
122
123 string name;
124 double ra; // [h]
125 double dec; // [deg]
126 double mag;
127
128 double offset;
129 array<double, 2> angles;
130};
131
132enum Planets_t
133{
134 kENone = -1,
135 kESun = 0,
136 kEMercury = 1,
137 kEVenus = 2,
138 kEMoon = 3, // earth moon barycentre
139 kEMars = 4,
140 kEJupiter = 5,
141 kESaturn = 6,
142 kEUranus = 7,
143 kENeptune = 8,
144 kEPluto = 9,
145};
146
147// ------------------------------------------------------------------------
148
149struct PointingSetup
150{
151 Source source; // Informations about source to track [h/deg]
152 Planets_t planet; // Id of the planet if tracking a planet
153 double start; // Starting time of wobble observation [mjd]
154 double orbit_period; // Time for one revolution (0:off) [day]
155 double wobble_offset; // Distance of wobble position [rad]
156 double wobble_angle; // Starting phi angle of wobble observation [rad]
157
158 PointingSetup(Planets_t p=kENone) : planet(p), start(Time::none), orbit_period(0) { }
159};
160
161struct PointingData
162{
163 // Pointing direction of the opticl axis of the telescope
164 RaDec source; // Informations about source to track [rad/rad]
165 RaDec pointing; // Catalog coordinates (J2000, FK5) [rad/rad] pointing position
166 RaDecHa apparent; // Apparent position on the sky [rad/rad]
167 ZdAz sky; // Apparent position on the sky [rad/rad]
168 Encoder mount; // Encoder position corresponding to 'sky' [deg/deg]
169 double mjd;
170};
171
172class PointingModel
173{
174private:
175 double fIe; // [rad] Index Error in Elevation
176 double fIa; // [rad] Index Error in Azimuth
177 double fFlop; // [rad] Vertical Sag
178 double fNpae; // [rad] Az-El Nonperpendicularity
179 double fCa; // [rad] Left-Right Collimation Error
180 double fAn; // [rad] Azimuth Axis Misalignment (N-S, 1st order)
181 double fAw; // [rad] Azimuth Axis Misalignment (E-W, 1st order)
182 double fAn2; // [rad] Azimuth Axis Misalignment (N-S, 2nd order)
183 double fAw2; // [rad] Azimuth Axis Misalignment (E-W, 2nd order)
184 double fTf; // [rad] Tube fluxture (sin)
185 double fTx; // [rad] Tube fluxture (tan)
186 double fNrx; // [rad] Nasmyth rotator displacement, horizontal
187 double fNry; // [rad] Nasmyth rotator displacement, vertical
188 double fCrx; // [rad] Alt/Az Coude Displacement (N-S)
189 double fCry; // [rad] Alt/Az Coude Displacement (E-W)
190 double fEces; // [rad] Elevation Centering Error (sin)
191 double fAces; // [rad] Azimuth Centering Error (sin)
192 double fEcec; // [rad] Elevation Centering Error (cos)
193 double fAcec; // [rad] Azimuth Centering Error (cos)
194
195public:
196
197 void Load(const string &name)
198 {
199 /*
200 ! MMT 1987 July 8
201 ! T 36 7.3622 41.448 -0.0481
202 ! IA -37.5465 20.80602
203 ! IE -13.9180 1.25217
204 ! NPAE +7.0751 26.44763
205 ! CA -6.9149 32.05358
206 ! AN +0.5053 1.40956
207 ! AW -2.2016 1.37480
208 ! END
209 */
210
211 ifstream fin(name);
212 if (!fin)
213 throw runtime_error("Cannot open file "+name+": "+strerror(errno));
214
215 map<string,double> coeff;
216
217 string buf;
218 while (getline(fin, buf))
219 {
220 buf = Tools::Trim(buf);
221
222 vector<string> vec;
223 boost::split(vec, buf, boost::is_any_of(" "), boost::token_compress_on);
224 if (vec.size()<2)
225 continue;
226
227 coeff[vec[0]] = atof(vec[1].c_str()) * M_PI/180;
228 }
229
230 fIe = coeff["IE"]; // [rad] Index Error in Elevation
231 fIa = coeff["IA"]; // [rad] Index Error in Azimuth
232 fFlop = coeff["FLOP"]; // [rad] Vertical Sag
233 fNpae = coeff["NPAE"]; // [rad] Az-El Nonperpendicularity
234 fCa = coeff["CA"]; // [rad] Left-Right Collimation Error
235 fAn = coeff["AN"]; // [rad] Azimuth Axis Misalignment (N-S, 1st order)
236 fAw = coeff["AW"]; // [rad] Azimuth Axis Misalignment (E-W, 1st order)
237 fAn2 = coeff["AN2"]; // [rad] Azimuth Axis Misalignment (N-S, 2nd order)
238 fAw2 = coeff["AW2"]; // [rad] Azimuth Axis Misalignment (E-W, 2nd order)
239 fTf = coeff["TF"]; // [rad] Tube fluxture (sin)
240 fTx = coeff["TX"]; // [rad] Tube fluxture (tan)
241 fNrx = coeff["NRX"]; // [rad] Nasmyth rotator displacement, horizontal
242 fNry = coeff["NRY"]; // [rad] Nasmyth rotator displacement, vertical
243 fCrx = coeff["CRX"]; // [rad] Alt/Az Coude Displacement (N-S)
244 fCry = coeff["CRY"]; // [rad] Alt/Az Coude Displacement (E-W)
245 fEces = coeff["ECES"]; // [rad] Elevation Centering Error (sin)
246 fAces = coeff["ACES"]; // [rad] Azimuth Centering Error (sin)
247 fEcec = coeff["ECEC"]; // [rad] Elevation Centering Error (cos)
248 fAcec = coeff["ACEC"]; // [rad] Azimuth Centering Error (cos)
249 }
250
251 struct AltAz
252 {
253 double alt;
254 double az;
255
256 AltAz(double _alt, double _az) : alt(_alt), az(_az) { }
257 AltAz(const ZdAz &za) : alt(M_PI/2-za.zd), az(za.az) { }
258
259 AltAz &operator+=(const AltAz &aa) { alt += aa.alt; az+=aa.az; return *this; }
260 AltAz &operator-=(const AltAz &aa) { alt -= aa.alt; az-=aa.az; return *this; }
261 };
262
263 double Sign(double val, double alt) const
264 {
265 // Some pointing corrections are defined as Delta ZA, which
266 // is (P. Wallace) defined [0,90]deg while Alt is defined
267 // [0,180]deg
268 return (M_PI/2-alt < 0 ? -val : val);
269 }
270
271 Encoder SkyToMount(AltAz p)
272 {
273 const AltAz CRX(-fCrx*sin(p.az-p.alt), fCrx*cos(p.az-p.alt)/cos(p.alt));
274 const AltAz CRY(-fCry*cos(p.az-p.alt), -fCry*sin(p.az-p.alt)/cos(p.alt));
275 p += CRX;
276 p += CRY;
277
278 const AltAz NRX(fNrx*sin(p.alt), -fNrx);
279 const AltAz NRY(fNry*cos(p.alt), -fNry*tan(p.alt));
280 p += NRX;
281 p += NRY;
282
283 const AltAz CES(-fEces*sin(p.alt), -fAces*sin(p.az));
284 const AltAz CEC(-fEcec*cos(p.alt), -fAcec*cos(p.az));
285 p += CES;
286 p += CEC;
287
288 const AltAz TX(Sign(fTx/tan(p.alt), p.alt), 0);
289 const AltAz TF(Sign(fTf*cos(p.alt), p.alt), 0);
290 //p += TX;
291 p += TF;
292
293 const AltAz CA(0, -fCa/cos(p.alt));
294 p += CA;
295
296 const AltAz NPAE(0, -fNpae*tan(p.alt));
297 p += NPAE;
298
299 const AltAz AW2( fAw2*sin(p.az*2), -fAw2*cos(p.az*2)*tan(p.alt));
300 const AltAz AN2(-fAn2*cos(p.az*2), -fAn2*sin(p.az*2)*tan(p.alt));
301 const AltAz AW1( fAw *sin(p.az), -fAw *cos(p.az) *tan(p.alt));
302 const AltAz AN1(-fAn *cos(p.az), -fAn *sin(p.az) *tan(p.alt));
303 p += AW2;
304 p += AN2;
305 p += AW1;
306 p += AN1;
307
308 const AltAz FLOP(Sign(fFlop, p.alt), 0);
309 p += FLOP;
310
311 const AltAz I(fIe, fIa);
312 p += I;
313
314 return Encoder(90 - p.alt*180/M_PI, p.az *180/M_PI);
315 }
316
317 ZdAz MountToSky(const Encoder &mnt) const
318 {
319 AltAz p(M_PI/2-mnt.zd*M_PI/180, mnt.az*M_PI/180);
320
321 const AltAz I(fIe, fIa);
322 p -= I;
323
324 const AltAz FLOP(Sign(fFlop, p.alt), 0);
325 p -= FLOP;
326
327 const AltAz AW1( fAw *sin(p.az), -fAw *cos(p.az) *tan(p.alt));
328 const AltAz AN1(-fAn *cos(p.az), -fAn *sin(p.az) *tan(p.alt));
329 const AltAz AW2( fAw2*sin(p.az*2), -fAw2*cos(p.az*2)*tan(p.alt));
330 const AltAz AN2(-fAn2*cos(p.az*2), -fAn2*sin(p.az*2)*tan(p.alt));
331 p -= AW1;
332 p -= AN1;
333 p -= AW2;
334 p -= AN2;
335
336 const AltAz NPAE(0, -fNpae*tan(p.alt));
337 p -= NPAE;
338
339 const AltAz CA(0, -fCa/cos(p.alt));
340 p -= CA;
341
342 const AltAz TF(Sign(fTf*cos(p.alt), p.alt), 0);
343 const AltAz TX(Sign(fTx/tan(p.alt), p.alt), 0);
344 p -= TF;
345 //p -= TX;
346
347 const AltAz CEC(-fEcec*cos(p.alt), -fAcec*cos(p.az));
348 const AltAz CES(-fEces*sin(p.alt), -fAces*sin(p.az));
349 p -= CEC;
350 p -= CES;
351
352 const AltAz NRY(fNry*cos(p.alt), -fNry*tan(p.alt));
353 const AltAz NRX(fNrx*sin(p.alt), -fNrx);
354 p -= NRY;
355 p -= NRX;
356
357 const AltAz CRY(-fCry*cos(p.az-p.alt), -fCry*sin(p.az-p.alt)/cos(p.alt));
358 const AltAz CRX(-fCrx*sin(p.az-p.alt), fCrx*cos(p.az-p.alt)/cos(p.alt));
359 p -= CRY;
360 p -= CRX;
361
362 return ZdAz(M_PI/2-p.alt, p.az);
363 }
364
365 PointingData CalcPointingPos(const PointingSetup &setup, double _mjd, const Weather &weather, uint16_t timeout, bool tpoint=false)
366 {
367 PointingData out;
368 out.mjd = _mjd;
369
370 const double elong = Nova::ORM().lng * M_PI/180;
371 const double lat = Nova::ORM().lat * M_PI/180;
372 const double height = 2200;
373
374 const bool valid = weather.time+boost::posix_time::seconds(timeout) > Time();
375
376 const double temp = valid ? weather.temp : 10;
377 const double hum = valid ? weather.hum : 0.25;
378 const double press = valid ? weather.press : 780;
379
380 const double dtt = palDtt(_mjd); // 32.184 + 35
381
382 const double tdb = _mjd + dtt/3600/24;
383 const double dut = 0;
384
385 // prepare calculation: Mean Place to geocentric apperent
386 // (UTC would also do, except for the moon?)
387 double fAmprms[21];
388 palMappa(2000.0, tdb, fAmprms); // Epoche, TDB
389
390 // prepare: Apperent to observed place
391 double fAoprms[14];
392 palAoppa(_mjd, dut, // mjd, Delta UT=UT1-UTC
393 elong, lat, height, // long, lat, height
394 0, 0, // polar motion x, y-coordinate (radians)
395 273.155+temp, press, hum, // temp, pressure, humidity
396 0.40, 0.0065, // wavelength, tropo lapse rate
397 fAoprms);
398
399 out.source.ra = setup.source.ra * M_PI/ 12;
400 out.source.dec = setup.source.dec * M_PI/180;
401
402 if (setup.planet!=kENone)
403 {
404 // coordinates of planet: topocentric, equatorial, J2000
405 // One can use TT instead of TDB for all planets (except the moon?)
406 double ra, dec, diam;
407 palRdplan(tdb, setup.planet, elong, lat, &ra, &dec, &diam);
408
409 // ---- apparent to mean ----
410 palAmpqk(ra, dec, fAmprms, &out.source.ra, &out.source.dec);
411 }
412
413 if (setup.wobble_offset<=0 || tpoint)
414 {
415 out.pointing.dec = out.source.dec;
416 out.pointing.ra = out.source.ra;
417 }
418 else
419 {
420 const double dphi =
421 setup.orbit_period==0 ? 0 : 2*M_PI*(_mjd-setup.start)/setup.orbit_period;
422
423 const double phi = setup.wobble_angle + dphi;
424
425 const double cosdir = cos(phi);
426 const double sindir = sin(phi);
427 const double cosoff = cos(setup.wobble_offset);
428 const double sinoff = sin(setup.wobble_offset);
429 const double cosdec = cos(out.source.dec);
430 const double sindec = sin(out.source.dec);
431
432 const double sintheta = sindec*cosoff + cosdec*sinoff*cosdir;
433
434 const double costheta = sintheta>1 ? 0 : sqrt(1 - sintheta*sintheta);
435
436 const double cosdeltara = (cosoff - sindec*sintheta)/(cosdec*costheta);
437 const double sindeltara = sindir*sinoff/costheta;
438
439 out.pointing.dec = asin(sintheta);
440 out.pointing.ra = atan2(sindeltara, cosdeltara) + out.source.ra;
441 }
442
443 // ---- Mean to apparent ----
444 double r=0, d=0;
445 palMapqkz(out.pointing.ra, out.pointing.dec, fAmprms, &r, &d);
446
447 //
448 // Doesn't work - don't know why
449 //
450 // slaMapqk (radec.Ra(), radec.Dec(), rdpm.Ra(), rdpm.Dec(),
451 // 0, 0, (double*)fAmprms, &r, &d);
452 //
453
454 // -- apparent to observed --
455 palAopqk(r, d, fAoprms,
456 &out.sky.az, // observed azimuth (radians: N=0,E=90) [-pi, pi]
457 &out.sky.zd, // observed zenith distance (radians) [-pi/2, pi/2]
458 &out.apparent.ha, // observed hour angle (radians)
459 &out.apparent.dec, // observed declination (radians)
460 &out.apparent.ra); // observed right ascension (radians)
461
462 // ----- fix ambiguity -----
463 if (out.sky.zd<0)
464 {
465 out.sky.zd = -out.sky.zd;
466 out.sky.az += out.sky.az<0 ? M_PI : -M_PI;
467 }
468
469 // Star culminating behind zenith and Az between ~90 and ~180deg
470 if (out.source.dec<lat && out.sky.az>0)
471 out.sky.az -= 2*M_PI;
472
473 out.mount = SkyToMount(out.sky);
474
475 return out;
476 }
477};
478
479// ------------------------------------------------------------------------
480
481
482class ConnectionDrive : public Connection
483{
484 uint16_t fVerbosity;
485
486public:
487 virtual void UpdatePointing(const Time &, const array<double, 2> &)
488 {
489 }
490
491 virtual void UpdateTracking(const Time &, const array<double, 12> &)
492 {
493 }
494
495 virtual void UpdateStatus(const Time &, const array<uint8_t, 3> &)
496 {
497 }
498
499 virtual void UpdateTPoint(const Time &, const DimTPoint &, const string &)
500 {
501 }
502
503 virtual void UpdateSource(const Time &, const string &, bool)
504 {
505 }
506 virtual void UpdateSource(const Time &,const array<double, 5> &, const string& = "")
507 {
508 }
509
510private:
511 enum NodeId_t
512 {
513 kNodeAz = 1,
514 kNodeZd = 3
515 };
516
517 enum
518 {
519 kRxNodeguard = 0xe,
520 kRxPdo1 = 3,
521 kRxPdo2 = 5,
522 kRxPdo3 = 7,
523 kRxPdo4 = 9,
524 kRxSdo = 0xb,
525 kRxSdo4 = 0x40|0x3,
526 kRxSdo2 = 0x40|0xb,
527 kRxSdo1 = 0x40|0xf,
528 kRxSdoOk = 0x60,
529 kRxSdoErr = 0x80,
530
531 kTxSdo = 0x40,
532 kTxSdo4 = 0x20|0x3,
533 kTxSdo2 = 0x20|0xb,
534 kTxSdo1 = 0x20|0xf,
535 };
536
537 void SendCanFrame(uint16_t cobid,
538 uint8_t m0=0, uint8_t m1=0, uint8_t m2=0, uint8_t m3=0,
539 uint8_t m4=0, uint8_t m5=0, uint8_t m6=0, uint8_t m7=0)
540 {
541 const uint16_t desc = (cobid<<5) | 8;
542
543 vector<uint8_t> data(11);
544 data[0] = 10;
545 data[1] = desc>>8;
546 data[2] = desc&0xff;
547
548 const uint8_t msg[8] = { m0, m1, m2, m3, m4, m5, m6, m7 };
549 memcpy(data.data()+3, msg, 8);
550
551 PostMessage(data);
552 }
553
554 enum Index_t
555 {
556 kReqArmed = 0x1000,
557 kReqPDO = 0x1001,
558 kReqErrStat = 0x1003,
559 kReqSoftVer = 0x100a,
560 kReqKeepAlive = 0x100b,
561 kReqVel = 0x2002,
562 kReqVelRes = 0x6002,
563 kReqVelMax = 0x6003,
564 kReqPos = 0x6004,
565 kReqPosRes = 0x6501,
566
567 kSetArmed = 0x1000,
568 kSetPointVel = 0x2002,
569 kSetAcc = 0x2003,
570 kSetRpmMode = 0x3006,
571 kSetTrackVel = 0x3007,
572 kSetLedVoltage = 0x4000,
573 kSetPosition = 0x6004,
574 };
575
576 static uint32_t String(uint8_t b0=0, uint8_t b1=0, uint8_t b2=0, uint8_t b3=0)
577 {
578 return uint32_t(b0)<<24 | uint32_t(b1)<<16 | uint32_t(b2)<<8 | uint32_t(b3);
579 }
580
581 uint32_t fVelRes[2];
582 uint32_t fVelMax[2];
583 uint32_t fPosRes[2];
584
585 uint32_t fErrCode[2];
586
587 void HandleSdo(const uint8_t &node, const uint16_t &idx, const uint8_t &subidx,
588 const uint32_t &val, const Time &tv)
589 {
590 if (fVerbosity>0)
591 {
592 ostringstream out;
593 out << hex;
594 out << "SDO[" << int(node) << "] " << idx << "/" << int(subidx) << ": " << val << dec;
595 Out() << out.str() << endl;
596 }
597
598 switch (idx)
599 {
600 case kReqArmed:
601 //fArmed = val==1;
602 return;
603
604 case kReqErrStat:
605 {
606 fErrCode[node/2] = (val>>8);
607 LogErrorCode(node);
608 }
609 return;
610
611 case kReqSoftVer:
612 //fSoftVersion = val;
613 return;
614
615 case kReqKeepAlive:
616 // Do not display, this is used for CheckConnection
617 fIsInitialized[node/2] = true;
618 return;
619
620 case kReqVel:
621 //fVel = val;
622 return;
623
624 case kReqPos:
625 switch (subidx)
626 {
627 case 0:
628 fPdoPos1[node/2] = val;
629 fPdoTime1[node/2] = tv;
630 fHasChangedPos1[node/2] = true;
631 return;
632 case 1:
633 fPdoPos2[node/2] = val;
634 fPdoTime2[node/2] = tv;
635 fHasChangedPos2[node/2] = true;
636 return;
637 }
638 break;
639
640 case kReqVelRes:
641 fVelRes[node/2] = val;
642 return;
643
644 case kReqVelMax:
645 fVelMax[node/2] = val;
646 return;
647
648 case kReqPosRes:
649 fPosRes[node/2] = val;
650 return;
651 }
652
653 ostringstream str;
654 str << "HandleSDO: Idx=0x"<< hex << idx << "/" << (int)subidx;
655 str << ", val=0x" << val;
656 Warn(str);
657 }
658
659 void HandleSdoOk(const uint8_t &node, const uint16_t &idx, const uint8_t &subidx,
660 const Time &)
661 {
662 ostringstream out;
663 out << hex;
664 out << "SDO-OK[" << int(node) << "] " << idx << "/" << int(subidx) << dec << " ";
665
666 switch (idx)
667 {
668 case kSetArmed:
669 out << "(Armed state set)";
670 break;
671 /*
672 case 0x1001:
673 Out() << inf2 << "- " << GetNodeName() << ": PDOs requested." << endl;
674 return;
675 */
676 case kSetPointVel:
677 out << "(Pointing velocity set)";
678 break;
679
680 case kSetAcc:
681 out << "(Acceleration set)";
682 break;
683
684 case kSetRpmMode:
685 out << "(RPM mode set)";
686 break;
687
688 case kSetLedVoltage:
689 out << "(LED Voltage set)";
690 Info(out);
691 return;
692 /*
693 case 0x3007:
694 //Out() << inf2 << "- Velocity set (" << GetNodeName() << ")" << endl;
695 return;
696
697 case 0x4000:
698 HandleNodeguard(tv);
699 return;
700
701 case 0x6000:
702 Out() << inf2 << "- " << GetNodeName() << ": Rotation direction set." << endl;
703 return;
704
705 case 0x6002:
706 Out() << inf2 << "- " << GetNodeName() << ": Velocity resolution set." << endl;
707 return;
708 */
709 case kSetPosition:
710 out << "(Absolute positioning started)";
711 break;
712 /*
713 case 0x6005:
714 Out() << inf2 << "- " << GetNodeName() << ": Relative positioning started." << endl;
715 fPosActive = kTRUE; // Make sure that the status is set correctly already before the first PDO
716 return;*/
717 }
718 /*
719 Out() << warn << setfill('0') << "WARNING - Nodedrv::HandleSDOOK: ";
720 Out() << "Node #" << dec << (int)fId << ": Sdo=" << hex << idx << "/" << (int)subidx << " set.";
721 Out() << endl;
722 */
723
724 if (fVerbosity>1)
725 Out() << out.str() << endl;
726 }
727
728 void HandleSdoError(const uint8_t &node, const uint16_t &idx, const uint8_t &subidx,
729 const Time &)
730 {
731 ostringstream out;
732 out << hex;
733 out << "SDO-ERR[" << int(node) << "] " << idx << "/" << int(subidx) << dec;
734 Out() << out.str() << endl;
735 }
736
737
738 int32_t fPdoPos1[2];
739 int32_t fPdoPos2[2];
740
741 Time fPdoTime1[2];
742public:
743 Time fPdoTime2[2];
744private:
745 bool fHasChangedPos1[2];
746 bool fHasChangedPos2[2];
747
748 void HandlePdo1(const uint8_t &node, const uint8_t *data, const Time &tv)
749 {
750 const uint32_t pos1 = (data[3]<<24) | (data[2]<<16) | (data[1]<<8) | data[0];
751 const uint32_t pos2 = (data[7]<<24) | (data[6]<<16) | (data[5]<<8) | data[4];
752
753 if (fVerbosity>2)
754 Out() << Time().GetAsStr("%M:%S.%f") << " PDO1[" << (int)node << "] " << 360.*int32_t(pos1)/fPosRes[node/2] << " " << 360.*int32_t(pos2)/fPosRes[node/2] << endl;
755
756 // Once every few milliseconds!
757
758 fPdoPos1[node/2] = pos1;
759 fPdoTime1[node/2] = tv;
760 fHasChangedPos1[node/2] = true;
761
762 fPdoPos2[node/2] = pos2;
763 fPdoTime2[node/2] = tv;
764 fHasChangedPos2[node/2] = true;
765 }
766
767 uint8_t fStatusAxis[2];
768 uint8_t fStatusSys;
769
770 enum {
771 kUpsAlarm = 0x01, // UPS Alarm (FACT only)
772 kUpsBattery = 0x02, // UPS on battery (FACT only)
773 kUpsCharging = 0x04, // UPS charging (FACT only)
774 kEmergencyOk = 0x10, // Emergency button released
775 kOvervoltOk = 0x20, // Overvoltage protection ok
776 kManualMode = 0x40, // Manual mode button pressed
777
778 kAxisBb = 0x01, // IndraDrive reports Bb (Regler betriebsbereit)
779 kAxisMoving = 0x02, // SPS reports
780 kAxisRpmMode = 0x04, // SPS reports
781 kAxisRf = 0x20, // IndraDrive reports Rf (Regler freigegeben)
782 kAxisHasPower = 0x80 // IndraDrive reports axis power on
783 };
784
785 //std::function<void(const Time &, const array<uint8_t, 3>&)> fUpdateStatus;
786
787 void HandlePdo3(const uint8_t &node, const uint8_t *data, const Time &tv)
788 {
789 /*
790 TX1M_STATUS.0 := 1;
791 TX1M_STATUS.1 := ((NOT X_in_Standstill OR NOT X_in_AntriebHalt) AND (NOT X_PC_VStart AND NOT X_in_Pos)) OR X_PC_AnnounceStartMovement;
792 TX1M_STATUS.2 := X_PC_VStart;
793 TX1M_STATUS.6 := NOT X_ist_freigegeben;
794
795 TX3M_STATUS.0 := X_ist_betriebsbereit;
796 TX3M_STATUS.1 := 1;
797 TX3M_STATUS.2 := Not_Aus_IO;
798 TX3M_STATUS.3 := UeberspannungsSchutz_OK;
799 TX3M_STATUS.4 := FB_soll_drehen_links OR FB_soll_drehen_rechts OR FB_soll_schwenk_auf OR FB_soll_schwenk_ab;
800 TX3M_STATUS.5 := X_ist_freigegeben;
801 TX3M_STATUS.6 := 1;
802 TX3M_STATUS.7 := LeistungEinAz;
803
804 TX3M_STATUS.8 := NOT UPS_ALARM;
805 TX3M_STATUS.9 := UPS_BattMode;
806 TX3M_STATUS.10 := UPS_Charging;
807 */
808
809 const uint8_t sys = ((data[0] & 0x1c)<<2) | (data[1]);
810 if (fStatusSys!=sys)
811 {
812 fStatusSys = sys;
813
814 const bool alarm = sys&kUpsAlarm; // 01 TX3M.8 100
815 const bool batt = sys&kUpsBattery; // 02 TX3M.9 200
816 const bool charge = sys&kUpsCharging; // 04 TX3M.10 400
817 const bool emcy = sys&kEmergencyOk; // 10 TX3M.2 04
818 const bool vltg = sys&kOvervoltOk; // 20 TX3M.3 08
819 const bool mode = sys&kManualMode; // 40 TX3M.4 10
820
821 ostringstream out;
822 if (alarm) out << " UPS-PowerLoss";
823 if (batt) out << " UPS-OnBattery";
824 if (charge) out << " UPS-Charging";
825 if (emcy) out << " EmcyOk";
826 if (vltg) out << " OvervoltOk";
827 if (mode) out << " ManualMove";
828
829 Info("New system status["+to_string(node)+"]:"+out.str());
830 if (fVerbosity>1)
831 Out() << "PDO3[" << (int)node << "] StatusSys=" << hex << (int)fStatusSys << dec << endl;
832 }
833
834 const uint8_t axis = (data[0]&0xa1) | (data[3]&0x06);
835 if (fStatusAxis[node/2]!=axis)
836 {
837 fStatusAxis[node/2] = axis;
838
839 const bool ready = axis&kAxisBb; // 01
840 const bool move = axis&kAxisMoving; // 02
841 const bool rpm = axis&kAxisRpmMode; // 04
842 const bool rf = axis&kAxisRf; // 20
843 const bool power = axis&kAxisHasPower; // 80
844
845 ostringstream out;
846 if (ready) out << " DKC-Ready";
847 if (move) out << " Moving";
848 if (rpm) out << " RpmMode";
849 if (rf) out << " RF";
850 if (power) out << " PowerOn";
851
852 Info("New axis status["+to_string(node)+"]:"+out.str());
853 if (fVerbosity>1)
854 Out() << "PDO3[" << (int)node << "] StatusAxis=" << hex << (int)fStatusAxis[node/2] << dec << endl;
855 }
856
857 array<uint8_t, 3> arr = {{ fStatusAxis[0], fStatusAxis[1], fStatusSys }};
858 UpdateStatus(tv, arr);
859 }
860
861 string ErrCodeToString(uint32_t code) const
862 {
863 switch (code)
864 {
865 case 0: return "offline";
866 case 0xa000: case 0xa0000:
867 case 0xa001: case 0xa0001:
868 case 0xa002: case 0xa0002:
869 case 0xa003: case 0xa0003: return "Communication phase "+to_string(code&0xf);
870 case 0xa010: case 0xa0010: return "Drive HALT";
871 case 0xa012: case 0xa0012: return "Control and power section ready for operation";
872 case 0xa013: case 0xa0013: return "Ready for power on";
873 case 0xa100: case 0xa0100: return "Drive in Torque mode";
874 case 0xa101: case 0xa0101: return "Drive in Velocity mode";
875 case 0xa102: case 0xa0102: return "Position control mode with encoder 1";
876 case 0xa103: case 0xa0103: return "Position control mode with encoder 2";
877 case 0xa104: case 0xa0104: return "Position control mode with encoder 1, lagless";
878 case 0xa105: case 0xa0105: return "Position control mode with encoder 2, lagless";
879 case 0xa106: case 0xa0106: return "Drive controlled interpolated positioning with encoder 1";
880 case 0xa107: case 0xa0107: return "Drive controlled interpolated positioning with encoder 2";
881 case 0xa108: case 0xa0108: return "Drive controlled interpolated positioning with encoder 1, lagless";
882 case 0xa109: case 0xa0109: return "Drive controlled interpolated positioning with encoder 2, lagless";
883 //case 0xa146: return "Drive controlled interpolated relative positioning with encoder 1";
884 //case 0xa147: return "Drive controlled interpolated relative positioning with encoder 2";
885 //case 0xa148: return "Drive controlled interpolated relative positioning lagless with encoder 1";
886 //case 0xa149: return "Drive controlled interpolated relative positioning lagless with encoder 2";
887 case 0xa150: case 0xa0150: return "Drive controlled positioning with encoder 1";
888 case 0xa151: case 0xa0151: return "Drive controlled positioning with encoder 1, lagless";
889 case 0xa152: case 0xa0152: return "Drive controlled positioning with encoder 2";
890 case 0xa153: case 0xa0153: return "Drive controlled positioning with encoder 2, lagless";
891 case 0xa208: return "Jog mode positive";
892 case 0xa218: return "Jog mode negative";
893 case 0xa400: case 0xa4000: return "Automatic drive check and adjustment";
894 case 0xa401: case 0xa4001: return "Drive decelerating to standstill";
895 case 0xa800: case 0xa0800: return "Unknown operation mode";
896 case 0xc217: return "Motor encoder reading error";
897 case 0xc218: return "Shaft encoder reading error";
898 case 0xc220: return "Motor encoder initialization error";
899 case 0xc221: return "Shaft encoder initialization error";
900 case 0xc300: return "Command: set absolute measure";
901 case 0xc400: case 0xc0400: return "Switching to parameter mode";
902 case 0xc401: case 0xc0401: return "Drive active, switching mode not allowed";
903 case 0xc500: case 0xc0500: return "Error reset";
904 case 0xc600: case 0xc0600: return "Drive controlled homing procedure";
905 case 0xe225: return "Motor overload";
906 case 0xe249: case 0xe2049: return "Positioning command velocity exceeds limit bipolar";
907 case 0xe250: return "Drive overtemp warning";
908 case 0xe251: return "Motor overtemp warning";
909 case 0xe252: return "Bleeder overtemp warning";
910 case 0xe257: return "Continous current limit active";
911 case 0xe2819: return "Main power failure";
912 case 0xe259: return "Command velocity limit active";
913 case 0xe8260: return "Torque limit active";
914 case 0xe264: return "Target position out of numerical range";
915 case 0xe829: case 0xe8029: return "Positive position limit exceeded";
916 case 0xe830: case 0xe8030: return "Negative position limit exceeded";
917 case 0xe831: return "Position limit reached during jog";
918 case 0xe834: return "Emergency-Stop";
919 case 0xe842: return "Both end-switches activated";
920 case 0xe843: return "Positive end-switch activated";
921 case 0xe844: return "Negative end-switch activated";
922 case 0xf218: case 0xf2018: return "Amplifier overtemp shutdown";
923 case 0xf219: case 0xf2019: return "Motor overtemp shutdown";
924 case 0xf220: return "Bleeder overload shutdown";
925 case 0xf221: case 0xf2021: return "Motor temperature surveillance defective";
926 case 0xf2022: return "Unit temperature surveillance defective";
927 case 0xf224: return "Maximum breaking time exceeded";
928 case 0xf2025: return "Drive not ready for power on";
929 case 0xf228: case 0xf2028: return "Excessive control deviation";
930 case 0xf250: return "Overflow of target position preset memory";
931 case 0xf257: case 0xf2057: return "Command position out of range";
932 case 0xf269: return "Error during release of the motor holding brake";
933 case 0xf276: return "Absolute encoder out of allowed window";
934 case 0xf2174: return "Lost reference of motor encoder";
935 case 0xf409: case 0xf4009: return "Bus error on Profibus interface";
936 case 0xf434: return "Emergency-Stop";
937 case 0xf629: return "Positive position limit exceeded";
938 case 0xf630: return "Negative position limit exceeded";
939 case 0xf634: return "Emergency-Stop";
940 case 0xf643: return "Positive end-switch activated";
941 case 0xf644: return "Negative end-switch activated";
942 case 0xf8069: return "15V DC error";
943 case 0xf870: case 0xf8070: return "24V DC error";
944 case 0xf878: case 0xf8078: return "Velocity loop error";
945 case 0xf8079: return "Velocity limit exceeded";
946 case 0xf2026: return "Undervoltage in power section";
947 }
948 return "unknown";
949 }
950
951 void LogErrorCode(uint32_t node)
952 {
953 const uint8_t typ = fErrCode[node/2]>>16;
954
955 ostringstream out;
956 out << "IndraDrive ";
957 out << (node==1?"Az":"Zd");
958 out << " [" << hex << fErrCode[node/2];
959 out << "]: ";
960 out << ErrCodeToString(fErrCode[node/2]);
961 out << (typ==0xf || typ==0xe ? "!" : ".");
962
963 switch (typ)
964 {
965 case 0xf: Error(out); break;
966 case 0xe: Warn(out); break;
967 case 0xa: Info(out); break;
968 case 0x0:
969 case 0xc:
970 case 0xd: Message(out); break;
971 default: Fatal(out); break;
972 }
973 }
974
975 void HandlePdo2(const uint8_t &node, const uint8_t *data, const Time &)
976 {
977 fErrCode[node/2] = (data[4]<<24) | (data[5]<<16) | (data[6]<<8) | data[7];
978
979 if (fVerbosity>0)
980 Out() << "PDO2[" << int(node) << "] err=" << hex << fErrCode[node/2] << endl;
981
982 LogErrorCode(node);
983 }
984
985 struct SDO
986 {
987 uint8_t node;
988 uint8_t req;
989 uint16_t idx;
990 uint8_t subidx;
991 uint32_t val;
992
993 SDO(uint8_t n, uint8_t r, uint16_t i, uint8_t s, uint32_t v=0)
994 : node(n), req(r&0xf), idx(i), subidx(s), val(v) { }
995
996 bool operator==(const SDO &s) const
997 {
998 return node==s.node && idx==s.idx && subidx==s.subidx;
999 }
1000 };
1001
1002 struct Timeout_t : SDO, ba::deadline_timer
1003 {
1004
1005 Timeout_t(ba::io_service& ioservice,
1006 uint8_t n, uint8_t r, uint16_t i, uint8_t s, uint32_t v, uint16_t millisec) : SDO(n, r, i, s, v),
1007 ba::deadline_timer(ioservice)
1008 {
1009 expires_from_now(boost::posix_time::milliseconds(millisec));
1010 }
1011 // get_io_service()
1012 };
1013
1014 std::list<Timeout_t> fTimeouts;
1015
1016 vector<uint8_t> fData;
1017
1018 void HandleReceivedData(const boost::system::error_code& err, size_t bytes_received, int)
1019 {
1020 // Do not schedule a new read if the connection failed.
1021 if (bytes_received!=11 || fData[0]!=10 || err)
1022 {
1023 if (err==ba::error::eof)
1024 Warn("Connection closed by remote host (cosy).");
1025
1026 // 107: Transport endpoint is not connected (bs::error_code(107, bs::system_category))
1027 // 125: Operation canceled
1028 if (err && err!=ba::error::eof && // Connection closed by remote host
1029 err!=ba::error::basic_errors::not_connected && // Connection closed by remote host
1030 err!=ba::error::basic_errors::operation_aborted) // Connection closed by us
1031 {
1032 ostringstream str;
1033 str << "Reading from " << URL() << ": " << err.message() << " (" << err << ")";// << endl;
1034 Error(str);
1035 }
1036 PostClose(err!=ba::error::basic_errors::operation_aborted);
1037 return;
1038 }
1039
1040 Time now;
1041
1042 const uint16_t desc = fData[1]<<8 | fData[2];
1043 const uint16_t cobid = desc>>5;
1044
1045 const uint8_t *data = fData.data()+3;
1046
1047 const uint16_t fcode = cobid >> 7;
1048 const uint8_t node = cobid & 0x1f;
1049
1050 switch (fcode)
1051 {
1052 case kRxNodeguard:
1053 Out() << "Received nodeguard" << endl;
1054 //HandleNodeguard(node, now);
1055 break;
1056
1057 case kRxSdo:
1058 {
1059 const uint8_t cmd = data[0];
1060 const uint16_t idx = data[1] | (data[2]<<8);
1061 const uint8_t subidx = data[3];
1062 const uint32_t dat = data[4] | (data[5]<<8) | (data[6]<<16) | (data[7]<<24);
1063
1064 const auto it = find(fTimeouts.begin(), fTimeouts.end(), SDO(node, cmd, idx, subidx));
1065 if (it!=fTimeouts.end())
1066 {
1067 // This will call the handler and in turn remove the object from the list
1068 it->cancel();
1069 }
1070 else
1071 {
1072 ostringstream str;
1073 str << hex;
1074 str << "Unexpected SDO (";
1075 str << uint32_t(node) << ": ";
1076 str << (cmd&0xf==kTxSdo?"RX ":"TX ");
1077 str << idx << "/" << uint32_t(subidx) << " ";
1078 str << to_simple_string(ref->expires_from_now());
1079 str << ")";
1080
1081 Warn(str);
1082 }
1083
1084 switch (cmd)
1085 {
1086 case kRxSdo4: // answer to 0x40 with 4 bytes of data
1087 HandleSdo(node, idx, subidx, dat, now);
1088 break;
1089
1090 case kRxSdo2: // answer to 0x40 with 2 bytes of data
1091 HandleSdo(node, idx, subidx, dat&0xffff, now);
1092 break;
1093
1094 case kRxSdo1: // answer to 0x40 with 1 byte of data
1095 HandleSdo(node, idx, subidx, dat&0xff, now);
1096 break;
1097
1098 case kRxSdoOk: // answer to a SDO_TX message
1099 HandleSdoOk(node, idx, subidx, now);
1100 break;
1101
1102 case kRxSdoErr: // error message
1103 HandleSdoError(node, idx, subidx, now);
1104 break;
1105
1106 default:
1107 {
1108 ostringstream out;
1109 out << "Invalid SDO command code " << hex << cmd << " received.";
1110 Error(out);
1111 PostClose(false);
1112 return;
1113 }
1114 }
1115 }
1116 break;
1117
1118 case kRxPdo1:
1119 HandlePdo1(node, data, now);
1120 break;
1121
1122 case kRxPdo2:
1123 HandlePdo2(node, data, now);
1124 break;
1125
1126 case kRxPdo3:
1127 HandlePdo3(node, data, now);
1128 break;
1129
1130 default:
1131 {
1132 ostringstream out;
1133 out << "Invalid function code " << hex << fcode << " received.";
1134 Error(out);
1135 PostClose(false);
1136 return;
1137 }
1138 }
1139
1140 StartReadReport();
1141 }
1142
1143 void StartReadReport()
1144 {
1145 ba::async_read(*this, ba::buffer(fData),
1146 boost::bind(&ConnectionDrive::HandleReceivedData, this,
1147 ba::placeholders::error, ba::placeholders::bytes_transferred, 0));
1148
1149 //AsyncWait(fInTimeout, 35000, &Connection::HandleReadTimeout); // 30s
1150 }
1151
1152 bool fIsInitialized[2];
1153
1154 // This is called when a connection was established
1155 void ConnectionEstablished()
1156 {
1157 //Info("Connection to PLC established.");
1158
1159 fIsInitialized[0] = false;
1160 fIsInitialized[1] = false;
1161
1162 SendSdo(kNodeZd, kSetArmed, 1);
1163 SendSdo(kNodeAz, kSetArmed, 1);
1164
1165 RequestSdo(kNodeZd, kReqErrStat);
1166 RequestSdo(kNodeAz, kReqErrStat);
1167
1168 SetRpmMode(false);
1169
1170 RequestSdo(kNodeZd, kReqPosRes);
1171 RequestSdo(kNodeAz, kReqPosRes);
1172
1173 RequestSdo(kNodeZd, kReqVelRes);
1174 RequestSdo(kNodeAz, kReqVelRes);
1175
1176 RequestSdo(kNodeZd, kReqVelMax);
1177 RequestSdo(kNodeAz, kReqVelMax);
1178
1179 RequestSdo(kNodeZd, kReqPos, 0);
1180 RequestSdo(kNodeAz, kReqPos, 0);
1181 RequestSdo(kNodeZd, kReqPos, 1);
1182 RequestSdo(kNodeAz, kReqPos, 1);
1183
1184 RequestSdo(kNodeZd, kReqKeepAlive);
1185 RequestSdo(kNodeAz, kReqKeepAlive);
1186
1187 StartReadReport();
1188 }
1189
1190 void HandleTimeoutImp(const std::list<Timeout_t>::iterator &ref, const bs::error_code &error)
1191 {
1192 if (error==ba::error::basic_errors::operation_aborted)
1193 return;
1194
1195 if (error)
1196 {
1197 ostringstream str;
1198 str << "SDO timeout of " << URL() << ": " << error.message() << " (" << error << ")";// << endl;
1199 Error(str);
1200
1201 //PostClose();
1202 return;
1203 }
1204
1205 if (!is_open())
1206 {
1207 // For example: Here we could schedule a new accept if we
1208 // would not want to allow two connections at the same time.
1209 return;
1210 }
1211
1212 // Check whether the deadline has passed. We compare the deadline
1213 // against the current time since a new asynchronous operation
1214 // may have moved the deadline before this actor had a chance
1215 // to run.
1216 if (ref->expires_at() > ba::deadline_timer::traits_type::now())
1217 return;
1218
1219 ostringstream str;
1220 str << hex;
1221 str << "SDO timeout (";
1222 str << uint32_t(ref->node) << ": ";
1223 str << (ref->req==kTxSdo?"RX ":"TX ");
1224 str << ref->idx << "/" << uint32_t(ref->subidx) << " [" << ref->val << "] ";
1225 str << to_simple_string(ref->expires_from_now());
1226 str << ")";
1227
1228 Warn(str);
1229
1230 //PostClose();
1231 }
1232
1233 void HandleTimeout(const std::list<Timeout_t>::iterator &ref, const bs::error_code &error)
1234 {
1235 HandleTimeoutImp(ref, error);
1236 fTimeouts.erase(ref);
1237 }
1238
1239 void SendSdoRequest(uint8_t node, uint8_t req,
1240 uint16_t idx, uint8_t subidx, uint32_t val=0)
1241 {
1242 if (fVerbosity>1)
1243 Out() << "SDO-" << (req==kTxSdo?"REQ":"SET") << "[" << int(node) << "] " << idx << "/" << int(subidx) << " = " << val << endl;
1244
1245
1246 SendCanFrame(0x600|(node&0x1f), req, idx&0xff, idx>>8, subidx,
1247 val&0xff, (val>>8)&0xff, (val>>16)&0xff, (val>>24)&0xff);
1248
1249 // - The boost::asio::basic_deadline_timer::expires_from_now()
1250 // function cancels any pending asynchronous waits, and returns
1251 // the number of asynchronous waits that were cancelled. If it
1252 // returns 0 then you were too late and the wait handler has
1253 // already been executed, or will soon be executed. If it
1254 // returns 1 then the wait handler was successfully cancelled.
1255 // - If a wait handler is cancelled, the bs::error_code passed to
1256 // it contains the value bs::error::operation_aborted.
1257
1258 const uint32_t milliseconds = 3000;
1259 fTimeouts.emplace_front(get_io_service(), node, req, idx, subidx, val, milliseconds);
1260
1261 const std::list<Timeout_t>::iterator &timeout = fTimeouts.begin();
1262
1263 timeout->async_wait(boost::bind(&ConnectionDrive::HandleTimeout, this, timeout, ba::placeholders::error));
1264 }
1265
1266public:
1267 ConnectionDrive(ba::io_service& ioservice, MessageImp &imp) : Connection(ioservice, imp()),
1268 fVerbosity(0), fData(11)
1269 {
1270 SetLogStream(&imp);
1271 }
1272
1273 void SetVerbosity(const uint16_t &v)
1274 {
1275 fVerbosity = v;
1276 }
1277
1278 uint16_t GetVerbosity() const
1279 {
1280 return fVerbosity;
1281 }
1282
1283 void RequestSdo(uint8_t node, uint16_t idx, uint8_t subidx=0)
1284 {
1285 SendSdoRequest(node, kTxSdo, idx, subidx);
1286 }
1287 void SendSdo(uint8_t node, uint16_t idx, uint8_t subidx, uint32_t val)
1288 {
1289 SendSdoRequest(node, kTxSdo4, idx, subidx, val);
1290 }
1291
1292 void SendSdo(uint8_t node, uint16_t idx, uint32_t val)
1293 {
1294 SendSdo(node, idx, 0, val);
1295 }
1296
1297 bool IsMoving() const
1298 {
1299 return (fStatusAxis[0]&kAxisMoving) || (fStatusAxis[1]&kAxisMoving)
1300 || (fStatusAxis[0]&kAxisRpmMode) || (fStatusAxis[1]&kAxisRpmMode);
1301 }
1302
1303 bool IsInitialized() const
1304 {
1305 // All important information has been successfully requested from the
1306 // SPS and the power control units are in RF (Regler freigegeben)
1307 return fIsInitialized[0] && fIsInitialized[1];
1308 }
1309
1310 bool HasError() const
1311 {
1312 const uint8_t typ0 = fErrCode[0]>>16;
1313 const uint8_t typ1 = fErrCode[1]>>16;
1314 return typ0==0xe || typ0==0xf || typ1==0xe || typ1==0xf;
1315 }
1316
1317 bool IsOnline() const
1318 {
1319 return fErrCode[0]!=0 && fErrCode[1]!=0;
1320 }
1321
1322 bool IsReady() const
1323 {
1324 return fStatusAxis[0]&kAxisRf && fStatusAxis[1]&kAxisRf;
1325 }
1326
1327 bool IsBlocked() const
1328 {
1329 return (fStatusSys&kEmergencyOk)==0 || (fStatusSys&kManualMode);
1330 }
1331
1332 Encoder GetSePos() const // [rev]
1333 {
1334 return Encoder(double(fPdoPos2[1])/fPosRes[1], double(fPdoPos2[0])/fPosRes[0]);
1335 }
1336
1337 double GetSeTime() const // [rev]
1338 {
1339 // The maximum difference here should not be larger than 100ms.
1340 // So th error we make on both axes should not exceed 50ms;
1341 return (Time(fPdoTime2[0]).Mjd()+Time(fPdoTime2[1]).Mjd())/2;
1342 }
1343
1344 Encoder GetVelUnit() const
1345 {
1346 return Encoder(fVelMax[1], fVelMax[0]);
1347 }
1348
1349 void SetRpmMode(bool mode)
1350 {
1351 const uint32_t val = mode ? String('s','t','r','t') : String('s','t','o','p');
1352 SendSdo(kNodeAz, kSetRpmMode, val);
1353 SendSdo(kNodeZd, kSetRpmMode, val);
1354 }
1355
1356 void SetAcceleration(const Acceleration &acc)
1357 {
1358 SendSdo(kNodeAz, kSetAcc, lrint(acc.az*1000000000+0.5));
1359 SendSdo(kNodeZd, kSetAcc, lrint(acc.zd*1000000000+0.5));
1360 }
1361
1362 void SetPointingVelocity(const Velocity &vel, double scale=1)
1363 {
1364 SendSdo(kNodeAz, kSetPointVel, lrint(vel.az*fVelMax[0]*scale));
1365 SendSdo(kNodeZd, kSetPointVel, lrint(vel.zd*fVelMax[1]*scale));
1366 }
1367 void SetTrackingVelocity(const Velocity &vel)
1368 {
1369 SendSdo(kNodeAz, kSetTrackVel, lrint(vel.az*fVelRes[0]));
1370 SendSdo(kNodeZd, kSetTrackVel, lrint(vel.zd*fVelRes[1]));
1371 }
1372
1373 void StartAbsolutePositioning(const Encoder &enc, bool zd, bool az)
1374 {
1375 if (az) SendSdo(kNodeAz, kSetPosition, lrint(enc.az*fPosRes[0]));
1376 if (zd) SendSdo(kNodeZd, kSetPosition, lrint(enc.zd*fPosRes[1]));
1377
1378 // Make sure that the status is set correctly already before the first PDO
1379 if (az) fStatusAxis[0] |= 0x02;
1380 if (zd) fStatusAxis[1] |= 0x02;
1381
1382 // FIXME: UpdateDim?
1383 }
1384
1385 void SetLedVoltage(const uint32_t &v1, const uint32_t &v2)
1386 {
1387 SendSdo(kNodeAz, 0x4000, v1);
1388 SendSdo(kNodeZd, 0x4000, v2);
1389 }
1390};
1391
1392
1393// ------------------------------------------------------------------------
1394
1395#include "DimDescriptionService.h"
1396
1397class ConnectionDimDrive : public ConnectionDrive
1398{
1399private:
1400 DimDescribedService fDimPointing;
1401 DimDescribedService fDimTracking;
1402 DimDescribedService fDimSource;
1403 DimDescribedService fDimTPoint;
1404 DimDescribedService fDimStatus;
1405
1406 // Update dim from a different thread to ensure that these
1407 // updates cannot block the main eventloop which eventually
1408 // also checks the timeouts
1409 Queue<pair<Time,array<double, 2>>> fQueuePointing;
1410 Queue<pair<Time,array<double, 12>>> fQueueTracking;
1411 Queue<tuple<Time,vector<char>,bool>> fQueueSource;
1412 Queue<pair<Time,vector<char>>> fQueueTPoint;
1413 Queue<pair<Time,array<uint8_t, 3>>> fQueueStatus;
1414
1415 bool SendPointing(const pair<Time,array<double,2>> &p)
1416 {
1417 fDimPointing.setData(p.second);
1418 fDimPointing.Update(p.first);
1419 return true;
1420 }
1421
1422 bool SendTracking(const pair<Time,array<double, 12>> &p)
1423 {
1424 fDimTracking.setData(p.second);
1425 fDimTracking.Update(p.first);
1426 return true;
1427 }
1428
1429 bool SendSource(const tuple<Time,vector<char>,bool> &t)
1430 {
1431 const Time &time = get<0>(t);
1432 const vector<char> &data = get<1>(t);
1433 const bool &tracking = get<2>(t);
1434
1435 fDimSource.setQuality(tracking);
1436 fDimSource.setData(data);
1437 fDimSource.Update(time);
1438 return true;
1439 }
1440
1441 bool SendStatus(const pair<Time,array<uint8_t, 3>> &p)
1442 {
1443 fDimStatus.setData(p.second);
1444 fDimStatus.Update(p.first);
1445 return true;
1446 }
1447
1448 bool SendTPoint(const pair<Time,vector<char>> &p)
1449 {
1450 fDimTPoint.setData(p.second);
1451 fDimTPoint.Update(p.first);
1452 return true;
1453 }
1454
1455public:
1456 void UpdatePointing(const Time &t, const array<double, 2> &arr)
1457 {
1458 fQueuePointing.emplace(t, arr);
1459 }
1460
1461 void UpdateTracking(const Time &t,const array<double, 12> &arr)
1462 {
1463 fQueueTracking.emplace(t, arr);
1464 }
1465
1466 void UpdateStatus(const Time &t, const array<uint8_t, 3> &arr)
1467 {
1468 fQueueStatus.emplace(t, arr);
1469 }
1470
1471 void UpdateTPoint(const Time &t, const DimTPoint &data,
1472 const string &name)
1473 {
1474 vector<char> dim(sizeof(data)+name.length()+1);
1475 memcpy(dim.data(), &data, sizeof(data));
1476 memcpy(dim.data()+sizeof(data), name.c_str(), name.length()+1);
1477
1478 fQueueTPoint.emplace(t, dim);
1479 }
1480
1481 void UpdateSource(const Time &t, const string &name, bool tracking)
1482 {
1483 vector<char> dat(5*sizeof(double)+31, 0);
1484 strncpy(dat.data()+5*sizeof(double), name.c_str(), 30);
1485
1486 fQueueSource.emplace(t, dat, tracking);
1487 }
1488
1489 void UpdateSource(const Time &t, const array<double, 5> &arr, const string &name="")
1490 {
1491 vector<char> dat(5*sizeof(double)+31, 0);
1492 memcpy(dat.data(), arr.data(), 5*sizeof(double));
1493 strncpy(dat.data()+5*sizeof(double), name.c_str(), 30);
1494
1495 fQueueSource.emplace(t, dat, true);
1496 }
1497
1498public:
1499 ConnectionDimDrive(ba::io_service& ioservice, MessageImp &imp) :
1500 ConnectionDrive(ioservice, imp),
1501 fDimPointing("DRIVE_CONTROL/POINTING_POSITION", "D:1;D:1",
1502 "|Zd[deg]:Zenith distance (derived from encoder readout)"
1503 "|Az[deg]:Azimuth angle (derived from encoder readout)"),
1504 fDimTracking("DRIVE_CONTROL/TRACKING_POSITION", "D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1",
1505 "|Ra[h]:Command right ascension pointing direction (J2000)"
1506 "|Dec[deg]:Command declination pointing direction (J2000)"
1507 "|Ha[h]:Hour angle pointing direction"
1508 "|SrcRa[h]:Right ascension source (J2000)"
1509 "|SrcDec[deg]:Declination source (J2000)"
1510 "|SrcHa[h]:Hour angle source"
1511 "|Zd[deg]:Nominal zenith distance"
1512 "|Az[deg]:Nominal azimuth angle"
1513 "|dZd[deg]:Control deviation Zd"
1514 "|dAz[deg]:Control deviation Az"
1515 "|dev[arcsec]:Absolute control deviation"
1516 "|avgdev[arcsec]:Average control deviation used to define OnTrack"),
1517 fDimSource("DRIVE_CONTROL/SOURCE_POSITION", "D:1;D:1;D:1;D:1;D:1;C:31",
1518 "|Ra_src[h]:Source right ascension"
1519 "|Dec_src[deg]:Source declination"
1520 "|Offset[deg]:Wobble offset"
1521 "|Angle[deg]:Wobble angle"
1522 "|Period[min]:Time for one orbit"
1523 "|Name[string]:Source name if available"),
1524 fDimTPoint("DRIVE_CONTROL/TPOINT_DATA", "D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;S:1;S:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;D:1;C",
1525 "|Ra[h]:Command right ascension"
1526 "|Dec[deg]:Command declination"
1527 "|Zd_nom[deg]:Nominal zenith distance"
1528 "|Az_nom[deg]:Nominal azimuth angle"
1529 "|Zd_cur[deg]:Current zenith distance (calculated from image)"
1530 "|Az_cur[deg]:Current azimuth angle (calculated from image)"
1531 "|Zd_enc[deg]:Feedback zenith axis (from encoder)"
1532 "|Az_enc[deg]:Feedback azimuth angle (from encoder)"
1533 "|N_leds[cnt]:Number of detected LEDs"
1534 "|N_rings[cnt]:Number of rings used to calculate the camera center"
1535 "|Xc[pix]:X position of center in CCD camera frame"
1536 "|Yc[pix]:Y position of center in CCD camera frame"
1537 "|Ic[au]:Average intensity (LED intensity weighted with their frequency of occurance in the calculation)"
1538 "|Xs[pix]:X position of start in CCD camera frame"
1539 "|Ys[pix]:Y position of star in CCD camera frame"
1540 "|Ms[mag]:Artifical magnitude of star (calculated from image)"
1541 "|Phi[deg]:Rotation angle of image derived from detected LEDs"
1542 "|Mc[mag]:Catalog magnitude of star"
1543 "|Dx[arcsec]:De-rotated dx"
1544 "|Dy[arcsec]:De-rotated dy"
1545 "|Name[string]:Name of star"),
1546 fDimStatus("DRIVE_CONTROL/STATUS", "C:2;C:1", ""),
1547 fQueuePointing(std::bind(&ConnectionDimDrive::SendPointing, this, placeholders::_1)),
1548 fQueueTracking(std::bind(&ConnectionDimDrive::SendTracking, this, placeholders::_1)),
1549 fQueueSource( std::bind(&ConnectionDimDrive::SendSource, this, placeholders::_1)),
1550 fQueueTPoint( std::bind(&ConnectionDimDrive::SendTPoint, this, placeholders::_1)),
1551 fQueueStatus( std::bind(&ConnectionDimDrive::SendStatus, this, placeholders::_1))
1552 {
1553 }
1554
1555 // A B [C] [D] E [F] G H [I] J K [L] M N O P Q R [S] T U V W [X] Y Z
1556};
1557
1558// ------------------------------------------------------------------------
1559
1560template <class T, class S>
1561class StateMachineDrive : public StateMachineAsio<T>
1562{
1563private:
1564 S fDrive;
1565
1566 ba::deadline_timer fTrackingLoop;
1567
1568 string fDatabase;
1569
1570 typedef map<string, Source> sources;
1571 sources fSources;
1572
1573 Weather fWeather;
1574 uint16_t fWeatherTimeout;
1575
1576 ZdAz fParkingPos;
1577
1578 PointingModel fPointingModel;
1579 PointingSetup fPointingSetup;
1580 Encoder fMovementTarget;
1581
1582 Time fSunRise;
1583
1584 Encoder fPointingMin;
1585 Encoder fPointingMax;
1586
1587 uint16_t fDeviationLimit;
1588 uint16_t fDeviationCounter;
1589 uint16_t fDeviationMax;
1590
1591 vector<double> fDevBuffer;
1592 uint64_t fDevCount;
1593
1594 uint64_t fTrackingCounter;
1595
1596
1597 // --------------------- DIM Sending ------------------
1598
1599 bool CheckEventSize(size_t has, const char *name, size_t size)
1600 {
1601 if (has==size)
1602 return true;
1603
1604 ostringstream msg;
1605 msg << name << " - Received event has " << has << " bytes, but expected " << size << ".";
1606 T::Fatal(msg);
1607 return false;
1608 }
1609
1610 // --------------------- DIM Receiving ------------------
1611
1612 int HandleWeatherData(const EventImp &evt)
1613 {
1614 if (!CheckEventSize(evt.GetSize(), "HandleWeatherData", 7*4+2))
1615 {
1616 fWeather.time = Time(Time::none);
1617 return T::GetCurrentState();
1618 }
1619
1620 const float *ptr = evt.Ptr<float>(2);
1621
1622 fWeather.temp = ptr[0];
1623 fWeather.hum = ptr[2];
1624 fWeather.press = ptr[3];
1625 fWeather.time = evt.GetTime();
1626
1627 return T::GetCurrentState();
1628 }
1629
1630 int HandleTPoint(const EventImp &evt)
1631 {
1632 // Skip disconnect events
1633 if (evt.GetSize()==0)
1634 return T::GetCurrentState();
1635
1636 // skip invalid events
1637 if (!CheckEventSize(evt.GetSize(), "HandleTPoint", 11*8))
1638 return T::GetCurrentState();
1639
1640 // skip event which are older than one minute
1641 if (Time().UnixTime()-evt.GetTime().UnixTime()>60)
1642 return T::GetCurrentState();
1643
1644 // Original code in slaTps2c:
1645 //
1646 // From the tangent plane coordinates of a star of known RA,Dec,
1647 // determine the RA,Dec of the tangent point.
1648
1649 const double *ptr = evt.Ptr<double>();
1650
1651 // Tangent plane rectangular coordinates
1652 const double dx = ptr[0] * M_PI/648000; // [arcsec -> rad]
1653 const double dy = ptr[1] * M_PI/648000; // [arcsec -> rad]
1654
1655 const PointingData data = fPointingModel.CalcPointingPos(fPointingSetup, evt.GetTime().Mjd(), fWeather, fWeatherTimeout, true);
1656
1657 const double x2 = dx*dx;
1658 const double y2 = 1 + dy*dy;
1659
1660 const double sd = cos(data.sky.zd);//sin(M_PI/2-sky.zd);
1661 const double cd = sin(data.sky.zd);//cos(M_PI/2-sky.zd);
1662 const double sdf = sd*sqrt(x2+y2);
1663 const double r2 = cd*cd*y2 - sd*sd*x2;
1664
1665 // Case of no solution ("at the pole") or
1666 // two solutions ("over the pole solution")
1667 if (r2<0 || fabs(sdf)>=1)
1668 {
1669 T::Warn("Could not determine pointing direction from TPoint.");
1670 return T::GetCurrentState();
1671 }
1672
1673 const double r = sqrt(r2);
1674 const double s = sdf - dy * r;
1675 const double c = sdf * dy + r;
1676 const double phi = atan2(dx, r);
1677
1678 // Spherical coordinates of tangent point
1679 const double az = fmod(data.sky.az-phi + 2*M_PI, 2*M_PI);
1680 const double zd = M_PI/2 - atan2(s, c);
1681
1682 const Encoder dev = fDrive.GetSePos()*360 - data.mount;
1683
1684 // --- Output TPoint ---
1685
1686 const string fname = "tpoints-"+to_string(evt.GetTime().NightAsInt())+".txt";
1687 //time.GetAsStr("/%Y/%m/%d");
1688
1689 const bool exist = boost::filesystem::exists(fname);
1690
1691 ofstream fout(fname, ios::app);
1692 if (!exist)
1693 {
1694 fout << "FACT Model TPOINT data file" << endl;
1695 fout << ": ALTAZ" << endl;
1696 fout << "49 48 0 ";
1697 fout << evt.GetTime() << endl;
1698 }
1699 fout << setprecision(7);
1700 fout << fmod(az*180/M_PI+360, 360) << " ";
1701 fout << 90-zd*180/M_PI << " ";
1702 fout << fmod(data.mount.az+360, 360) << " ";
1703 fout << 90-data.mount.zd << " ";
1704 fout << dev.az << " "; // delta az
1705 fout << -dev.zd << " "; // delta el
1706 fout << 90-data.sky.zd * 180/M_PI << " ";
1707 fout << data.sky.az * 180/M_PI << " ";
1708 fout << setprecision(10);
1709 fout << data.mjd << " ";
1710 fout << setprecision(7);
1711 fout << ptr[6] << " "; // center.mag
1712 fout << ptr[9] << " "; // star.mag
1713 fout << ptr[4] << " "; // center.x
1714 fout << ptr[5] << " "; // center.y
1715 fout << ptr[7] << " "; // star.x
1716 fout << ptr[8] << " "; // star.y
1717 fout << ptr[2] << " "; // num leds
1718 fout << ptr[3] << " "; // num rings
1719 fout << ptr[0] << " "; // dx (de-rotated)
1720 fout << ptr[1] << " "; // dy (de-rotated)
1721 fout << ptr[10] << " "; // rotation angle
1722 fout << fPointingSetup.source.mag << " ";
1723 fout << fPointingSetup.source.name;
1724 fout << endl;
1725
1726 DimTPoint dim;
1727 dim.fRa = data.pointing.ra * 12/M_PI;
1728 dim.fDec = data.pointing.dec * 180/M_PI;
1729 dim.fNominalZd = data.sky.zd * 180/M_PI;
1730 dim.fNominalAz = data.sky.az * 180/M_PI;
1731 dim.fPointingZd = zd * 180/M_PI;
1732 dim.fPointingAz = az * 180/M_PI;
1733 dim.fFeedbackZd = data.mount.zd;
1734 dim.fFeedbackAz = data.mount.az;
1735 dim.fNumLeds = uint16_t(ptr[2]);
1736 dim.fNumRings = uint16_t(ptr[3]);
1737 dim.fCenterX = ptr[4];
1738 dim.fCenterY = ptr[5];
1739 dim.fCenterMag = ptr[6];
1740 dim.fStarX = ptr[7];
1741 dim.fStarY = ptr[8];
1742 dim.fStarMag = ptr[9];
1743 dim.fRotation = ptr[10];
1744 dim.fDx = ptr[0];
1745 dim.fDy = ptr[1];
1746 dim.fRealMag = fPointingSetup.source.mag;
1747
1748 fDrive.UpdateTPoint(evt.GetTime(), dim, fPointingSetup.source.name);
1749
1750 ostringstream txt;
1751 txt << "TPoint recorded [" << zd*180/M_PI << "/" << az*180/M_PI << " | "
1752 << data.sky.zd*180/M_PI << "/" << data.sky.az*180/M_PI << " | "
1753 << data.mount.zd << "/" << data.mount.az << " | "
1754 << dx*180/M_PI << "/" << dy*180/M_PI << "]";
1755 T::Info(txt);
1756
1757 return T::GetCurrentState();
1758 }
1759
1760 // -------------------------- Helpers -----------------------------------
1761
1762 double GetDevAbs(double nomzd, double meszd, double devaz)
1763 {
1764 nomzd *= M_PI/180;
1765 meszd *= M_PI/180;
1766 devaz *= M_PI/180;
1767
1768 const double x = sin(meszd) * sin(nomzd) * cos(devaz);
1769 const double y = cos(meszd) * cos(nomzd);
1770
1771 return acos(x + y) * 180/M_PI;
1772 }
1773
1774 double ReadAngle(istream &in)
1775 {
1776 char sgn;
1777 uint16_t d, m;
1778 float s;
1779
1780 in >> sgn >> d >> m >> s;
1781
1782 const double ret = ((60.0 * (60.0 * (double)d + (double)m) + s))/3600.;
1783 return sgn=='-' ? -ret : ret;
1784 }
1785
1786 bool CheckRange(ZdAz pos)
1787 {
1788 if (pos.zd<fPointingMin.zd)
1789 {
1790 T::Error("Zenith distance "+to_string(pos.zd)+" below limit "+to_string(fPointingMin.zd));
1791 return false;
1792 }
1793
1794 if (pos.zd>fPointingMax.zd)
1795 {
1796 T::Error("Zenith distance "+to_string(pos.zd)+" exceeds limit "+to_string(fPointingMax.zd));
1797 return false;
1798 }
1799
1800 if (pos.az<fPointingMin.az)
1801 {
1802 T::Error("Azimuth angle "+to_string(pos.az)+" below limit "+to_string(fPointingMin.az));
1803 return false;
1804 }
1805
1806 if (pos.az>fPointingMax.az)
1807 {
1808 T::Error("Azimuth angle "+to_string(pos.az)+" exceeds limit "+to_string(fPointingMax.az));
1809 return false;
1810 }
1811
1812 return true;
1813 }
1814
1815 PointingData CalcPointingPos(double mjd)
1816 {
1817 return fPointingModel.CalcPointingPos(fPointingSetup, mjd, fWeather, fWeatherTimeout);
1818 }
1819
1820 // ----------------------------- SDO Commands ------------------------------
1821
1822 int RequestSdo(const EventImp &evt)
1823 {
1824 // FIXME: STop telescope
1825 if (!CheckEventSize(evt.GetSize(), "RequestSdo", 6))
1826 return T::kSM_FatalError;
1827
1828 const uint16_t node = evt.Get<uint16_t>();
1829 const uint16_t index = evt.Get<uint16_t>(2);
1830 const uint16_t subidx = evt.Get<uint16_t>(4);
1831
1832 if (node!=1 && node !=3)
1833 {
1834 T::Error("Node id must be 1 (az) or 3 (zd).");
1835 return T::GetCurrentState();
1836 }
1837
1838 if (subidx>0xff)
1839 {
1840 T::Error("Subindex must not be larger than 255.");
1841 return T::GetCurrentState();
1842 }
1843
1844 fDrive.RequestSdo(node, index, subidx);
1845
1846 return T::GetCurrentState();
1847 }
1848
1849 int SendSdo(const EventImp &evt)
1850 {
1851 if (!CheckEventSize(evt.GetSize(), "SendSdo", 6+8))
1852 return T::kSM_FatalError;
1853
1854 const uint16_t node = evt.Get<uint16_t>();
1855 const uint16_t index = evt.Get<uint16_t>(2);
1856 const uint16_t subidx = evt.Get<uint16_t>(4);
1857 const uint64_t value = evt.Get<uint64_t>(6);
1858
1859 if (node!=1 && node!=3)
1860 {
1861 T::Error("Node id must be 1 (az) or 3 (zd).");
1862 return T::GetCurrentState();
1863 }
1864
1865 if (subidx>0xff)
1866 {
1867 T::Error("Subindex must not be larger than 255.");
1868 return T::GetCurrentState();
1869 }
1870
1871 fDrive.SendSdo(node, index, subidx, value);
1872
1873 return T::GetCurrentState();
1874 }
1875
1876 // --------------------- Moving and tracking ---------------------
1877
1878 uint16_t fStep;
1879 bool fIsTracking;
1880 Acceleration fAccPointing;
1881 Acceleration fAccTracking;
1882 Acceleration fAccMax;
1883 double fMaxPointingResidual;
1884 double fPointingVelocity;
1885
1886 int InitMovement(const ZdAz &sky, bool tracking=false, const string &name="")
1887 {
1888 fMovementTarget = fPointingModel.SkyToMount(sky);
1889
1890 // Check whether bending is valid!
1891 if (!CheckRange(sky*(180/M_PI)))
1892 return StopMovement();
1893
1894 fStep = 0;
1895 fIsTracking = tracking;
1896
1897 fDrive.SetRpmMode(false); // *NEW* (Stop a previous tracking to avoid the pointing command to be ignored)
1898 fDrive.SetAcceleration(fAccPointing);
1899
1900 if (!tracking)
1901 fDrive.UpdateSource(Time(), name, false);
1902 else
1903 {
1904 const array<double, 5> dim =
1905 {{
1906 fPointingSetup.source.ra,
1907 fPointingSetup.source.dec,
1908 fPointingSetup.wobble_offset * 180/M_PI,
1909 fPointingSetup.wobble_angle * 180/M_PI,
1910 fPointingSetup.orbit_period * 24*60
1911 }};
1912 fDrive.UpdateSource(fPointingSetup.start, dim, fPointingSetup.source.name);
1913 }
1914
1915 return State::kMoving;
1916 }
1917
1918 int MoveTo(const EventImp &evt)
1919 {
1920 if (!CheckEventSize(evt.GetSize(), "MoveTo", 16))
1921 return T::kSM_FatalError;
1922
1923 const double *dat = evt.Ptr<double>();
1924
1925 ostringstream out;
1926 out << "Pointing telescope to Zd=" << dat[0] << "deg Az=" << dat[1] << "deg";
1927 T::Message(out);
1928
1929 return InitMovement(ZdAz(dat[0]*M_PI/180, dat[1]*M_PI/180));
1930 }
1931
1932 int InitTracking()
1933 {
1934 fPointingSetup.start = Time().Mjd();
1935
1936 const PointingData data = CalcPointingPos(fPointingSetup.start);
1937
1938 ostringstream out;
1939 out << "Tracking position now at Zd=" << data.sky.zd*180/M_PI << "deg Az=" << data.sky.az*180/M_PI << "deg";
1940 T::Info(out);
1941
1942 return InitMovement(data.sky, true);
1943 }
1944
1945 int StartTracking(const Source &src, double offset, double angle, double period=0)
1946 {
1947 ostringstream out;
1948 out << "Tracking Ra=" << src.ra << "h Dec=" << src.dec << "deg";
1949 if (!src.name.empty())
1950 out << " [" << src.name << "]";
1951 T::Info(out);
1952
1953 fPointingSetup.planet = kENone;
1954 fPointingSetup.source = src;
1955 fPointingSetup.orbit_period = period / 1440; // [min->day]
1956 fPointingSetup.wobble_angle = angle * M_PI/180; // [deg->rad]
1957 fPointingSetup.wobble_offset = offset * M_PI/180; // [deg->rad]
1958
1959 return InitTracking();
1960 }
1961
1962 int TrackCelest(const Planets_t &p)
1963 {
1964 switch (p)
1965 {
1966 case kEMoon: fPointingSetup.source.name = "Moon"; break;
1967 case kEVenus: fPointingSetup.source.name = "Venus"; break;
1968 case kEMars: fPointingSetup.source.name = "Mars"; break;
1969 case kEJupiter: fPointingSetup.source.name = "Jupiter"; break;
1970 case kESaturn: fPointingSetup.source.name = "Saturn"; break;
1971 default:
1972 T::Error("TrackCelest - Celestial object "+to_string(p)+" not yet supported.");
1973 return T::GetCurrentState();
1974 }
1975
1976 fPointingSetup.planet = p;
1977 fPointingSetup.wobble_offset = 0;
1978
1979 fDrive.UpdateSource(Time(), fPointingSetup.source.name, true);
1980
1981 return InitTracking();
1982 }
1983
1984 int Park()
1985 {
1986 ostringstream out;
1987 out << "Parking telescope at Zd=" << fParkingPos.zd << "deg Az=" << fParkingPos.az << "deg";
1988 T::Message(out);
1989
1990 const int rc = InitMovement(ZdAz(fParkingPos.zd*M_PI/180, fParkingPos.az*M_PI/180), false, "Park");
1991 return rc==State::kMoving ? State::kParking : rc;
1992 }
1993
1994 int Wobble(const EventImp &evt)
1995 {
1996 if (!CheckEventSize(evt.GetSize(), "Wobble", 32))
1997 return T::kSM_FatalError;
1998
1999 const double *dat = evt.Ptr<double>();
2000
2001 Source src;
2002 src.ra = dat[0];
2003 src.dec = dat[1];
2004 return StartTracking(src, dat[2], dat[3]);
2005 }
2006
2007 int Orbit(const EventImp &evt)
2008 {
2009 if (!CheckEventSize(evt.GetSize(), "Orbit", 40))
2010 return T::kSM_FatalError;
2011
2012 const double *dat = evt.Ptr<double>();
2013
2014 Source src;
2015 src.ra = dat[0];
2016 src.dec = dat[1];
2017 return StartTracking(src, dat[2], dat[3], dat[4]);
2018 }
2019
2020 const sources::const_iterator GetSourceFromDB(const char *ptr, const char *last)
2021 {
2022 if (find(ptr, last, '\0')==last)
2023 {
2024 T::Fatal("TrackWobble - The name transmitted by dim is not null-terminated.");
2025 throw uint32_t(T::kSM_FatalError);
2026 }
2027
2028 const string name(ptr);
2029
2030 const sources::const_iterator it = fSources.find(name);
2031 if (it==fSources.end())
2032 {
2033 T::Error("Source '"+name+"' not found in list.");
2034 throw uint32_t(T::GetCurrentState());
2035 }
2036
2037 return it;
2038 }
2039
2040 int TrackWobble(const EventImp &evt)
2041 {
2042 if (evt.GetSize()<2)
2043 {
2044 ostringstream msg;
2045 msg << "TrackWobble - Received event has " << evt.GetSize() << " bytes, but expected at least 3.";
2046 T::Fatal(msg);
2047 return T::kSM_FatalError;
2048 }
2049
2050 if (evt.GetSize()==2)
2051 {
2052 ostringstream msg;
2053 msg << "TrackWobble - Source name missing.";
2054 T::Error(msg);
2055 return T::GetCurrentState();
2056 }
2057
2058 const uint16_t wobble = evt.GetUShort();
2059 if (wobble!=1 && wobble!=2)
2060 {
2061 ostringstream msg;
2062 msg << "TrackWobble - Wobble id " << wobble << " undefined, only 1 and 2 allowed.";
2063 T::Error(msg);
2064 return T::GetCurrentState();
2065 }
2066
2067 const char *ptr = evt.Ptr<char>(2);
2068 const char *last = ptr+evt.GetSize()-2;
2069
2070 try
2071 {
2072 const sources::const_iterator it = GetSourceFromDB(ptr, last);
2073
2074 const Source &src = it->second;
2075 return StartTracking(src, src.offset, src.angles[wobble-1]);
2076 }
2077 catch (const uint32_t &e)
2078 {
2079 return e;
2080 }
2081 }
2082
2083 int StartTrackWobble(const char *ptr, size_t size, const double &offset=0, const double &angle=0, double time=0)
2084 {
2085 const char *last = ptr+size;
2086
2087 try
2088 {
2089 const sources::const_iterator it = GetSourceFromDB(ptr, last);
2090
2091 const Source &src = it->second;
2092 return StartTracking(src, offset<0?0.6/*src.offset*/:offset, angle, time);
2093 }
2094 catch (const uint32_t &e)
2095 {
2096 return e;
2097 }
2098 }
2099
2100 int Track(const EventImp &evt)
2101 {
2102 if (!CheckEventSize(evt.GetSize(), "Track", 16))
2103 return T::kSM_FatalError;
2104
2105 Source src;
2106
2107 src.name = "";
2108 src.ra = evt.Get<double>(0);
2109 src.dec = evt.Get<double>(8);
2110
2111 return StartTracking(src, 0, 0);
2112 }
2113
2114 int TrackSource(const EventImp &evt)
2115 {
2116 if (evt.GetSize()<16)
2117 {
2118 ostringstream msg;
2119 msg << "TrackOn - Received event has " << evt.GetSize() << " bytes, but expected at least 17.";
2120 T::Fatal(msg);
2121 return T::kSM_FatalError;
2122 }
2123
2124 if (evt.GetSize()==16)
2125 {
2126 ostringstream msg;
2127 msg << "TrackOn - Source name missing.";
2128 T::Error(msg);
2129 return T::GetCurrentState();
2130 }
2131
2132 const double offset = evt.Get<double>(0);
2133 const double angle = evt.Get<double>(8);
2134
2135 return StartTrackWobble(evt.Ptr<char>(16), evt.GetSize()-16, offset, angle);
2136 }
2137
2138 int TrackOn(const EventImp &evt)
2139 {
2140 if (evt.GetSize()==0)
2141 {
2142 ostringstream msg;
2143 msg << "TrackOn - Source name missing.";
2144 T::Error(msg);
2145 return T::GetCurrentState();
2146 }
2147
2148 return StartTrackWobble(evt.Ptr<char>(), evt.GetSize());
2149 }
2150
2151 int TrackOrbit(const EventImp &evt)
2152 {
2153 if (evt.GetSize()<16)
2154 {
2155 ostringstream msg;
2156 msg << "TrackOrbit - Received event has " << evt.GetSize() << " bytes, but expected at least 17.";
2157 T::Fatal(msg);
2158 return T::kSM_FatalError;
2159 }
2160 if (evt.GetSize()==16)
2161 {
2162 ostringstream msg;
2163 msg << "TrackOrbit - Source name missing.";
2164 T::Error(msg);
2165 return T::GetCurrentState();
2166 }
2167
2168 const double angle = evt.Get<double>(0);
2169 const double time = evt.Get<double>(8);
2170
2171 return StartTrackWobble(evt.Ptr<char>(16), evt.GetSize()-16, -1, angle, time);
2172 }
2173
2174 int StopMovement()
2175 {
2176 fDrive.SetAcceleration(fAccMax);
2177 fDrive.SetRpmMode(false);
2178
2179 fTrackingLoop.cancel();
2180
2181 fDrive.UpdateSource(Time(), "", false);
2182
2183 return State::kStopping;
2184 }
2185
2186 int ResetError()
2187 {
2188 const int rc = CheckState();
2189 return rc>0 ? rc : State::kInitialized;
2190 }
2191
2192 // --------------------- Others ---------------------
2193
2194 int TPoint()
2195 {
2196 T::Info("TPoint initiated.");
2197 Dim::SendCommandNB("TPOINT/EXECUTE");
2198 return T::GetCurrentState();
2199 }
2200
2201 int Screenshot(const EventImp &evt)
2202 {
2203 if (evt.GetSize()<2)
2204 {
2205 ostringstream msg;
2206 msg << "Screenshot - Received event has " << evt.GetSize() << " bytes, but expected at least 2.";
2207 T::Fatal(msg);
2208 return T::kSM_FatalError;
2209 }
2210
2211 if (evt.GetSize()==2)
2212 {
2213 ostringstream msg;
2214 msg << "Screenshot - Filename missing.";
2215 T::Error(msg);
2216 return T::GetCurrentState();
2217 }
2218
2219 T::Info("Screenshot initiated.");
2220 Dim::SendCommandNB("TPOINT/SCREENSHOT", evt.GetData(), evt.GetSize());
2221 return T::GetCurrentState();
2222 }
2223
2224 int SetLedBrightness(const EventImp &evt)
2225 {
2226 if (!CheckEventSize(evt.GetSize(), "SetLedBrightness", 8))
2227 return T::kSM_FatalError;
2228
2229 const uint32_t *led = evt.Ptr<uint32_t>();
2230
2231 fDrive.SetLedVoltage(led[0], led[1]);
2232
2233 return T::GetCurrentState();
2234 }
2235
2236 int SetLedsOff()
2237 {
2238 fDrive.SetLedVoltage(0, 0);
2239 return T::GetCurrentState();
2240 }
2241
2242 // --------------------- Internal ---------------------
2243
2244 int SetVerbosity(const EventImp &evt)
2245 {
2246 if (!CheckEventSize(evt.GetSize(), "SetVerbosity", 2))
2247 return T::kSM_FatalError;
2248
2249 fDrive.SetVerbosity(evt.GetUShort());
2250
2251 return T::GetCurrentState();
2252 }
2253
2254 int Print()
2255 {
2256 for (auto it=fSources.begin(); it!=fSources.end(); it++)
2257 {
2258 const string &name = it->first;
2259 const Source &src = it->second;
2260
2261 T::Out() << name << ",";
2262 T::Out() << src.ra << "," << src.dec << "," << src.offset << ",";
2263 T::Out() << src.angles[0] << "," << src.angles[1] << endl;
2264 }
2265 return T::GetCurrentState();
2266 }
2267
2268 int Unlock()
2269 {
2270 const int rc = CheckState();
2271 return rc<0 ? State::kInitialized : rc;
2272 }
2273
2274 int ReloadSources()
2275 {
2276 try
2277 {
2278 ReadDatabase();
2279 }
2280 catch (const exception &e)
2281 {
2282 T::Error("Reading sources from databse failed: "+string(e.what()));
2283 }
2284 return T::GetCurrentState();
2285 }
2286
2287 int Disconnect()
2288 {
2289 // Close all connections
2290 fDrive.PostClose(false);
2291
2292 /*
2293 // Now wait until all connection have been closed and
2294 // all pending handlers have been processed
2295 poll();
2296 */
2297
2298 return T::GetCurrentState();
2299 }
2300
2301 int Reconnect(const EventImp &evt)
2302 {
2303 // Close all connections to supress the warning in SetEndpoint
2304 fDrive.PostClose(false);
2305
2306 // Now wait until all connection have been closed and
2307 // all pending handlers have been processed
2308 ba::io_service::poll();
2309
2310 if (evt.GetBool())
2311 fDrive.SetEndpoint(evt.GetString());
2312
2313 // Now we can reopen the connection
2314 fDrive.PostClose(true);
2315
2316 return T::GetCurrentState();
2317 }
2318
2319 // ========================= Tracking code =============================
2320
2321 int UpdateTrackingPosition()
2322 {
2323 // First calculate deviation between
2324 // command position and nominal position
2325 //fPointing.mount = sepos; // [deg] ref pos for alignment
2326 const PointingData data = CalcPointingPos(fDrive.GetSeTime());
2327
2328 // Get current position and calculate deviation
2329 const Encoder sepos = fDrive.GetSePos()*360; // [deg]
2330 const Encoder dev = sepos - data.mount;
2331
2332 // Calculate absolut deviation on the sky
2333 const double absdev = GetDevAbs(data.mount.zd, sepos.zd, dev.az)*3600;
2334
2335 // Smoothing
2336 fDevBuffer[fDevCount++%5] = absdev;
2337
2338 // Calculate average
2339 const uint8_t cnt = fDevCount<5 ? fDevCount : 5;
2340 const double avgdev = accumulate(fDevBuffer.begin(), fDevBuffer.begin()+cnt, 0.)/cnt;
2341
2342 // Count the consecutive number of avgdev below fDeviationLimit
2343 if (avgdev<fDeviationLimit)
2344 fTrackingCounter++;
2345 else
2346 fTrackingCounter = 0;
2347
2348 const double ha = fmod(fDrive.GetSeTime(),1)*24 - Nova::ORM().lng/15;
2349
2350 array<double, 12> dim;
2351 dim[0] = data.pointing.ra * 12/M_PI; // Ra [h] optical axis
2352 dim[1] = data.pointing.dec * 180/M_PI; // Dec [deg] optical axis
2353 dim[2] = ha - data.pointing.ra; // Ha [h] optical axis
2354 dim[3] = data.source.ra * 12/M_PI; // SrcRa [h] source position
2355 dim[4] = data.source.dec * 180/M_PI; // SrcDec [deg] source position
2356 dim[5] = ha - data.source.ra; // SrcHa [h] source position
2357 dim[6] = data.sky.zd * 180/M_PI; // Zd [deg] optical axis
2358 dim[7] = data.sky.az * 180/M_PI; // Az [deg] optical axis
2359 dim[8] = dev.zd; // dZd [deg] control deviation
2360 dim[9] = dev.az; // dAz [deg] control deviation
2361 dim[10] = absdev; // dev [arcsec] absolute control deviation
2362 dim[11] = avgdev; // dev [arcsec] average control deviation
2363
2364 fDrive.UpdateTracking(fDrive.GetSeTime(), dim);
2365
2366 if (fDrive.GetVerbosity())
2367 T::Out() << Time().GetAsStr(" %H:%M:%S.%f") << " - Deviation [deg] " << absdev << "\"|" << avgdev << "\"|" << fDevCount<< " dZd=" << dev.zd*3600 << "\" dAz=" << dev.az*3600 << "\"" << endl;
2368
2369 // Maximum deviation execeeded -> fall back to Tracking state
2370 if (T::GetCurrentState()==State::kOnTrack && avgdev>fDeviationMax)
2371 return State::kTracking;
2372
2373 // Condition for OnTrack state achieved -> enhance to OnTrack state
2374 if (T::GetCurrentState()==State::kTracking && fTrackingCounter>=fDeviationCounter)
2375 return State::kOnTrack;
2376
2377 // No state change
2378 return T::GetCurrentState();
2379 }
2380
2381 void UpdatePointingPosition()
2382 {
2383 const Encoder sepos = fDrive.GetSePos()*360; // [deg] ref pos for alignment
2384
2385 const ZdAz pos = fPointingModel.MountToSky(sepos);
2386
2387 array<double, 2> data;
2388 data[0] = pos.zd*180/M_PI; // Zd [deg]
2389 data[1] = pos.az*180/M_PI; // Az [deg]
2390 fDrive.UpdatePointing(fDrive.GetSeTime(), data);
2391
2392 if (fDrive.GetVerbosity())
2393 T::Out() << Time().GetAsStr(" %H:%M:%S.%f") << " - Position [deg] " << pos.zd*180/M_PI << " " << pos.az*180/M_PI << endl;
2394 }
2395
2396 void TrackingLoop(const boost::system::error_code &error=boost::system::error_code())
2397 {
2398 if (error==ba::error::basic_errors::operation_aborted)
2399 return;
2400
2401 if (error)
2402 {
2403 ostringstream str;
2404 str << "TrackingLoop: " << error.message() << " (" << error << ")";// << endl;
2405 T::Error(str);
2406 return;
2407 }
2408
2409 if (T::GetCurrentState()!=State::kTracking &&
2410 T::GetCurrentState()!=State::kOnTrack)
2411 return;
2412
2413 //
2414 // Update speed as often as possible.
2415 // make sure, that dt is around 10 times larger than the
2416 // update time
2417 //
2418 // The loop should not be executed faster than the ramp of
2419 // a change in the velocity can be followed.
2420 //
2421 fTrackingLoop.expires_from_now(boost::posix_time::milliseconds(250));
2422
2423 const double mjd = Time().Mjd();
2424
2425 // I assume that it takes about 50ms for the value to be
2426 // transmitted and the drive needs time to follow as well (maybe
2427 // more than 50ms), therefore the calculated speec is calculated
2428 // for a moment 50ms in the future
2429 const PointingData data = CalcPointingPos(fDrive.GetSeTime());
2430 const PointingData data0 = CalcPointingPos(mjd-0.45/24/3600);
2431 const PointingData data1 = CalcPointingPos(mjd+0.55/24/3600);
2432
2433 const Encoder dest = data.mount *(1./360); // [rev]
2434 const Encoder dest0 = data0.mount*(1./360); // [rev]
2435 const Encoder dest1 = data1.mount*(1./360); // [rev]
2436
2437 if (!CheckRange(data1.sky))
2438 {
2439 StopMovement();
2440 T::HandleNewState(State::kAllowedRangeExceeded, 0, "by TrackingLoop");
2441 return;
2442 }
2443
2444 // Current position
2445 const Encoder sepos = fDrive.GetSePos(); // [rev]
2446
2447 // Now calculate the current velocity
2448 const Encoder dist = dest1 - dest0; // [rev] Distance between t-1s and t+1s
2449 const Velocity vel = dist/(1./60); // [rev/min] Actual velocity of the pointing position
2450
2451 const Encoder dev = sepos - dest; // [rev] Current control deviation
2452 const Velocity vt = vel - dev/(1./60); // [rev/min] Correct velocity by recent control deviation
2453 // correct control deviation with 5s
2454 if (fDrive.GetVerbosity()>1)
2455 {
2456 T::Out() << "Ideal position [deg] " << dest.zd *360 << " " << dest.az *360 << endl;
2457 T::Out() << "Encoder pos. [deg] " << sepos.zd*360 << " " << sepos.az*360 << endl;
2458 T::Out() << "Deviation [arcmin] " << dev.zd *360*60 << " " << dev.az *360*60 << endl;
2459 T::Out() << "Distance 1s [arcmin] " << dist.zd *360*60 << " " << dist.az *360*60 << endl;
2460 T::Out() << "Velocity 1s [rpm] " << vt.zd << " " << vt.az << endl;
2461 T::Out() << "Delta T (enc) [ms] " << fabs(mjd-fDrive.fPdoTime2[0].Mjd())*24*3600*1000 << endl;
2462 T::Out() << "Delta T (now) [ms] " << (Time().Mjd()-mjd)*24*3600*1000 << endl;
2463 }
2464
2465 // Tracking loop every 250ms
2466 // Vorsteuerung 2s
2467 // Delta T (enc) 5ms, every 5th, 25ms
2468 // Delta T (now) equal dist 5ms-35 plus equal dist 25-55 (0.2%-2% of 2s)
2469
2470 //
2471 // FIXME: check if the drive is fast enough to follow the star
2472 //
2473 // Velocity units (would be 100 for %)
2474
2475 fDrive.SetTrackingVelocity(vt);
2476
2477 fTrackingLoop.async_wait(boost::bind(&StateMachineDrive::TrackingLoop,
2478 this, ba::placeholders::error));
2479 }
2480
2481 // =====================================================================
2482
2483 int CheckState()
2484 {
2485 if (!fDrive.IsConnected())
2486 return State::kDisconnected;
2487
2488 if (!fDrive.IsOnline())
2489 return State::kUnavailable;
2490
2491 // FIXME: This can prevent parking in case e.g.
2492 // of e8029 Position limit exceeded
2493 if (fDrive.HasError())
2494 {
2495 if (T::GetCurrentState()==State::kOnTrack ||
2496 T::GetCurrentState()==State::kTracking ||
2497 T::GetCurrentState()==State::kMoving ||
2498 T::GetCurrentState()==State::kParking)
2499 return StopMovement();
2500
2501 if (T::GetCurrentState()==State::kStopping && fDrive.IsMoving())
2502 return State::kStopping;
2503
2504 return StateMachineImp::kSM_Error;
2505 }
2506
2507 // This can happen if one of the drives is not in RF.
2508 // Usually this only happens when the drive is not yet in RF
2509 // or an error was just cleared. Usually there is no way that
2510 // a drive goes below the RF state during operation without
2511 // a warning or error message.
2512 if (fDrive.IsOnline() && fDrive.IsBlocked())
2513 return State::kBlocked;
2514
2515 if (fDrive.IsOnline() && !fDrive.IsReady())
2516 return State::kAvailable;
2517
2518 // This is the case as soon as the init commands were send
2519 // after a connection to the SPS was established
2520 if (fDrive.IsOnline() && fDrive.IsReady() && !fDrive.IsInitialized())
2521 return State::kArmed;
2522
2523 return -1;
2524 }
2525
2526 int Execute()
2527 {
2528 const Time now;
2529 if (now>fSunRise && T::GetCurrentState()!=State::kParking)
2530 {
2531 fSunRise = now.GetNextSunRise();
2532
2533 ostringstream msg;
2534 msg << "Next sun-rise will be at " << fSunRise;
2535 T::Info(msg);
2536
2537 if (T::GetCurrentState()>State::kArmed && T::GetCurrentState()!=StateMachineImp::kError)
2538 return Park();
2539 }
2540
2541 if (T::GetCurrentState()==State::kLocked)
2542 return State::kLocked;
2543
2544 // FIXME: Send STOP if IsPositioning or RpmActive but no
2545 // Moving or Tracking state
2546
2547 const int rc = CheckState();
2548 if (rc>0)
2549 return rc;
2550
2551 // Once every second
2552 static time_t lastTime = 0;
2553 const time_t tm = time(NULL);
2554 if (lastTime!=tm && fDrive.IsInitialized())
2555 {
2556 lastTime=tm;
2557
2558 UpdatePointingPosition();
2559
2560 if (T::GetCurrentState()==State::kTracking || T::GetCurrentState()==State::kOnTrack)
2561 return UpdateTrackingPosition();
2562 }
2563
2564 if (T::GetCurrentState()==State::kStopping && !fDrive.IsMoving())
2565 return State::kArmed;
2566
2567 if ((T::GetCurrentState()==State::kMoving ||
2568 T::GetCurrentState()==State::kParking) && !fDrive.IsMoving())
2569 {
2570 if (fIsTracking && fStep==1)
2571 {
2572 // Init tracking
2573 fDrive.SetAcceleration(fAccTracking);
2574 fDrive.SetRpmMode(true);
2575
2576 fDevCount = 0;
2577 fTrackingCounter = 0;
2578
2579 fTrackingLoop.expires_from_now(boost::posix_time::milliseconds(1));
2580 fTrackingLoop.async_wait(boost::bind(&StateMachineDrive::TrackingLoop,
2581 this, ba::placeholders::error));
2582
2583 fPointingSetup.start = Time().Mjd();
2584
2585 const PointingData data = CalcPointingPos(fPointingSetup.start);
2586
2587 ostringstream out;
2588 out << "Start tracking at Ra=" << data.pointing.ra*12/M_PI << "h Dec=" << data.pointing.dec*180/M_PI << "deg";
2589 T::Info(out);
2590
2591 return State::kTracking;
2592 }
2593
2594 // Get feedback 2
2595 const Encoder dest = fMovementTarget*(1./360); // [rev]
2596 const Encoder sepos = fDrive.GetSePos(); // [rev]
2597
2598 // Calculate residual to move deviation
2599 const Encoder dist = dest - sepos; // [rev]
2600
2601 // Check which axis should still be moved
2602 Encoder cd = dist; // [rev]
2603 cd *= 1./fMaxPointingResidual; // Scale to units of the maximum residual
2604 cd = cd.Abs();
2605
2606 // Check if there is a control deviation on the axis
2607 const bool cdzd = cd.zd>1;
2608 const bool cdaz = cd.az>1;
2609
2610 if (!fIsTracking)
2611 {
2612 // check if we reached the correct position already
2613 if (!cdzd && !cdaz)
2614 {
2615 T::Info("Target position reached in "+to_string(fStep)+" steps.");
2616 return T::GetCurrentState()==State::kParking ? State::kLocked : State::kArmed;
2617 }
2618
2619 if (fStep==10)
2620 {
2621 T::Error("Target position not reached in "+to_string(fStep)+" steps.");
2622 return State::kPositioningFailed;
2623 }
2624 }
2625
2626 const Encoder t = dist.Abs()/fDrive.GetVelUnit();
2627
2628 const Velocity vel =
2629 t.zd > t.az ?
2630 Velocity(1, t.zd==0?0:t.az/t.zd) :
2631 Velocity(t.az==0?0:t.zd/t.az, 1);
2632
2633 if (fDrive.GetVerbosity())
2634 {
2635 T::Out() << "Moving step " << fStep << endl;
2636 T::Out() << "Encoder [deg] " << sepos.zd*360 << " " << sepos.az*360 << endl;
2637 T::Out() << "Destination [deg] " << dest.zd *360 << " " << dest.az *360 << endl;
2638 T::Out() << "Residual [deg] " << dist.zd *360 << " " << dist.az *360 << endl;
2639 T::Out() << "Residual/max [1] " << cd.zd << " " << cd.az << endl;
2640 T::Out() << "Rel. time [1] " << t.zd << " " << t.az << endl;
2641 T::Out() << "Rel. velocity [1] " << vel.zd << " " << vel.az << endl;
2642 }
2643
2644 fDrive.SetPointingVelocity(vel, fPointingVelocity);
2645 fDrive.StartAbsolutePositioning(dest, cdzd, cdaz);
2646
2647 ostringstream out;
2648 if (fStep==0)
2649 out << "Moving to encoder Zd=" << dest.zd*360 << "deg Az=" << dest.az*360 << "deg";
2650 else
2651 out << "Moving residual of dZd=" << dist.zd*360*60 << "' dAz=" << dist.az*360*60 << "'";
2652 T::Info(out);
2653
2654 fStep++;
2655 }
2656
2657 return T::GetCurrentState()>=State::kInitialized ?
2658 T::GetCurrentState() : State::kInitialized;
2659 }
2660
2661public:
2662 StateMachineDrive(ostream &out=cout) :
2663 StateMachineAsio<T>(out, "DRIVE_CONTROL"), fDrive(*this, *this),
2664 fTrackingLoop(*this), fSunRise(Time().GetNextSunRise()), fDevBuffer(5)
2665 {
2666
2667 T::Subscribe("MAGIC_WEATHER/DATA")
2668 (bind(&StateMachineDrive::HandleWeatherData, this, placeholders::_1));
2669
2670 T::Subscribe("TPOINT/DATA")
2671 (bind(&StateMachineDrive::HandleTPoint, this, placeholders::_1));
2672
2673 // State names
2674 T::AddStateName(State::kDisconnected, "Disconnected",
2675 "No connection to SPS");
2676 T::AddStateName(State::kConnected, "Connected",
2677 "Connection to SPS, no information received yet");
2678
2679 T::AddStateName(State::kLocked, "Locked",
2680 "Drive system is locked (will not accept commands)");
2681
2682 T::AddStateName(State::kUnavailable, "Unavailable",
2683 "Connected to SPS, no connection to at least one IndraDrives");
2684 T::AddStateName(State::kAvailable, "Available",
2685 "Connected to SPS and to IndraDrives, but at least one drive not in RF");
2686 T::AddStateName(State::kBlocked, "Blocked",
2687 "Drive system is blocked by manual operation or a pressed emergeny button");
2688 T::AddStateName(State::kArmed, "Armed",
2689 "Connected to SPS and IndraDrives in RF, but not yet initialized");
2690 T::AddStateName(State::kInitialized, "Initialized",
2691 "Connected to SPS and IndraDrives in RF and initialized");
2692
2693 T::AddStateName(State::kStopping, "Stopping",
2694 "Stop command sent, waiting for telescope to be still");
2695 T::AddStateName(State::kParking, "Parking",
2696 "Telescope in parking operation, waiting for telescope to be still");
2697 T::AddStateName(State::kMoving, "Moving",
2698 "Telescope moving");
2699 T::AddStateName(State::kTracking, "Tracking",
2700 "Telescope in tracking mode");
2701 T::AddStateName(State::kOnTrack, "OnTrack",
2702 "Telescope tracking stable");
2703
2704 T::AddStateName(State::kPositioningFailed, "PositioningFailed",
2705 "Target position was not reached within ten steps");
2706 T::AddStateName(State::kAllowedRangeExceeded, "OutOfRange",
2707 "Telecope went out of range during tracking");
2708
2709
2710 T::AddEvent("REQUEST_SDO", "S:3", State::kArmed)
2711 (bind(&StateMachineDrive::RequestSdo, this, placeholders::_1))
2712 ("Request an SDO from the drive"
2713 "|node[uint32]:Node identifier (1:az, 3:zd)"
2714 "|index[uint32]:SDO index"
2715 "|subindex[uint32]:SDO subindex");
2716
2717 T::AddEvent("SET_SDO", "S:3;X:1", State::kArmed)
2718 (bind(&StateMachineDrive::SendSdo, this, placeholders::_1))
2719 ("Request an SDO from the drive"
2720 "|node[uint32]:Node identifier (1:az, 3:zd)"
2721 "|index[uint32]:SDO index"
2722 "|subindex[uint32]:SDO subindex"
2723 "|value[uint64]:Value");
2724
2725 // Drive Commands
2726 T::AddEvent("MOVE_TO", "D:2", State::kInitialized) // ->ZDAZ
2727 (bind(&StateMachineDrive::MoveTo, this, placeholders::_1))
2728 ("Move the telescope to the given local sky coordinates"
2729 "|Zd[deg]:Zenith distance"
2730 "|Az[deg]:Azimuth");
2731
2732 T::AddEvent("TRACK", "D:2", State::kInitialized, State::kTracking, State::kOnTrack) // ->RADEC/GRB
2733 (bind(&StateMachineDrive::Track, this, placeholders::_1))
2734 ("Move the telescope to the given sky coordinates and start tracking them"
2735 "|Ra[h]:Right ascension"
2736 "|Dec[deg]:Declination");
2737
2738 T::AddEvent("WOBBLE", "D:4", State::kInitialized, State::kTracking, State::kOnTrack) // ->RADEC/GRB
2739 (bind(&StateMachineDrive::Wobble, this, placeholders::_1))
2740 ("Move the telescope to the given wobble position around the given sky coordinates and start tracking them"
2741 "|Ra[h]:Right ascension"
2742 "|Dec[deg]:Declination"
2743 "|Offset[deg]:Wobble offset"
2744 "|Angle[deg]:Wobble angle");
2745
2746 T::AddEvent("ORBIT", "D:5", State::kInitialized, State::kTracking, State::kOnTrack) // ->RADEC/GRB
2747 (bind(&StateMachineDrive::Orbit, this, placeholders::_1))
2748 ("Move the telescope in a circle around the source"
2749 "|Ra[h]:Right ascension"
2750 "|Dec[deg]:Declination"
2751 "|Offset[deg]:Wobble offset"
2752 "|Angle[deg]:Starting angle"
2753 "|Period[min]:Time for one orbit");
2754
2755 T::AddEvent("TRACK_SOURCE", "D:2;C", State::kInitialized, State::kTracking, State::kOnTrack) // ->RADEC/GRB
2756 (bind(&StateMachineDrive::TrackSource, this, placeholders::_1))
2757 ("Move the telescope to the given wobble position around the given source and start tracking"
2758 "|Offset[deg]:Wobble offset"
2759 "|Angle[deg]:Wobble angle"
2760 "|Name[string]:Source name");
2761
2762 T::AddEvent("TRACK_WOBBLE", "S:1;C", State::kInitialized, State::kTracking, State::kOnTrack) // ->RADEC/GRB
2763 (bind(&StateMachineDrive::TrackWobble, this, placeholders::_1))
2764 ("Move the telescope to the given wobble position around the given source and start tracking"
2765 "|Id:Wobble angle id (1 or 2)"
2766 "|Name[string]:Source name");
2767
2768 T::AddEvent("TRACK_ORBIT", "D:2;C", State::kInitialized, State::kTracking, State::kOnTrack) // ->RADEC/GRB
2769 (bind(&StateMachineDrive::TrackOrbit, this, placeholders::_1))
2770 ("Move the telescope in a circle around the source"
2771 "|Angle[deg]:Starting angle"
2772 "|Period[min]:Time for one orbit"
2773 "|Name[string]:Source name");
2774
2775 T::AddEvent("TRACK_ON", "C", State::kInitialized, State::kTracking, State::kOnTrack) // ->RADEC/GRB
2776 (bind(&StateMachineDrive::TrackOn, this, placeholders::_1))
2777 ("Move the telescope to the given position and start tracking"
2778 "|Name[string]:Source name");
2779
2780 T::AddEvent("MOON", State::kInitialized, State::kTracking, State::kOnTrack)
2781 (bind(&StateMachineDrive::TrackCelest, this, kEMoon))
2782 ("Start tracking the moon");
2783 T::AddEvent("VENUS", State::kInitialized, State::kTracking, State::kOnTrack)
2784 (bind(&StateMachineDrive::TrackCelest, this, kEVenus))
2785 ("Start tracking Venus");
2786 T::AddEvent("MARS", State::kInitialized, State::kTracking, State::kOnTrack)
2787 (bind(&StateMachineDrive::TrackCelest, this, kEMars))
2788 ("Start tracking Mars");
2789 T::AddEvent("JUPITER", State::kInitialized, State::kTracking, State::kOnTrack)
2790 (bind(&StateMachineDrive::TrackCelest, this, kEJupiter))
2791 ("Start tracking Jupiter");
2792 T::AddEvent("SATURN", State::kInitialized, State::kTracking, State::kOnTrack)
2793 (bind(&StateMachineDrive::TrackCelest, this, kESaturn))
2794 ("Start tracking Saturn");
2795
2796 // FIXME: What to do in error state?
2797 T::AddEvent("PARK", State::kInitialized, State::kMoving, State::kTracking, State::kOnTrack)
2798 (bind(&StateMachineDrive::Park, this))
2799 ("Park the telescope");
2800
2801 T::AddEvent("STOP")(State::kUnavailable)(State::kAvailable)(State::kArmed)(State::kInitialized)(State::kStopping)(State::kParking)(State::kMoving)(State::kTracking)(State::kOnTrack)
2802 (bind(&StateMachineDrive::StopMovement, this))
2803 ("Stop any kind of movement.");
2804
2805 T::AddEvent("RESET", State::kPositioningFailed, State::kAllowedRangeExceeded)
2806 (bind(&StateMachineDrive::ResetError, this))
2807 ("Acknoledge an internal error (PositioningFailed, AllowedRangeExceeded)");
2808
2809 T::AddEvent("TPOINT", State::kOnTrack)
2810 (bind(&StateMachineDrive::TPoint, this))
2811 ("Take a TPoint");
2812
2813 T::AddEvent("SCREENSHOT", "B:1;C")
2814 (bind(&StateMachineDrive::Screenshot, this, placeholders::_1))
2815 ("Take a screenshot"
2816 "|color[bool]:False if just the gray image should be saved."
2817 "|name[string]:Filename");
2818
2819 T::AddEvent("SET_LED_BRIGHTNESS", "I:2")
2820 (bind(&StateMachineDrive::SetLedBrightness, this, placeholders::_1))
2821 ("Set the LED brightness of the top and bottom leds"
2822 "|top[au]:Allowed range 0-32767 for top LEDs"
2823 "|bot[au]:Allowed range 0-32767 for bottom LEDs");
2824
2825 T::AddEvent("LEDS_OFF")
2826 (bind(&StateMachineDrive::SetLedsOff, this))
2827 ("Switch off TPoint LEDs");
2828
2829 T::AddEvent("UNLOCK", Drive::State::kLocked)
2830 (bind(&StateMachineDrive::Unlock, this))
2831 ("Unlock locked state.");
2832
2833 // Verbosity commands
2834 T::AddEvent("SET_VERBOSITY", "S:1")
2835 (bind(&StateMachineDrive::SetVerbosity, this, placeholders::_1))
2836 ("Set verbosity state"
2837 "|verbosity[uint16]:disable or enable verbosity for received data (yes/no), except dynamic data");
2838
2839 // Conenction commands
2840 T::AddEvent("DISCONNECT", State::kConnected)
2841 (bind(&StateMachineDrive::Disconnect, this))
2842 ("disconnect from ethernet");
2843
2844 T::AddEvent("RECONNECT", "O", State::kDisconnected, State::kConnected)
2845 (bind(&StateMachineDrive::Reconnect, this, placeholders::_1))
2846 ("(Re)connect Ethernet connection to SPS, a new address can be given"
2847 "|[host][string]:new ethernet address in the form <host:port>");
2848
2849
2850 T::AddEvent("PRINT")
2851 (bind(&StateMachineDrive::Print, this))
2852 ("Print source list.");
2853
2854 T::AddEvent("RELOAD_SOURCES", State::kDisconnected, State::kConnected, State::kArmed, State::kInitialized, State::kLocked)
2855 (bind(&StateMachineDrive::ReloadSources, this))
2856 ("Reload sources from database after database has changed..");
2857
2858
2859 //fDrive.SetUpdateStatus(std::bind(&StateMachineDrive::UpdateStatus, this, placeholders::_1, placeholders::_2));
2860 fDrive.StartConnect();
2861 }
2862
2863 void SetEndpoint(const string &url)
2864 {
2865 fDrive.SetEndpoint(url);
2866 }
2867
2868 bool AddSource(const string &name, const Source &src)
2869 {
2870 const auto it = fSources.find(name);
2871 if (it!=fSources.end())
2872 T::Warn("Source '"+name+"' already in list... overwriting.");
2873
2874 fSources[name] = src;
2875 return it==fSources.end();
2876 }
2877
2878 void ReadDatabase(bool print=true)
2879 {
2880#ifdef HAVE_SQL
2881 Database db(fDatabase);
2882
2883 T::Message("Connected to '"+db.uri()+"'");
2884
2885 const mysqlpp::StoreQueryResult res =
2886 db.query("SELECT fSourceName, fRightAscension, fDeclination, fWobbleOffset, fWobbleAngle0, fWobbleAngle1, fMagnitude FROM Source").store();
2887
2888 fSources.clear();
2889 for (vector<mysqlpp::Row>::const_iterator v=res.begin(); v<res.end(); v++)
2890 {
2891 const string name = (*v)[0].c_str();
2892
2893 Source src;
2894 src.name = name;
2895 src.ra = (*v)[1];
2896 src.dec = (*v)[2];
2897 src.offset = (*v)[3];
2898 src.angles[0] = (*v)[4];
2899 src.angles[1] = (*v)[5];
2900 src.mag = (*v)[6] ? double((*v)[6]) : 0;
2901 AddSource(name, src);
2902
2903 if (!print)
2904 continue;
2905
2906 ostringstream msg;
2907 msg << " " << name << setprecision(8) << ": Ra=" << src.ra << "h Dec=" << src.dec << "deg";
2908 msg << " Wobble=[" << src.offset << "," << src.angles[0] << "," << src.angles[1] << "] Mag=" << src.mag;
2909 T::Message(msg);
2910 }
2911#else
2912 T::Warn("MySQL support not compiled into the program.");
2913#endif
2914 }
2915
2916 int EvalOptions(Configuration &conf)
2917 {
2918 if (!fSunRise)
2919 return 1;
2920
2921 fDrive.SetVerbose(!conf.Get<bool>("quiet"));
2922
2923 fMaxPointingResidual = conf.Get<double>("pointing.max.residual");
2924 fPointingVelocity = conf.Get<double>("pointing.velocity");
2925
2926 fPointingMin = Encoder(conf.Get<double>("pointing.min.zd"),
2927 conf.Get<double>("pointing.min.az"));
2928 fPointingMax = Encoder(conf.Get<double>("pointing.max.zd"),
2929 conf.Get<double>("pointing.max.az"));
2930
2931 fParkingPos.zd = conf.Has("parking-pos.zd") ? conf.Get<double>("parking-pos.zd") : 90;
2932 fParkingPos.az = conf.Has("parking-pos.az") ? conf.Get<double>("parking-pos.az") : 0;
2933
2934 if (!CheckRange(fParkingPos))
2935 return 2;
2936
2937 fAccPointing = Acceleration(conf.Get<double>("pointing.acceleration.zd"),
2938 conf.Get<double>("pointing.acceleration.az"));
2939 fAccTracking = Acceleration(conf.Get<double>("tracking.acceleration.zd"),
2940 conf.Get<double>("tracking.acceleration.az"));
2941 fAccMax = Acceleration(conf.Get<double>("acceleration.max.zd"),
2942 conf.Get<double>("acceleration.max.az"));
2943
2944 fWeatherTimeout = conf.Get<uint16_t>("weather-timeout");
2945
2946 if (fAccPointing>fAccMax)
2947 {
2948 T::Error("Pointing acceleration exceeds maximum acceleration.");
2949 return 3;
2950 }
2951
2952 if (fAccTracking>fAccMax)
2953 {
2954 T::Error("Tracking acceleration exceeds maximum acceleration.");
2955 return 4;
2956 }
2957
2958 fDeviationLimit = conf.Get<uint16_t>("deviation-limit");
2959 fDeviationCounter = conf.Get<uint16_t>("deviation-count");
2960 fDeviationMax = conf.Get<uint16_t>("deviation-max");
2961
2962 const string fname = conf.Get<string>("pointing.model-file");
2963
2964 try
2965 {
2966 fPointingModel.Load(fname);
2967 }
2968 catch (const exception &e)
2969 {
2970 T::Error(e.what());
2971 return 5;
2972 }
2973
2974 const vector<string> &vec = conf.Vec<string>("source");
2975
2976 for (vector<string>::const_iterator it=vec.begin(); it!=vec.end(); it++)
2977 {
2978 istringstream stream(*it);
2979
2980 string name;
2981
2982 int i=0;
2983
2984 Source src;
2985
2986 string buffer;
2987 while (getline(stream, buffer, ','))
2988 {
2989 istringstream is(buffer);
2990
2991 switch (i++)
2992 {
2993 case 0: name = buffer; break;
2994 case 1: src.ra = ReadAngle(is); break;
2995 case 2: src.dec = ReadAngle(is); break;
2996 case 3: is >> src.offset; break;
2997 case 4: is >> src.angles[0]; break;
2998 case 5: is >> src.angles[1]; break;
2999 }
3000
3001 if (is.fail())
3002 break;
3003 }
3004
3005 if (i==3 || i==6)
3006 {
3007 AddSource(name, src);
3008 continue;
3009 }
3010
3011 T::Warn("Resource 'source' not correctly formatted: '"+*it+"'");
3012 }
3013
3014 //fAutoResume = conf.Get<bool>("auto-resume");
3015
3016 if (conf.Has("source-database"))
3017 {
3018 fDatabase = conf.Get<string>("source-database");
3019 ReadDatabase();
3020 }
3021
3022 if (fSunRise.IsValid())
3023 {
3024 ostringstream msg;
3025 msg << "Next sun-rise will be at " << fSunRise;
3026 T::Message(msg);
3027 }
3028
3029 // The possibility to connect should be last, so that
3030 // everything else is already initialized.
3031 SetEndpoint(conf.Get<string>("addr"));
3032
3033 return -1;
3034 }
3035};
3036
3037// ------------------------------------------------------------------------
3038
3039#include "Main.h"
3040
3041
3042template<class T, class S, class R>
3043int RunShell(Configuration &conf)
3044{
3045 return Main::execute<T, StateMachineDrive<S, R>>(conf);
3046}
3047
3048void SetupConfiguration(Configuration &conf)
3049{
3050 po::options_description control("Drive control options");
3051 control.add_options()
3052 ("quiet,q", po_bool(), "Disable debug messages")
3053 ("no-dim,d", po_switch(), "Disable dim services")
3054 ("addr,a", var<string>("sps:5357"), "Network address of cosy")
3055 ("verbosity,v", var<uint16_t>(0), "Vervosity level (0=off; 1=major updates; 2=most updates; 3=frequent updates)")
3056 ("pointing.model-file", var<string>()->required(), "Name of the file with the pointing model in use")
3057 ("pointing.max.zd", var<double>( 104.9), "Maximum allowed zenith angle in sky pointing coordinates [deg]")
3058 ("pointing.max.az", var<double>( 85.0), "Maximum allowed azimuth angle in sky pointing coordinates [deg]")
3059 ("pointing.min.zd", var<double>(-104.9), "Minimum allowed zenith angle in sky pointing coordinates [deg]")
3060 ("pointing.min.az", var<double>(-295.0), "Minimum allowed azimuth angle in sky pointing coordinates [deg]")
3061 ("pointing.max.residual", var<double>(1./32768), "Maximum residual for a pointing operation [revolutions]")
3062 ("pointing.velocity", var<double>(0.3), "Moving velocity when pointing [% max]")
3063 ("pointing.acceleration.az", var<double>(0.01), "Acceleration for azimuth axis for pointing operations")
3064 ("pointing.acceleration.zd", var<double>(0.03), "Acceleration for zenith axis for pointing operations")
3065 ("tracking.acceleration.az", var<double>(0.01), "Acceleration for azimuth axis during tracking operations")
3066 ("tracking.acceleration.zd", var<double>(0.01), "Acceleration for zenith axis during tracking operations")
3067 ("parking-pos.zd", var<double>(101), "Parking position zenith angle in sky pointing coordinates [deg]")
3068 ("parking-pos.az", var<double>(0), "Parking position azimuth angle in sky pointing coordinates [deg]")
3069 ("acceleration.max.az", var<double>(0.03), "Maximum allowed acceleration value for azimuth axis")
3070 ("acceleration.max.zd", var<double>(0.09), "Maximum allowed acceleration value for zenith axis")
3071 ("weather-timeout", var<uint16_t>(300), "Timeout [sec] for weather data (after timeout default values are used)")
3072 ("deviation-limit", var<uint16_t>(90), "Deviation limit in arcsec to get 'OnTrack'")
3073 ("deviation-count", var<uint16_t>(3), "Minimum number of reported deviation below deviation-limit to get 'OnTrack'")
3074 ("deviation-max", var<uint16_t>(180), "Maximum deviation in arcsec allowed to keep status 'OnTrack'")
3075 ("source-database", var<string>(), "Database link as in\n\tuser:password@server[:port]/database.")
3076 ("source", vars<string>(), "Additional source entry in the form \"name,hh:mm:ss,dd:mm:ss\"")
3077 ;
3078
3079 conf.AddOptions(control);
3080}
3081
3082/*
3083 Extract usage clause(s) [if any] for SYNOPSIS.
3084 Translators: "Usage" and "or" here are patterns (regular expressions) which
3085 are used to match the usage synopsis in program output. An example from cp
3086 (GNU coreutils) which contains both strings:
3087 Usage: cp [OPTION]... [-T] SOURCE DEST
3088 or: cp [OPTION]... SOURCE... DIRECTORY
3089 or: cp [OPTION]... -t DIRECTORY SOURCE...
3090 */
3091void PrintUsage()
3092{
3093 cout <<
3094 "The drivectrl is an interface to the drive PLC.\n"
3095 "\n"
3096 "The default is that the program is started without user intercation. "
3097 "All actions are supposed to arrive as DimCommands. Using the -c "
3098 "option, a local shell can be initialized. With h or help a short "
3099 "help message about the usuage can be brought to the screen.\n"
3100 "\n"
3101 "Usage: drivectrl [-c type] [OPTIONS]\n"
3102 " or: drivectrl [OPTIONS]\n";
3103 cout << endl;
3104}
3105
3106void PrintHelp()
3107{
3108 Main::PrintHelp<StateMachineDrive<StateMachine,ConnectionDrive>>();
3109
3110 /* Additional help text which is printed after the configuration
3111 options goes here */
3112
3113 /*
3114 cout << "bla bla bla" << endl << endl;
3115 cout << endl;
3116 cout << "Environment:" << endl;
3117 cout << "environment" << endl;
3118 cout << endl;
3119 cout << "Examples:" << endl;
3120 cout << "test exam" << endl;
3121 cout << endl;
3122 cout << "Files:" << endl;
3123 cout << "files" << endl;
3124 cout << endl;
3125 */
3126}
3127
3128int main(int argc, const char* argv[])
3129{
3130 Configuration conf(argv[0]);
3131 conf.SetPrintUsage(PrintUsage);
3132 Main::SetupConfiguration(conf);
3133 SetupConfiguration(conf);
3134
3135 if (!conf.DoParse(argc, argv, PrintHelp))
3136 return 127;
3137
3138 //try
3139 {
3140 // No console access at all
3141 if (!conf.Has("console"))
3142 {
3143 if (conf.Get<bool>("no-dim"))
3144 return RunShell<LocalStream, StateMachine, ConnectionDrive>(conf);
3145 else
3146 return RunShell<LocalStream, StateMachineDim, ConnectionDimDrive>(conf);
3147 }
3148 // Cosole access w/ and w/o Dim
3149 if (conf.Get<bool>("no-dim"))
3150 {
3151 if (conf.Get<int>("console")==0)
3152 return RunShell<LocalShell, StateMachine, ConnectionDrive>(conf);
3153 else
3154 return RunShell<LocalConsole, StateMachine, ConnectionDrive>(conf);
3155 }
3156 else
3157 {
3158 if (conf.Get<int>("console")==0)
3159 return RunShell<LocalShell, StateMachineDim, ConnectionDimDrive>(conf);
3160 else
3161 return RunShell<LocalConsole, StateMachineDim, ConnectionDimDrive>(conf);
3162 }
3163 }
3164 /*catch (std::exception& e)
3165 {
3166 cerr << "Exception: " << e.what() << endl;
3167 return -1;
3168 }*/
3169
3170 return 0;
3171}
Note: See TracBrowser for help on using the repository browser.