source: trunk/FACT++/src/feedback.cc@ 13235

Last change on this file since 13235 was 13235, checked in by tbretz, 13 years ago
Decreased the serial resistance from 1150 Ohm to 1100 Ohm; fixed a typo in a variable name; added some debug out for the voltage offsets; added a workaround for the three patches with the broken pixel
File size: 42.7 KB
Line 
1#include <valarray>
2
3#include "Dim.h"
4#include "Event.h"
5#include "Shell.h"
6#include "StateMachineDim.h"
7#include "Connection.h"
8#include "Configuration.h"
9#include "Console.h"
10#include "Converter.h"
11#include "DimServiceInfoList.h"
12#include "PixelMap.h"
13
14#include "tools.h"
15
16#include "LocalControl.h"
17
18#include "HeadersFAD.h"
19#include "HeadersBIAS.h"
20
21namespace ba = boost::asio;
22namespace bs = boost::system;
23namespace dummy = ba::placeholders;
24
25using namespace std;
26
27// ------------------------------------------------------------------------
28
29#include "DimDescriptionService.h"
30
31// ------------------------------------------------------------------------
32
33class StateMachineFeedback : public StateMachineDim, public DimInfoHandler
34{
35 /*
36 int Wrap(boost::function<void()> f)
37 {
38 f();
39 return T::GetCurrentState();
40 }
41
42 boost::function<int(const EventImp &)> Wrapper(boost::function<void()> func)
43 {
44 return bind(&StateMachineMCP::Wrap, this, func);
45 }*/
46
47private:
48 enum states_t
49 {
50 kStateDimNetworkNA = 1,
51 kStateDisconnected,
52 kStateConnecting,
53 kStateConnectedFSC,
54 kStateConnectedFAD,
55 kStateConnected,
56 kStateTempCtrlIdle, // 7
57 kStateFeedbackCtrlIdle, // 8
58 kStateCurrentCtrlIdle, // 9
59 kStateTempCtrlRunning, // 9->10
60 kStateFeedbackCtrlRunning, // 10->11
61 kStateCurrentCtrlRunning, // 12
62 kStateCalibrating, // 11->13
63 };
64
65 enum control_t
66 {
67 kIdle,
68 kTemp,
69 kFeedback,
70 kFeedbackGlobal,
71 kCurrents,
72 };
73
74 control_t fControlType;
75
76 PixelMap fMap;
77
78 DimServiceInfoList fNetwork;
79
80 pair<Time, int> fStatusDim;
81 pair<Time, int> fStatusFAD;
82 pair<Time, int> fStatusFSC;
83 pair<Time, int> fStatusBias;
84
85 DimStampedInfo fDim;
86 DimStampedInfo fFAD;
87 DimStampedInfo fFSC;
88 DimStampedInfo fBias;
89 DimStampedInfo fBiasA;
90
91 DimStampedInfo fBiasData;
92 DimStampedInfo fCameraTemp;
93
94 DimDescribedService fDimReference;
95 DimDescribedService fDimDeviation;
96 DimDescribedService fDimCalibration;
97
98 vector<int64_t> fCurrentsAvg;
99 vector<int64_t> fCurrentsRms;
100
101 vector<float> fCalibration;
102
103 vector<vector<float>> fData;
104
105 int64_t fCursorCur;
106 uint64_t fCursorAmpl;
107 uint64_t fCursorTemp;
108
109 Time fBiasLast;
110 Time fStartTime;
111
112 valarray<double> fPV[3]; // Process variable (intgerated/averaged amplitudes)
113 valarray<double> fSP; // Set point (target amplitudes)
114
115 double fKp; // Proportional constant
116 double fKi; // Integral constant
117 double fKd; // Derivative constant
118 double fT; // Time constant (cycle time)
119 double fGain; // Gain (conversion from a DRS voltage deviation into a BIAS voltage change at G-APD reference voltage)
120
121 double fT21;
122
123 double fBiasOffset;
124
125 uint16_t fCurrentRequestInterval;
126 uint16_t fNumCalibIgnore;
127 uint16_t fNumCalibRequests;
128
129 bool fOutputEnabled;
130
131 pair<Time, int> GetNewState(DimStampedInfo &info) const
132 {
133 const bool disconnected = info.getSize()==0;
134
135 // Make sure getTimestamp is called _before_ getTimestampMillisecs
136 const int tsec = info.getTimestamp();
137 const int tms = info.getTimestampMillisecs();
138
139 return make_pair(Time(tsec, tms*1000),
140 disconnected ? -2 : info.getQuality());
141 }
142
143 void HandleCameraTemp()
144 {
145 if (fCameraTemp.getSize()!=60*sizeof(float))
146 return;
147
148 const float *ptr = static_cast<float*>(fCameraTemp.getData());
149
150 double avgt = 0;
151 int numt = 0;
152 for (int i=1; i<32; i++)
153 if (ptr[i]!=0)
154 {
155 avgt += ptr[i];
156 numt++;
157 }
158
159 if (numt==0)
160 return;
161
162 avgt /= numt;
163
164
165 const float diff = (avgt-25)*4./70 + fBiasOffset;
166
167 vector<float> vec(2*BIAS::kNumChannels);
168 for (int i=0; i<BIAS::kNumChannels; i++)
169 vec[i+BIAS::kNumChannels] = diff;
170
171 double avg[2] = { 0, 0 };
172 double min[2] = { 90, 90 };
173 double max[2] = { -90, -90 };
174 int num[2] = { 0, 0 };
175
176 vector<double> med[2];
177 med[0].resize(416);
178 med[1].resize(416);
179
180 if (fControlType==kCurrents)
181 {
182 if (fCursorCur==0)
183 {
184 //DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
185 return;
186 }
187
188 // Pixel 583: 5 31 == 191 (5)
189 // Pixel 830: 2 2 == 66 (4)
190 // Pixel 1401: 6 1 == 193 (4)
191
192 // Convert from DAC counts to uA
193 const double conv = 5000e-6/4096;
194
195 // 3900 Ohm/n + 1000 Ohm + 1100 Ohm (with n=4 or n=5)
196 const double R[2] = { 3075, 2870 };
197
198 for (int i=0; i<BIAS::kNumChannels; i++)
199 {
200 const PixelMapEntry &hv = fMap.hv(i);
201 if (!hv)
202 continue;
203
204 const int g = hv.group();
205
206 const double Im = double(fCurrentsAvg[i])/fCursorCur;
207 const double I = Im>fCalibration[i] ? Im-fCalibration[i] : 0;
208
209 double U = R[g] * I*conv;
210
211 // 510 / 390 1.30 ^1.66 = 1.55
212 // 470 / 380 1.23 = 1.41
213 // 450 / 360 1.25 = 1.45
214
215 // This is assuming that the broken pixels
216 // have a 1kOhm instead of 390 Ohm serial resistor
217 if (i==66 || i==193)
218 U /= 2665./R[0]; // (1k)2665 / (390)2400 / (~0)2110
219 if (i==191)
220 U /= 2594./R[1]; // (1k)2794 / (390)2320 / (~0)2110
221
222 vec[i+BIAS::kNumChannels] += U;
223
224 if (fCalibration[i]>0)
225 {
226 med[g][num[g]] = U;
227 avg[g] += U;
228 num[g]++;
229
230 if (U<min[g])
231 min[g] = U;
232 if (U>max[g])
233 max[g] = U;
234 }
235 }
236
237 sort(med[0].begin(), med[0].begin()+num[0]);
238 sort(med[1].begin(), med[1].begin()+num[1]);
239
240 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
241 fCursorCur = 0;
242 }
243
244 fDimDeviation.setQuality(fControlType);
245 fDimDeviation.Update(vec);
246
247 if (!fOutputEnabled || fStatusBias.second!=BIAS::kVoltageOn)
248 return;
249
250 // Trigger calibration
251 if (GetCurrentState()==kStateCalibrating && fCursorTemp==1)
252 {
253 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
254 return;
255 }
256
257 ostringstream msg;
258 msg << setprecision(4) << "Sending new absolute offset (" << diff << "V+" << (avg[0]+avg[1])/(num[0]+num[1]) << "V) to biasctrl.";
259 Info(msg);
260
261 if (fControlType==kCurrents)
262 {
263 msg.str("");
264 msg << " Avg0=" << setw(5) << avg[0]/num[0] << " | Avg1=" << setw(5) << avg[1]/num[1] << endl;
265 Debug(msg);
266
267 msg.str("");
268 msg << " Med0=" << setw(5) << med[0][num[0]/2] << " | Med1=" << setw(5) << med[1][num[1]/2] << endl;
269 Debug(msg);
270
271 msg.str("");
272 msg << " Min0=" << setw(5) << min[0] << " | Min1=" << setw(5) << min[1] << endl;
273 Debug(msg);
274
275 msg.str("");
276 msg << " Max0=" << setw(5) << max[0] << " | Max1=" << setw(5) << max[1] << endl;
277 Debug(msg);
278 }
279
280 DimClient::sendCommandNB("BIAS_CONTROL/SET_ALL_CHANNELS_OFFSET",
281 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
282
283 fCursorTemp++;
284 }
285
286 int AverageCurrents()
287 {
288 if (fBiasA.getSize()!=BIAS::kNumChannels*sizeof(int16_t))
289 return -1;
290
291 if (fStatusBias.second!=BIAS::kVoltageOn)
292 return false;
293
294 if (fCursorCur++<0)
295 return true;
296
297 const int16_t *ptr = static_cast<int16_t*>(fBiasA.getData());
298
299 for (int i=0; i<BIAS::kNumChannels; i++)
300 {
301 fCurrentsAvg[i] += ptr[i];
302 fCurrentsRms[i] += ptr[i]*ptr[i];
303 }
304
305 return true;
306 }
307
308
309 void HandleCalibration()
310 {
311 const int rc = AverageCurrents();
312 if (rc<0)
313 return;
314
315 if (fCursorCur<fNumCalibRequests)
316 {
317 if (fStatusBias.second==BIAS::kVoltageOn)
318 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
319 return;
320 }
321
322 if (rc==0)
323 return;
324
325 fCalibration.resize(BIAS::kNumChannels*2);
326 for (int i=0; i<BIAS::kNumChannels; i++)
327 {
328 fCalibration[i] = double(fCurrentsAvg[i])/fCursorCur;
329 fCalibration[i+BIAS::kNumChannels] = sqrt(double(fCurrentsRms[i])/fCursorCur-fCalibration[i]*fCalibration[i]);
330 }
331
332 fDimCalibration.Update(fCalibration);
333
334 fOutputEnabled = false;
335 fControlType = kIdle;
336
337 Info("Calibration successfully done.");
338
339 if (fStatusBias.second==BIAS::kVoltageOn)
340 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
341 }
342
343 void HandleFeedback()
344 {
345 if (fBiasData.getSize()!=1440*sizeof(float))
346 return;
347
348 // -------- Check age of last stored event --------
349
350 // Must be called in this order
351 const int tsec = fBiasData.getTimestamp();
352 const int tms = fBiasData.getTimestampMillisecs();
353
354 const Time tm(tsec, tms*1000);
355
356 if (Time()-fBiasLast>boost::posix_time::seconds(30))
357 {
358 Warn("Last received event data older than 30s... resetting average calculation.");
359 ResetData();
360 }
361 fBiasLast = tm;
362
363 // -------- Store new event --------
364
365 fData[fCursorAmpl%fData.size()].assign(reinterpret_cast<float*>(fBiasData.getData()),
366 reinterpret_cast<float*>(fBiasData.getData())+1440);
367
368 if (++fCursorAmpl<fData.size())
369 return;
370
371 // -------- Calculate statistics --------
372
373 valarray<double> med(1440);
374
375 for (int ch=0; ch<1440; ch++)
376 {
377 vector<float> arr(fData.size());
378 for (size_t i=0; i<fData.size(); i++)
379 arr[i] = fData[i][ch];
380
381 sort(arr.begin(), arr.end());
382
383 med[ch] = arr[arr.size()/2];
384 }
385
386 /*
387 vector<float> med(1440);
388 vector<float> rms(1440);
389 for (size_t i=0; i<fData.size(); i++)
390 {
391 if (fData[i].size()==0)
392 return;
393
394 for (int j=0; j<1440; j++)
395 {
396 med[j] += fData[i][j];
397 rms[j] += fData[i][j]*fData[i][j];
398 }
399 }
400 */
401
402 vector<double> avg(BIAS::kNumChannels);
403 vector<int> num(BIAS::kNumChannels);
404 for (int i=0; i<1440; i++)
405 {
406 const PixelMapEntry &ch = fMap.hw(i);
407
408 // FIXME: Add a consistency check if the median makes sense...
409 // FIXME: Add a consistency check to remove pixels with bright stars (median?)
410
411 avg[ch.hv()] += med[i];
412 num[ch.hv()]++;
413 }
414
415 for (int i=0; i<BIAS::kNumChannels; i++)
416 {
417 if (num[i])
418 avg[i] /= num[i];
419
420 }
421
422 // -------- Calculate correction --------
423
424 // http://bestune.50megs.com/typeABC.htm
425
426 // CO: Controller output
427 // PV: Process variable
428 // SP: Set point
429 // T: Sampling period (loop update period)
430 // e = SP - PV
431 //
432 // Kp : No units
433 // Ki : per seconds
434 // Kd : seconds
435
436 // CO(k)-CO(k-1) = - Kp[ PV(k) - PV(k-1) ] + Ki * T * (SP(k)-PV(k)) - Kd/T [ PV(k) - 2PV(k-1) + PV(k-2) ]
437
438 if (fCursorAmpl%fData.size()>0)
439 return;
440
441 // FIXME: Take out broken / dead boards.
442
443 const Time tm0 = Time();
444
445 /*const*/ double T21 = fT>0 ? fT : (tm0-fStartTime).total_microseconds()/1000000.;
446 const double T10 = fT21;
447 fT21 = T21;
448
449 fStartTime = tm0;
450
451 ostringstream out;
452 out << "New " << fData.size() << " event received: " << fCursorAmpl << " / " << setprecision(3) << T21 << "s";
453 Info(out);
454
455 if (fPV[0].size()==0)
456 {
457 fPV[0].resize(avg.size());
458 fPV[0] = valarray<double>(avg.data(), avg.size());
459 return;
460 }
461
462 if (fPV[1].size()==0)
463 {
464 fPV[1].resize(avg.size());
465 fPV[1] = valarray<double>(avg.data(), avg.size());
466 return;
467 }
468
469 if (fPV[2].size()==0)
470 {
471 fPV[2].resize(avg.size());
472 fPV[2] = valarray<double>(avg.data(), avg.size());
473 return;
474 }
475
476 fPV[0] = fPV[1];
477 fPV[1] = fPV[2];
478
479 fPV[2].resize(avg.size());
480 fPV[2] = valarray<double>(avg.data(), avg.size());
481
482 if (T10<=0 || T21<=0)
483 return;
484
485 //cout << "Calculating (" << fCursor << ":" << T21 << ")... " << endl;
486
487 // fKi[j] = response[j]*gain;
488 // Kp = 0;
489 // Kd = 0;
490
491 // => Kp = 0.01 * gain = 0.00005
492 // => Ki = 0.8 * gain/20s = 0.00025
493 // => Kd = 0.1 * gain/20s = 0.00003
494
495 /*
496 fKp = 0;
497 fKd = 0;
498 fKi = 0.00003*20;
499 T21 = 1;
500 */
501
502 //valarray<double> correction = - Kp*(PV[2] - PV[1]) + Ki * dT * (SP-PV[2]) - Kd/dT * (PV[2] - 2*PV[1] + PV[0]);
503 //valarray<double> correction =
504 // - Kp * (PV[2] - PV[1])
505 // + dT * Ki * (SP - PV[2])
506 // - Kd / dT * (PV[2] - 2*PV[1] + PV[0]);
507 //
508 // - (Kp+Kd/dT1) * (PV[2] - PV[1])
509 // + dT2 * Ki * (SP - PV[2])
510 // + Kd / dT1 * (PV[1] - PV[0]);
511 //
512 // - Kp * (PV[2] - PV[1])
513 // + Ki * (SP - PV[2])*dT
514 // - Kd * (PV[2] - PV[1])/dT
515 // + Kd * (PV[1] - PV[0])/dT;
516 //
517 //valarray<double> correction =
518 // - Kp*(PV[2] - PV[1]) + Ki * T21 * (SP-PV[2]) - Kd*(PV[2]-PV[1])/T21 - Kd*(PV[0]-PV[1])/T01;
519 const valarray<double> correction = 1./fGain/1000*
520 (
521 - (fKp+fKd/T21)*(fPV[2] - fPV[1])
522 + fKi*T21*(fSP-fPV[2])
523 + fKd/T10*(fPV[1]-fPV[0])
524 );
525
526 /*
527 integral = 0
528 start:
529 integral += (fSP - fPV[2])*dt
530
531 output = Kp*(fSP - fPV[2]) + Ki*integral - Kd*(fPV[2] - fPV[1])/dt
532
533 wait(dt)
534
535 goto start
536 */
537
538 vector<float> vec(2*BIAS::kNumChannels);
539 for (int i=0; i<BIAS::kNumChannels; i++)
540 vec[i] = fPV[2][i]-fSP[i];
541
542 for (int i=0; i<BIAS::kNumChannels; i++)
543 vec[i+BIAS::kNumChannels] = avg[i]<5*2.5 ? 0 : correction[i];
544
545 fDimDeviation.setQuality(fControlType);
546 fDimDeviation.Update(vec);
547
548 if (!fOutputEnabled || fStatusBias.second!=BIAS::kVoltageOn)
549 return;
550
551 Info("Sending new relative offset to biasctrl.");
552
553 DimClient::sendCommandNB("BIAS_CONTROL/ADD_REFERENCE_VOLTAGES",
554 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
555 }
556
557 void HandleGlobalFeedback()
558 {
559 if (fBiasData.getSize()!=1440*sizeof(float))
560 return;
561
562 // -------- Store new event --------
563
564 vector<float> arr(reinterpret_cast<float*>(fBiasData.getData()),
565 reinterpret_cast<float*>(fBiasData.getData())+1440);
566
567 sort(arr.begin(), arr.end());
568
569 const float med = arr[arr.size()/2];
570
571 fData[fCursorAmpl%fData.size()].resize(1); //assign(&med, &med);
572 fData[fCursorAmpl%fData.size()][0] = med; //assign(&med, &med);
573
574 if (++fCursorAmpl<fData.size())
575 return;
576
577 // -------- Calculate statistics --------
578
579 double avg=0;
580 double rms=0;
581 for (size_t i=0; i<fData.size(); i++)
582 {
583 avg += fData[i][0];
584 rms += fData[i][0]*fData[i][0];
585 }
586
587 avg /= fData.size();
588 rms /= fData.size();
589
590 rms = sqrt(rms-avg*avg);
591
592 // -------- Calculate correction --------
593
594 if (fCursorAmpl%fData.size()!=0)
595 return;
596
597 Out() << "Amplitude: " << avg << " +- " << rms << endl;
598
599 // FIXME: Take out broken / dead boards.
600
601 /*
602 ostringstream out;
603 out << "New " << fData.size() << " event received: " << fCursor << " / " << setprecision(3) << T21 << "s";
604 Info(out);
605 */
606
607 if (fPV[0].size()==0)
608 {
609 fPV[0].resize(1);
610 fPV[0] = valarray<double>(&avg, 1);
611 return;
612 }
613
614 if (fPV[1].size()==0)
615 {
616 fPV[1].resize(1);
617 fPV[1] = valarray<double>(&avg, 1);
618 return;
619 }
620
621 if (fPV[2].size()==0)
622 {
623 fPV[2].resize(1);
624 fPV[2] = valarray<double>(&avg, 1);
625 return;
626 }
627
628 fPV[0] = fPV[1];
629 fPV[1] = fPV[2];
630
631 fPV[2].resize(1);
632 fPV[2] = valarray<double>(&avg, 1);
633
634 // ----- Calculate average currents -----
635
636 vector<float> A(BIAS::kNumChannels);
637 for (int i=0; i<BIAS::kNumChannels; i++)
638 A[i] = double(fCurrentsAvg[i]) / fCursorCur;
639
640 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
641 fCursorCur = 0;
642
643 // -------- Calculate correction --------
644
645 // correction = (fSP[0]-fPV[2])*fKi
646 /*
647 const double T21 = 1; // feedback is 1s
648 const double T10 = 1; // feedback is 20s
649
650 const valarray<double> correction = 1./fGain/1000*
651 (
652 - (fKp+fKd/T21)*(fPV[2] - fPV[1])
653 + fKi*T21*(fSP[0]-fPV[2])
654 + fKd/T10*(fPV[1]-fPV[0])
655 );
656 */
657
658 // pow of 1.6 comes from the non-linearity of the
659 // amplitude vs bias voltage
660 const valarray<double> correction = 1./fGain/1000*
661 (
662 //fKi*(pow(fSP[0], 1./1.6)-pow(fPV[2], 1./1.6))
663 fKi*(fSP[0]-fPV[2])
664 );
665
666 Out() << "Correction: " << correction[0] << "V (" << fSP[0] << ")" << endl;
667
668 const int nch = BIAS::kNumChannels;
669
670 // FIXME: Sanity check!
671
672 vector<float> vec;
673 vec.reserve(2*nch);
674 vec.insert(vec.begin(), nch, fPV[2][0]-fSP[0]);
675 vec.insert(vec.begin()+nch, nch, correction[0]);
676
677 fDimDeviation.setQuality(fControlType);
678 fDimDeviation.Update(vec);
679
680 if (!fOutputEnabled || fStatusBias.second!=BIAS::kVoltageOn)
681 return;
682
683 Info("Sending new global relative offset to biasctrl.");
684
685 DimClient::sendCommandNB("BIAS_CONTROL/ADD_REFERENCE_VOLTAGES",
686 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
687 }
688
689 void infoHandler()
690 {
691 DimInfo *curr = getInfo(); // get current DimInfo address
692 if (!curr)
693 return;
694
695 if (curr==&fBias)
696 {
697 fStatusBias = GetNewState(fBias);
698 return;
699 }
700
701 if (curr==&fFAD)
702 {
703 fStatusFAD = GetNewState(fFAD);
704 return;
705 }
706
707 if (curr==&fFSC)
708 {
709 fStatusFSC = GetNewState(fFSC);
710 return;
711 }
712
713 if (curr==&fDim)
714 {
715 fStatusDim = GetNewState(fDim);
716 fStatusDim.second = curr->getSize()==4 ? curr->getInt() : 0;
717 return;
718 }
719
720 if (curr==&fCameraTemp && (fControlType==kTemp || fControlType==kCurrents))
721 HandleCameraTemp();
722
723 if (curr==&fBiasA && fControlType==kTemp && GetCurrentState()==kStateCalibrating)
724 HandleCalibration();
725
726 if (curr==&fBiasA && (fControlType==kFeedbackGlobal || fControlType==kCurrents))
727 AverageCurrents();
728
729 if (curr==&fBiasData && fControlType==kFeedback)
730 HandleFeedback();
731
732 if (curr==&fBiasData && fControlType==kFeedbackGlobal)
733 HandleGlobalFeedback();
734 }
735
736 bool CheckEventSize(size_t has, const char *name, size_t size)
737 {
738 if (has==size)
739 return true;
740
741 ostringstream msg;
742 msg << name << " - Received event has " << has << " bytes, but expected " << size << ".";
743 Fatal(msg);
744 return false;
745 }
746
747 void PrintState(const pair<Time,int> &state, const char *server)
748 {
749 const State rc = fNetwork.GetState(server, state.second);
750
751 Out() << state.first.GetAsStr("%H:%M:%S.%f").substr(0, 12) << " - ";
752 Out() << kBold << server << ": ";
753 Out() << rc.name << "[" << rc.index << "]";
754 Out() << kReset << " - " << kBlue << rc.comment << endl;
755 }
756
757 int Print()
758 {
759 Out() << fStatusDim.first.GetAsStr("%H:%M:%S.%f").substr(0, 12) << " - ";
760 Out() << kBold << "DIM_DNS: ";
761 if (fStatusDim.second==0)
762 Out() << "Offline" << endl;
763 else
764 Out() << "V" << fStatusDim.second/100 << 'r' << fStatusDim.second%100 << endl;
765
766 PrintState(fStatusFAD, "FAD_CONTROL");
767 PrintState(fStatusFSC, "FSC_CONTROL");
768 PrintState(fStatusBias, "BIAS_CONTROL");
769
770 return GetCurrentState();
771 }
772
773 int PrintCalibration()
774 {
775 if (fCalibration.size()==0)
776 {
777 Out() << "No calibration performed so far." << endl;
778 return GetCurrentState();
779 }
780
781 for (int k=0; k<13; k++)
782 for (int j=0; j<8; j++)
783 {
784 Out() << setw(2) << k << "|" << setw(2) << j*4 << "|";
785 for (int i=0; i<4; i++)
786 Out() << Tools::Form(" %6.1f+-%4.1f", fCalibration[k*32+j*4+i], fCalibration[k*32+j*4+i+BIAS::kNumChannels]);
787 Out() << endl;
788 }
789
790 return GetCurrentState();
791 }
792
793 int SetConstant(const EventImp &evt, int constant)
794 {
795 if (!CheckEventSize(evt.GetSize(), "SetConstant", 8))
796 return kSM_FatalError;
797
798 switch (constant)
799 {
800 case 0: fKi = evt.GetDouble(); break;
801 case 1: fKp = evt.GetDouble(); break;
802 case 2: fKd = evt.GetDouble(); break;
803 case 3: fT = evt.GetDouble(); break;
804 case 4: fGain = evt.GetDouble(); break;
805 default:
806 Fatal("SetConstant got an unexpected constant id -- this is a program bug!");
807 return kSM_FatalError;
808 }
809
810 return GetCurrentState();
811 }
812
813 int EnableOutput(const EventImp &evt)
814 {
815 if (!CheckEventSize(evt.GetSize(), "EnableOutput", 1))
816 return kSM_FatalError;
817
818 fOutputEnabled = evt.GetBool();
819
820 return GetCurrentState();
821 }
822
823 void ResetData(int16_t n=-1)
824 {
825 fData.assign(n>0 ? n : fData.size(), vector<float>(0));
826
827 fCursorAmpl = 0;
828 fCursorCur = 0;
829 fCursorTemp = 0;
830
831 fStartTime = Time();
832
833 fSP = valarray<double>(0., BIAS::kNumChannels);
834
835 vector<float> vec(2*BIAS::kNumChannels);
836 fDimDeviation.setQuality(kIdle);
837 fDimDeviation.Update(vec);
838
839 fPV[0].resize(0);
840 fPV[1].resize(0);
841 fPV[2].resize(0);
842
843 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
844 fCurrentsRms.assign(BIAS::kNumChannels, 0);
845
846 if (fKp==0 && fKi==0 && fKd==0)
847 Warn("Control loop parameters are all set to zero.");
848 }
849
850 int StartFeedback(const EventImp &evt)
851 {
852 if (!CheckEventSize(evt.GetSize(), "StartFeedback", 2))
853 return kSM_FatalError;
854
855 ResetData(evt.GetShort());
856
857 fControlType = kFeedback;
858
859 return GetCurrentState();
860 }
861
862 int StartFeedbackGlobal(const EventImp &evt)
863 {
864 if (!CheckEventSize(evt.GetSize(), "StartFeedbackGlobal", 2))
865 return kSM_FatalError;
866
867 ResetData(evt.GetShort());
868
869 fControlType = kFeedbackGlobal;
870
871 return GetCurrentState();
872 }
873
874 int StartTempCtrl(const EventImp &evt)
875 {
876 if (!CheckEventSize(evt.GetSize(), "StartTempCtrl", 4))
877 return kSM_FatalError;
878
879 fBiasOffset = evt.GetFloat();
880 fControlType = kTemp;
881
882 ostringstream out;
883 out << "Starting temperature feedback with an offset of " << fBiasOffset << "V";
884 Message(out);
885
886 if (fStatusBias.second==BIAS::kVoltageOn)
887 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
888
889 return GetCurrentState();
890 }
891
892 int StartCurrentCtrl(const EventImp &evt)
893 {
894 if (!CheckEventSize(evt.GetSize(), "StartCurrentCtrl", 4))
895 return kSM_FatalError;
896
897 if (fCalibration.size()==0)
898 {
899 Warn("Current control needs a bias crate calibration first... command ignored.");
900 return GetCurrentState();
901 }
902
903 ResetData(0);
904
905 fBiasOffset = evt.GetFloat();
906 fControlType = kCurrents;
907
908 ostringstream out;
909 out << "Starting current/temp feedback with an offset of " << fBiasOffset << "V";
910 Message(out);
911
912 return GetCurrentState();
913 }
914
915 int StopFeedback()
916 {
917 fControlType = kIdle;
918
919 return GetCurrentState();
920 }
921
922 int StoreReference()
923 {
924 if (!fPV[0].size() && !fPV[1].size() && !fPV[2].size())
925 {
926 Warn("No values in memory. Take enough events first!");
927 return GetCurrentState();
928 }
929
930 // FIXME: Check age
931
932 if (!fPV[1].size() && !fPV[2].size())
933 fSP = fPV[0];
934
935 if (!fPV[2].size())
936 fSP = fPV[1];
937 else
938 fSP = fPV[2];
939
940 vector<float> vec(BIAS::kNumChannels);
941 for (int i=0; i<BIAS::kNumChannels; i++)
942 vec[i] = fSP[i];
943 fDimReference.Update(vec);
944
945 return GetCurrentState();
946 }
947
948 int SetReference(const EventImp &evt)
949 {
950 if (!CheckEventSize(evt.GetSize(), "SetReference", 4))
951 return kSM_FatalError;
952
953 const float val = evt.GetFloat();
954 /*
955 if (!fPV[0].size() && !fPV[1].size() && !fPV[2].size())
956 {
957 Warn("No values in memory. Take enough events first!");
958 return GetCurrentState();
959 }*/
960
961 vector<float> vec(BIAS::kNumChannels);
962 for (int i=0; i<BIAS::kNumChannels; i++)
963 vec[i] = fSP[i] = val;
964 fDimReference.Update(vec);
965
966 Out() << "New global reference value: " << val << "mV" << endl;
967
968 return GetCurrentState();
969 }
970
971 int CalibrateCurrents()
972 {
973// if (!CheckEventSize(evt.GetSize(), "StartTempCtrl", 4))
974// return kSM_FatalError;
975
976 if (fStatusBias.second==BIAS::kRamping)
977 {
978 Warn("Calibration cannot be started when biasctrl is in state Ramping.");
979 return GetCurrentState();
980 }
981
982 ostringstream out;
983 out << "Starting temperature feedback for calibration with an offset of -2V";
984 Message(out);
985
986 fBiasOffset = -2;
987 fControlType = kTemp;
988 fCursorCur = -fNumCalibIgnore;
989 fCursorTemp = 0;
990 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
991 fCurrentsRms.assign(BIAS::kNumChannels, 0);
992 fCalibration.resize(0);
993 fStartTime = Time();
994 fOutputEnabled = true;
995
996 return kStateCalibrating;
997 }
998
999 int SetCurrentRequestInterval(const EventImp &evt)
1000 {
1001 if (!CheckEventSize(evt.GetSize(), "SetCurrentRequestInterval", 2))
1002 return kSM_FatalError;
1003
1004 fCurrentRequestInterval = evt.GetUShort();
1005
1006 Out() << "New current request interval: " << fCurrentRequestInterval << "ms" << endl;
1007
1008 return GetCurrentState();
1009 }
1010
1011 int Execute()
1012 {
1013 // Dispatch (execute) at most one handler from the queue. In contrary
1014 // to run_one(), it doesn't wait until a handler is available
1015 // which can be dispatched, so poll_one() might return with 0
1016 // handlers dispatched. The handlers are always dispatched/executed
1017 // synchronously, i.e. within the call to poll_one()
1018 //poll_one();
1019
1020 if (fStatusDim.second==0)
1021 return kStateDimNetworkNA;
1022
1023 const bool bias = fStatusBias.second >= BIAS::kConnecting;
1024 const bool fad = fStatusFAD.second >= FAD::kConnected;
1025 const bool fsc = fStatusFSC.second >= 2;
1026
1027 // All subsystems are not connected
1028 if (!bias && !fad && !fsc)
1029 return kStateDisconnected;
1030
1031 // At least one subsystem apart from bias is connected
1032 if (bias && !fad && !fsc)
1033 return kStateConnecting;
1034
1035/*
1036 // All subsystems are connected
1037 if (GetCurrentStatus()==kStateConfiguringStep1)
1038 {
1039 if (fCursor<1)
1040 return kStateConfiguringStep1;
1041
1042 if (fCursor==1)
1043 {
1044 fStartTime = Time();
1045 return kStateConfiguringStep2;
1046 }
1047 }
1048 if (GetCurrentStatus()==kStateConfiguringStep2)
1049 {
1050 if (fCursor==1)
1051 {
1052 if ((Time()-fStartTime).total_microseconds()/1000000.<1.5)
1053 return kStateConfiguringStep2;
1054
1055 Dim::SendCommand("BIAS_CONTROL/REQUEST_STATUS");
1056 }
1057 if (fCursor==2)
1058 {
1059
1060 int n=0;
1061 double avg = 0;
1062 for (size_t i=0; i<fCurrents.size(); i++)
1063 if (fCurrents[i]>=0)
1064 {
1065 avg += fCurrents[i];
1066 n++;
1067 }
1068
1069 cout << avg/n << endl;
1070 }
1071 return kStateConnected;
1072 }
1073 */
1074
1075 // Needs connection of FAD and BIAS
1076 if (bias && fad)
1077 {
1078 if (fControlType==kFeedback || fControlType==kFeedbackGlobal)
1079 return fOutputEnabled ? kStateFeedbackCtrlRunning : kStateFeedbackCtrlIdle;
1080 }
1081
1082 // Needs connection of FSC and BIAS
1083 if (bias && fsc)
1084 {
1085 if (fControlType==kTemp)
1086 {
1087 if (GetCurrentState()==kStateCalibrating && fCursorCur<fNumCalibRequests)
1088 return GetCurrentState();
1089
1090 return fOutputEnabled ? kStateTempCtrlRunning : kStateTempCtrlIdle;
1091 }
1092 if (fControlType==kCurrents)
1093 {
1094 static Time past;
1095 if (fCurrentRequestInterval>0 && Time()-past>boost::posix_time::milliseconds(fCurrentRequestInterval))
1096 {
1097 if (fStatusBias.second==BIAS::kVoltageOn)
1098 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
1099 past = Time();
1100 }
1101
1102 return fOutputEnabled ? kStateCurrentCtrlRunning : kStateCurrentCtrlIdle;
1103 }
1104 }
1105
1106 if (bias && fad && !fsc)
1107 return kStateConnectedFAD;
1108
1109 if (bias && fsc && !fad)
1110 return kStateConnectedFSC;
1111
1112 return kStateConnected;
1113 }
1114
1115public:
1116 StateMachineFeedback(ostream &out=cout) : StateMachineDim(out, "FEEDBACK"),
1117 fStatusDim(make_pair(Time(), -2)),
1118 fStatusFAD(make_pair(Time(), -2)),
1119 fStatusBias(make_pair(Time(), -2)),
1120 fDim("DIS_DNS/VERSION_NUMBER", (void*)NULL, 0, this),
1121 fFAD("FAD_CONTROL/STATE", (void*)NULL, 0, this),
1122 fFSC("FSC_CONTROL/STATE", (void*)NULL, 0, this),
1123 fBias("BIAS_CONTROL/STATE", (void*)NULL, 0, this),
1124 fBiasA("BIAS_CONTROL/CURRENT", (void*)NULL, 0, this),
1125 fBiasData("FAD_CONTROL/FEEDBACK_DATA", (void*)NULL, 0, this),
1126 fCameraTemp("FSC_CONTROL/TEMPERATURE", (void*)NULL, 0, this),
1127 fDimReference("FEEDBACK/REFERENCE", "F:416",
1128 "Amplitude reference value(s)"
1129 "Vref[mV]:Amplitude reference"),
1130 fDimDeviation("FEEDBACK/DEVIATION", "F:416;F:416",
1131 "Control loop information"
1132 "|DeltaAmpl[mV]:Amplitude offset measures"
1133 "|DeltaBias[mV]:Correction value calculated"),
1134 fDimCalibration("FEEDBACK/CALIBRATION", "F:416;F:416",
1135 "Current offsets"
1136 "|Avg[dac]:Average offset (5000uA/4096dac)"
1137 "|Rms[dac]:Rms of offset (5000uA/4096dac)"),
1138 fSP(BIAS::kNumChannels),
1139 fKp(0), fKi(0), fKd(0), fT(-1),
1140 fCurrentRequestInterval(0),
1141 fNumCalibIgnore(30),
1142 fNumCalibRequests(300),
1143 fOutputEnabled(false)
1144 {
1145 // ba::io_service::work is a kind of keep_alive for the loop.
1146 // It prevents the io_service to go to stopped state, which
1147 // would prevent any consecutive calls to run()
1148 // or poll() to do nothing. reset() could also revoke to the
1149 // previous state but this might introduce some overhead of
1150 // deletion and creation of threads and more.
1151
1152// fSP.resize(416);
1153
1154 // State names
1155 AddStateName(kStateDimNetworkNA, "DimNetworkNotAvailable",
1156 "The Dim DNS is not reachable.");
1157
1158 AddStateName(kStateDisconnected, "Disconnected",
1159 "The Dim DNS is reachable, but the required subsystems are not available.");
1160
1161 AddStateName(kStateConnecting, "Connecting",
1162 "Only biasctrl is available and connected with its hardware.");
1163
1164 AddStateName(kStateConnectedFSC, "ConnectedFSC",
1165 "biasctrl and fscctrl are available and connected with their hardware.");
1166 AddStateName(kStateConnectedFAD, "ConnectedFAD",
1167 "biasctrl and fadctrl are available and connected with their hardware.");
1168 AddStateName(kStateConnected, "Connected",
1169 "biasctrl, fadctrl and fscctrl are available and connected with their hardware.");
1170
1171 AddStateName(kStateFeedbackCtrlIdle, "FeedbackIdle",
1172 "Feedback control activated, but voltage output disabled.");
1173 AddStateName(kStateTempCtrlIdle, "TempCtrlIdle",
1174 "Temperature control activated, but voltage output disabled.");
1175 AddStateName(kStateCurrentCtrlIdle, "CurrentCtrlIdle",
1176 "Current control activated, but voltage output disabled.");
1177
1178 AddStateName(kStateFeedbackCtrlRunning, "FeedbackControl",
1179 "Feedback control activated and voltage output enabled.");
1180 AddStateName(kStateTempCtrlRunning, "TempControl",
1181 "Temperature control activated and voltage output enabled.");
1182 AddStateName(kStateCurrentCtrlRunning, "CurrentControl",
1183 "Current/Temp control activated and voltage output enabled.");
1184 AddStateName(kStateCalibrating, "Calibrating",
1185 "Calibrating current offsets.");
1186
1187 AddEvent("START_FEEDBACK_CONTROL", "S:1", kStateConnectedFAD, kStateConnected)
1188 (bind(&StateMachineFeedback::StartFeedback, this, placeholders::_1))
1189 ("Start the feedback control loop"
1190 "|Num[short]:Number of events 'medianed' to calculate the correction value");
1191
1192 AddEvent("START_GLOBAL_FEEDBACK", "S:1", kStateConnectedFAD, kStateConnected)
1193 (bind(&StateMachineFeedback::StartFeedbackGlobal, this, placeholders::_1))
1194 ("Start the global feedback control loop"
1195 "Num[short]:Number of events averaged to calculate the correction value");
1196
1197 AddEvent("START_TEMP_CONTROL", "F:1", kStateConnectedFSC, kStateConnected)
1198 (bind(&StateMachineFeedback::StartTempCtrl, this, placeholders::_1))
1199 ("Start the temperature control loop"
1200 "|offset[V]:Offset from the nominal temperature corrected value in Volts");
1201
1202 AddEvent("START_CURRENT_CONTROL", "F:1", kStateConnectedFSC, kStateConnected)
1203 (bind(&StateMachineFeedback::StartCurrentCtrl, this, placeholders::_1))
1204 ("Start the current/temperature control loop"
1205 "|offset[V]:Offset from the nominal current/temperature corrected value in Volts");
1206
1207 // kStateTempCtrlIdle, kStateFeedbackCtrlIdle, kStateTempCtrlRunning, kStateFeedbackCtrlRunning
1208 AddEvent("STOP")
1209 (bind(&StateMachineFeedback::StopFeedback, this))
1210 ("Stop any control loop");
1211
1212 AddEvent("ENABLE_OUTPUT", "B:1")//, kStateIdle)
1213 (bind(&StateMachineFeedback::EnableOutput, this, placeholders::_1))
1214 ("Enable sending of correction values caluclated by the control loop to the biasctrl");
1215
1216 AddEvent("STORE_REFERENCE")//, kStateIdle)
1217 (bind(&StateMachineFeedback::StoreReference, this))
1218 ("Store the last (averaged) value as new reference (for debug purpose only)");
1219
1220 AddEvent("SET_REFERENCE", "F:1")//, kStateIdle)
1221 (bind(&StateMachineFeedback::SetReference, this, placeholders::_1))
1222 ("Set a new global reference value (for debug purpose only)");
1223
1224 AddEvent("SET_Ki", "D:1")//, kStateIdle)
1225 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 0))
1226 ("Set integral constant Ki");
1227
1228 AddEvent("SET_Kp", "D:1")//, kStateIdle)
1229 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 1))
1230 ("Set proportional constant Kp");
1231
1232 AddEvent("SET_Kd", "D:1")//, kStateIdle)
1233 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 2))
1234 ("Set derivative constant Kd");
1235
1236 AddEvent("SET_T", "D:1")//, kStateIdle)
1237 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 3))
1238 ("Set time-constant. (-1 to use the cycle time, i.e. the time for the last average cycle, instead)");
1239
1240 AddEvent("CALIBRATE_CURRENTS", kStateConnectedFSC, kStateConnected)//, kStateIdle)
1241 (bind(&StateMachineFeedback::CalibrateCurrents, this))
1242 ("");
1243
1244 AddEvent("SET_CURRENT_REQUEST_INTERVAL", kStateConnectedFSC, kStateConnected)//, kStateIdle)
1245 (bind(&StateMachineFeedback::SetCurrentRequestInterval, this, placeholders::_1))
1246 ("|interval[ms]:Interval between two current requests in modes which need that.");
1247
1248 // Verbosity commands
1249// AddEvent("SET_VERBOSE", "B:1")
1250// (bind(&StateMachineMCP::SetVerbosity, this, placeholders::_1))
1251// ("set verbosity state"
1252// "|verbosity[bool]:disable or enable verbosity for received data (yes/no), except dynamic data");
1253
1254 AddEvent("PRINT")
1255 (bind(&StateMachineFeedback::Print, this))
1256 ("");
1257
1258 AddEvent("PRINT_CALIBRATION")
1259 (bind(&StateMachineFeedback::PrintCalibration, this))
1260 ("");
1261 }
1262
1263 int EvalOptions(Configuration &conf)
1264 {
1265 if (!fMap.Read(conf.Get<string>("pixel-map-file")))
1266 {
1267 Error("Reading mapping table from "+conf.Get<string>("pixel-map-file")+" failed.");
1268 return 1;
1269 }
1270
1271 fGain = 0.1; // V(Amplitude) / V(Bias)
1272
1273 // 148 -> 248
1274
1275 // 33 : 10s < 2%
1276 // 50 : 5s < 2%
1277 // 66 : 3s < 2%
1278 // 85 : 2s < 2%
1279
1280 fKp = 0;
1281 fKd = 0;
1282 fKi = 0.75;
1283 fT = 1;
1284
1285 // Is that independent of the aboslute real amplitude of
1286 // the light pulser?
1287
1288 ostringstream msg;
1289 msg << "Control loop parameters: ";
1290 msg << "Kp=" << fKp << ", Kd=" << fKd << ", Ki=" << fKi << ", ";
1291 if (fT>0)
1292 msg << fT;
1293 else
1294 msg << "<auto>";
1295 msg << ", Gain(DRS/BIAS)=" << fGain << "V/V";
1296
1297 Message(msg);
1298
1299 fCurrentRequestInterval = conf.Get<uint16_t>("current-request-interval");
1300 fNumCalibIgnore = conf.Get<uint16_t>("num-calib-ignore");
1301 fNumCalibRequests = conf.Get<uint16_t>("num-calib-average");
1302
1303 return -1;
1304 }
1305};
1306
1307// ------------------------------------------------------------------------
1308
1309#include "Main.h"
1310
1311template<class T>
1312int RunShell(Configuration &conf)
1313{
1314 return Main::execute<T, StateMachineFeedback>(conf);
1315}
1316
1317void SetupConfiguration(Configuration &conf)
1318{
1319 po::options_description control("Feedback options");
1320 control.add_options()
1321 ("pixel-map-file", var<string>("FACTmapV5a.txt"), "Pixel mapping file. Used here to get the default reference voltage.")
1322 ("current-request-interval", var<uint16_t>(1000), "Interval between two current requests.")
1323 ("num-calib-ignore", var<uint16_t>(30), "Number of current requests to be ignored before averaging")
1324 ("num-calib-average", var<uint16_t>(300), "Number of current requests to be averaged")
1325 ;
1326
1327 conf.AddOptions(control);
1328}
1329
1330/*
1331 Extract usage clause(s) [if any] for SYNOPSIS.
1332 Translators: "Usage" and "or" here are patterns (regular expressions) which
1333 are used to match the usage synopsis in program output. An example from cp
1334 (GNU coreutils) which contains both strings:
1335 Usage: cp [OPTION]... [-T] SOURCE DEST
1336 or: cp [OPTION]... SOURCE... DIRECTORY
1337 or: cp [OPTION]... -t DIRECTORY SOURCE...
1338 */
1339void PrintUsage()
1340{
1341 cout <<
1342 "The feedback control the BIAS voltages based on the calibration signal.\n"
1343 "\n"
1344 "The default is that the program is started without user intercation. "
1345 "All actions are supposed to arrive as DimCommands. Using the -c "
1346 "option, a local shell can be initialized. With h or help a short "
1347 "help message about the usuage can be brought to the screen.\n"
1348 "\n"
1349 "Usage: feedback [-c type] [OPTIONS]\n"
1350 " or: feedback [OPTIONS]\n";
1351 cout << endl;
1352}
1353
1354void PrintHelp()
1355{
1356 Main::PrintHelp<StateMachineFeedback>();
1357
1358 /* Additional help text which is printed after the configuration
1359 options goes here */
1360
1361 /*
1362 cout << "bla bla bla" << endl << endl;
1363 cout << endl;
1364 cout << "Environment:" << endl;
1365 cout << "environment" << endl;
1366 cout << endl;
1367 cout << "Examples:" << endl;
1368 cout << "test exam" << endl;
1369 cout << endl;
1370 cout << "Files:" << endl;
1371 cout << "files" << endl;
1372 cout << endl;
1373 */
1374}
1375
1376int main(int argc, const char* argv[])
1377{
1378 Configuration conf(argv[0]);
1379 conf.SetPrintUsage(PrintUsage);
1380 Main::SetupConfiguration(conf);
1381 SetupConfiguration(conf);
1382
1383 if (!conf.DoParse(argc, argv, PrintHelp))
1384 return -1;
1385
1386 //try
1387 {
1388 // No console access at all
1389 if (!conf.Has("console"))
1390 {
1391// if (conf.Get<bool>("no-dim"))
1392// return RunShell<LocalStream, StateMachine, ConnectionFSC>(conf);
1393// else
1394 return RunShell<LocalStream>(conf);
1395 }
1396 // Cosole access w/ and w/o Dim
1397/* if (conf.Get<bool>("no-dim"))
1398 {
1399 if (conf.Get<int>("console")==0)
1400 return RunShell<LocalShell, StateMachine, ConnectionFSC>(conf);
1401 else
1402 return RunShell<LocalConsole, StateMachine, ConnectionFSC>(conf);
1403 }
1404 else
1405*/ {
1406 if (conf.Get<int>("console")==0)
1407 return RunShell<LocalShell>(conf);
1408 else
1409 return RunShell<LocalConsole>(conf);
1410 }
1411 }
1412 /*catch (std::exception& e)
1413 {
1414 cerr << "Exception: " << e.what() << endl;
1415 return -1;
1416 }*/
1417
1418 return 0;
1419}
Note: See TracBrowser for help on using the repository browser.