source: trunk/FACT++/src/feedback.cc@ 13707

Last change on this file since 13707 was 13691, checked in by tbretz, 13 years ago
Added temperature and user offset to deviation service.
File size: 47.8 KB
Line 
1#include <valarray>
2
3#include "Dim.h"
4#include "Event.h"
5#include "Shell.h"
6#include "StateMachineDim.h"
7#include "Connection.h"
8#include "Configuration.h"
9#include "Console.h"
10#include "Converter.h"
11#include "DimServiceInfoList.h"
12#include "PixelMap.h"
13
14#include "tools.h"
15
16#include "LocalControl.h"
17
18#include "HeadersFAD.h"
19#include "HeadersBIAS.h"
20
21namespace ba = boost::asio;
22namespace bs = boost::system;
23namespace dummy = ba::placeholders;
24
25using namespace std;
26
27// ------------------------------------------------------------------------
28
29#include "DimDescriptionService.h"
30
31// ------------------------------------------------------------------------
32
33class StateMachineFeedback : public StateMachineDim, public DimInfoHandler
34{
35 /*
36 int Wrap(boost::function<void()> f)
37 {
38 f();
39 return T::GetCurrentState();
40 }
41
42 boost::function<int(const EventImp &)> Wrapper(boost::function<void()> func)
43 {
44 return bind(&StateMachineMCP::Wrap, this, func);
45 }*/
46
47private:
48 enum states_t
49 {
50 kStateDimNetworkNA = 1,
51 kStateDisconnected,
52 kStateConnecting,
53 kStateConnectedFSC,
54 kStateConnectedFAD,
55 kStateConnected,
56 kStateTempCtrlIdle, // 7
57 kStateFeedbackCtrlIdle, // 8
58 kStateCurrentCtrlIdle, // 9
59 kStateTempCtrlRunning, // 9->10
60 kStateFeedbackCtrlRunning, // 10->11
61 kStateCurrentCtrlRunning, // 12
62 kStateCalibrating, // 11->13
63 };
64
65 enum control_t
66 {
67 kIdle,
68 kTemp,
69 kFeedback,
70 kFeedbackGlobal,
71 kCurrents,
72 };
73
74 control_t fControlType;
75
76 PixelMap fMap;
77
78 DimServiceInfoList fNetwork;
79
80 pair<Time, int> fStatusDim;
81 pair<Time, int> fStatusFAD;
82 pair<Time, int> fStatusFSC;
83 pair<Time, int> fStatusBias;
84
85 DimStampedInfo fDim;
86 DimStampedInfo fFAD;
87 DimStampedInfo fFSC;
88 DimStampedInfo fBias;
89 DimStampedInfo fBiasA;
90
91 DimStampedInfo fBiasData;
92 DimStampedInfo fBiasNom;
93 DimStampedInfo fCameraTemp;
94
95 DimDescribedService fDimReference;
96 DimDescribedService fDimDeviation;
97 DimDescribedService fDimCalibration;
98
99 vector<int64_t> fCurrentsAvg;
100 vector<int64_t> fCurrentsRms;
101
102 vector<float> fCalibration;
103 vector<float> fVoltGapd;
104
105 vector<vector<float>> fData;
106
107 int64_t fCursorCur;
108 uint64_t fCursorAmpl;
109 uint64_t fCursorTemp;
110
111 Time fBiasLast;
112 Time fStartTime;
113
114 valarray<double> fPV[3]; // Process variable (intgerated/averaged amplitudes)
115 valarray<double> fSP; // Set point (target amplitudes)
116
117 double fKp; // Proportional constant
118 double fKi; // Integral constant
119 double fKd; // Derivative constant
120 double fT; // Time constant (cycle time)
121 double fGain; // Gain (conversion from a DRS voltage deviation into a BIAS voltage change at G-APD reference voltage)
122
123 double fT21;
124
125 double fBiasOffset;
126 double fCalibrationOffset;
127 double fAppliedOffset;
128
129 uint16_t fCurrentRequestInterval;
130 uint16_t fNumCalibIgnore;
131 uint16_t fNumCalibRequests;
132
133 bool fOutputEnabled;
134
135 pair<Time, int> GetNewState(DimStampedInfo &info) const
136 {
137 const bool disconnected = info.getSize()==0;
138
139 // Make sure getTimestamp is called _before_ getTimestampMillisecs
140 const int tsec = info.getTimestamp();
141 const int tms = info.getTimestampMillisecs();
142
143 return make_pair(Time(tsec, tms*1000),
144 disconnected ? -2 : info.getQuality());
145 }
146
147 void HandleCameraTemp()
148 {
149 if (fCameraTemp.getSize()!=60*sizeof(float))
150 return;
151
152 const float *ptr = static_cast<float*>(fCameraTemp.getData());
153
154 double avgt = 0;
155 int numt = 0;
156 for (int i=1; i<32; i++)
157 if (ptr[i]!=0)
158 {
159 avgt += ptr[i];
160 numt++;
161 }
162
163 if (numt==0)
164 return;
165
166 avgt /= numt; // [deg C]
167
168 const double dUt = (avgt-25)*4./70; // [V]
169
170 if (GetCurrentState()==kStateCalibrating && fBiasOffset>dUt-1.2)
171 {
172 ostringstream msg;
173 msg << " (applied calibration offset " << fBiasOffset << "V exceeds temperature correction " << avgt << "V - 1.2V.";
174 Warn("Trying to calibrate above G-APD breakdown volatge!");
175 Warn(msg);
176 return;
177 }
178
179 // FIXME: If calibrating do not wait for the temperature!
180 fAppliedOffset = fBiasOffset;
181 if (GetCurrentState()!=kStateCalibrating)
182 fAppliedOffset += dUt;
183
184 vector<float> vec(2*BIAS::kNumChannels+2);
185 for (int i=0; i<BIAS::kNumChannels; i++)
186 vec[i+BIAS::kNumChannels] = fAppliedOffset;
187
188 vec[BIAS::kNumChannels*2] = dUt;
189 vec[BIAS::kNumChannels*2+1] = fBiasOffset;
190
191 double avg[2] = { 0, 0 };
192 double min[2] = { 90, 90 };
193 double max[2] = { -90, -90 };
194 int num[2] = { 0, 0 };
195
196 vector<double> med[2];
197 med[0].resize(416);
198 med[1].resize(416);
199
200 if (fControlType==kCurrents)
201 {
202 if (fCursorCur==0)
203 {
204 //DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
205 return;
206 }
207
208 // Convert from DAC counts to uA
209 const double conv = 5000./4096;
210
211 // 3900 Ohm/n + 1000 Ohm + 1100 Ohm (with n=4 or n=5)
212 const double R[2] = { 3075, 2870 };
213
214 const float *Iavg = fCalibration.data(); // Offset at U=fCalibrationOffset
215 const float *Ravg = fCalibration.data()+BIAS::kNumChannels*2; // Measured resistance
216
217 // U0 = fCalibrationOffset
218 // dT = fAppliedVoltage
219
220 // Ifeedback = Im[i] - (U[i]-U0)/Ravg[i] - Iavg[i];
221 // dUapplied[i] + dUneu[i] = R[g] * (Im[i] - (dUapplied[i]+dUneu[i]-U0+dT)/Ravg[i] - Iavg[i])
222
223 // The assumption here is that the offset calculated from the temperature
224 // does not significanly change within a single step
225
226 // dU[i] := dUtotal[i] = dUapplied[i] + dUneu[i]
227 // dU[i] / R[g] = Im[i] - (dU[i]+dT-U0)/Ravg[i] - Iavg[i]
228 // dU[i]/R[g] + dU[i]/Ravg[i] = Im[i] + U0/Ravg[i] - dT/Ravg[i] - Iavg[i]
229 // dU[i]*(1/R[g]+1/Ravg[i]) = Im[i] - Iavg[i] + U0/Ravg[i] - dT/Ravg[i]
230 // dU[i] = (Im[i] - Iavg[i] + U0/Ravg[i] - dT/Ravg[i]) / (1/R[g]+1/Ravg[i])
231 // dU[i] = { Im[i] - Iavg[i] + (U0-dT)/Ravg[i] } * r with r := 1 / (1/R[g]+1/Ravg[i])
232
233 const double U0 = fAppliedOffset-fCalibrationOffset;
234
235 for (int i=0; i<BIAS::kNumChannels; i++)
236 {
237 const PixelMapEntry &hv = fMap.hv(i);
238 if (!hv)
239 continue;
240
241 // Average measured current
242 const double Im = double(fCurrentsAvg[i])/fCursorCur * conv; // [uA]
243
244 // Group index (0 or 1) of the of the pixel (4 or 5 pixel patch)
245 const int g = hv.group();
246
247 // Serial resistors in front of the G-APD
248 double Rg = R[g];
249
250 // This is assuming that the broken pixels have a 390 Ohm instead of 3900 Ohm serial resistor
251 if (i==66) // Pixel 830(66)
252 Rg = 2400; // 2400 = (3/3900 + 1/390) + 1000 + 1100
253 if (i==191 || i==193) // Pixel 583(191) / Pixel 1401(193)
254 Rg = 2379; // 2379 = (4/3900 + 1/390) + 1000 + 1100
255
256 const double r = 1./(1./Rg + 1./Ravg[i]); // [Ohm]
257
258 // Offset induced by the voltage above the calibration point
259 const double dI = U0/Ravg[i]; // [V/Ohm]
260
261 // Offset at the calibration point (make sure that the calibration is
262 // valid (Im[i]>Iavg[i]) and we operate above the calibration point)
263 const double I = Im>Iavg[i] ? Im - Iavg[i] : 0; // [A]
264
265 // Make sure that the averaged resistor is valid
266 const double dU = Ravg[i]>10000 ? r*(I*1e-6 - dI) : 0;
267
268 vec[i+BIAS::kNumChannels] += dU;
269
270 // Calculate statistics only for channels with a valid calibration
271 if (Iavg[i]>0)
272 {
273 med[g][num[g]] = dU;
274 avg[g] += dU;
275 num[g]++;
276
277 if (dU<min[g])
278 min[g] = dU;
279 if (dU>max[g])
280 max[g] = dU;
281 }
282 }
283
284 sort(med[0].begin(), med[0].begin()+num[0]);
285 sort(med[1].begin(), med[1].begin()+num[1]);
286
287 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
288 fCursorCur = 0;
289 }
290
291 fDimDeviation.setQuality(fControlType);
292 fDimDeviation.Update(vec);
293
294 if (!fOutputEnabled || fStatusBias.second!=BIAS::kVoltageOn)
295 return;
296
297 // Trigger calibration
298 if (GetCurrentState()==kStateCalibrating && fCursorTemp==1)
299 {
300 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
301 return;
302 }
303
304 ostringstream msg;
305 msg << setprecision(4) << "Sending new absolute offset (" << fAppliedOffset << "V+" << (num[0]+num[1]>0?(avg[0]+avg[1])/(num[0]+num[1]):0) << "V) to biasctrl.";
306 Info(msg);
307
308 if (fControlType==kCurrents && num[0]>0 && num[1]>0)
309 {
310 msg.str("");
311 msg << " Avg0=" << setw(7) << avg[0]/num[0] << " | Avg1=" << setw(7) << avg[1]/num[1];
312 Debug(msg);
313
314 msg.str("");
315 msg << " Med0=" << setw(7) << med[0][num[0]/2] << " | Med1=" << setw(7) << med[1][num[1]/2];
316 Debug(msg);
317
318 msg.str("");
319 msg << " Min0=" << setw(7) << min[0] << " | Min1=" << setw(7) << min[1];
320 Debug(msg);
321
322 msg.str("");
323 msg << " Max0=" << setw(7) << max[0] << " | Max1=" << setw(7) << max[1];
324 Debug(msg);
325 }
326
327 DimClient::sendCommandNB("BIAS_CONTROL/SET_ALL_CHANNELS_OFFSET",
328 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
329
330 fCursorTemp++;
331 }
332
333 int AverageCurrents()
334 {
335 if (fBiasA.getSize()!=BIAS::kNumChannels*sizeof(int16_t))
336 return -1;
337
338 if (fStatusBias.second!=BIAS::kVoltageOn)
339 return false;
340
341 if (fCursorCur++<0)
342 return true;
343
344 const int16_t *ptr = static_cast<int16_t*>(fBiasA.getData());
345
346 for (int i=0; i<BIAS::kNumChannels; i++)
347 {
348 fCurrentsAvg[i] += ptr[i];
349 fCurrentsRms[i] += ptr[i]*ptr[i];
350 }
351
352 return true;
353 }
354
355
356 void HandleCalibration()
357 {
358 const int rc = AverageCurrents();
359 if (rc<0)
360 return;
361
362 if (fCursorCur<fNumCalibRequests)
363 {
364 if (fStatusBias.second==BIAS::kVoltageOn)
365 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
366 return;
367 }
368
369 if (rc==0)
370 return;
371
372 fCalibration.resize(BIAS::kNumChannels*3);
373
374 float *avg = fCalibration.data();
375 float *rms = fCalibration.data()+BIAS::kNumChannels;
376 float *res = fCalibration.data()+BIAS::kNumChannels*2;
377
378 const double conv = 5000./4096;
379
380 for (int i=0; i<BIAS::kNumChannels; i++)
381 {
382 const double I = double(fCurrentsAvg[i])/fCursorCur;
383
384 res[i] = (fVoltGapd[i]+fCalibrationOffset)/I / conv * 1e6;
385 avg[i] = conv * I;
386 rms[i] = conv * sqrt(double(fCurrentsRms[i])/fCursorCur-I*I);
387 }
388
389 fDimCalibration.Update(fCalibration);
390
391 fOutputEnabled = false;
392 fControlType = kIdle;
393
394 Info("Calibration successfully done.");
395
396 if (fStatusBias.second==BIAS::kVoltageOn)
397 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
398 }
399
400 void HandleFeedback()
401 {
402 if (fBiasData.getSize()!=1440*sizeof(float))
403 return;
404
405 // -------- Check age of last stored event --------
406
407 // Must be called in this order
408 const int tsec = fBiasData.getTimestamp();
409 const int tms = fBiasData.getTimestampMillisecs();
410
411 const Time tm(tsec, tms*1000);
412
413 if (Time()-fBiasLast>boost::posix_time::seconds(30))
414 {
415 Warn("Last received event data older than 30s... resetting average calculation.");
416 ResetData();
417 }
418 fBiasLast = tm;
419
420 // -------- Store new event --------
421
422 fData[fCursorAmpl%fData.size()].assign(reinterpret_cast<float*>(fBiasData.getData()),
423 reinterpret_cast<float*>(fBiasData.getData())+1440);
424
425 if (++fCursorAmpl<fData.size())
426 return;
427
428 // -------- Calculate statistics --------
429
430 valarray<double> med(1440);
431
432 for (int ch=0; ch<1440; ch++)
433 {
434 vector<float> arr(fData.size());
435 for (size_t i=0; i<fData.size(); i++)
436 arr[i] = fData[i][ch];
437
438 sort(arr.begin(), arr.end());
439
440 med[ch] = arr[arr.size()/2];
441 }
442
443 /*
444 vector<float> med(1440);
445 vector<float> rms(1440);
446 for (size_t i=0; i<fData.size(); i++)
447 {
448 if (fData[i].size()==0)
449 return;
450
451 for (int j=0; j<1440; j++)
452 {
453 med[j] += fData[i][j];
454 rms[j] += fData[i][j]*fData[i][j];
455 }
456 }
457 */
458
459 vector<double> avg(BIAS::kNumChannels);
460 vector<int> num(BIAS::kNumChannels);
461 for (int i=0; i<1440; i++)
462 {
463 const PixelMapEntry &ch = fMap.hw(i);
464
465 // FIXME: Add a consistency check if the median makes sense...
466 // FIXME: Add a consistency check to remove pixels with bright stars (median?)
467
468 avg[ch.hv()] += med[i];
469 num[ch.hv()]++;
470 }
471
472 for (int i=0; i<BIAS::kNumChannels; i++)
473 {
474 if (num[i])
475 avg[i] /= num[i];
476
477 }
478
479 // -------- Calculate correction --------
480
481 // http://bestune.50megs.com/typeABC.htm
482
483 // CO: Controller output
484 // PV: Process variable
485 // SP: Set point
486 // T: Sampling period (loop update period)
487 // e = SP - PV
488 //
489 // Kp : No units
490 // Ki : per seconds
491 // Kd : seconds
492
493 // CO(k)-CO(k-1) = - Kp[ PV(k) - PV(k-1) ] + Ki * T * (SP(k)-PV(k)) - Kd/T [ PV(k) - 2PV(k-1) + PV(k-2) ]
494
495 if (fCursorAmpl%fData.size()>0)
496 return;
497
498 // FIXME: Take out broken / dead boards.
499
500 const Time tm0 = Time();
501
502 /*const*/ double T21 = fT>0 ? fT : (tm0-fStartTime).total_microseconds()/1000000.;
503 const double T10 = fT21;
504 fT21 = T21;
505
506 fStartTime = tm0;
507
508 ostringstream out;
509 out << "New " << fData.size() << " event received: " << fCursorAmpl << " / " << setprecision(3) << T21 << "s";
510 Info(out);
511
512 if (fPV[0].size()==0)
513 {
514 fPV[0].resize(avg.size());
515 fPV[0] = valarray<double>(avg.data(), avg.size());
516 return;
517 }
518
519 if (fPV[1].size()==0)
520 {
521 fPV[1].resize(avg.size());
522 fPV[1] = valarray<double>(avg.data(), avg.size());
523 return;
524 }
525
526 if (fPV[2].size()==0)
527 {
528 fPV[2].resize(avg.size());
529 fPV[2] = valarray<double>(avg.data(), avg.size());
530 return;
531 }
532
533 fPV[0] = fPV[1];
534 fPV[1] = fPV[2];
535
536 fPV[2].resize(avg.size());
537 fPV[2] = valarray<double>(avg.data(), avg.size());
538
539 if (T10<=0 || T21<=0)
540 return;
541
542 //cout << "Calculating (" << fCursor << ":" << T21 << ")... " << endl;
543
544 // fKi[j] = response[j]*gain;
545 // Kp = 0;
546 // Kd = 0;
547
548 // => Kp = 0.01 * gain = 0.00005
549 // => Ki = 0.8 * gain/20s = 0.00025
550 // => Kd = 0.1 * gain/20s = 0.00003
551
552 /*
553 fKp = 0;
554 fKd = 0;
555 fKi = 0.00003*20;
556 T21 = 1;
557 */
558
559 //valarray<double> correction = - Kp*(PV[2] - PV[1]) + Ki * dT * (SP-PV[2]) - Kd/dT * (PV[2] - 2*PV[1] + PV[0]);
560 //valarray<double> correction =
561 // - Kp * (PV[2] - PV[1])
562 // + dT * Ki * (SP - PV[2])
563 // - Kd / dT * (PV[2] - 2*PV[1] + PV[0]);
564 //
565 // - (Kp+Kd/dT1) * (PV[2] - PV[1])
566 // + dT2 * Ki * (SP - PV[2])
567 // + Kd / dT1 * (PV[1] - PV[0]);
568 //
569 // - Kp * (PV[2] - PV[1])
570 // + Ki * (SP - PV[2])*dT
571 // - Kd * (PV[2] - PV[1])/dT
572 // + Kd * (PV[1] - PV[0])/dT;
573 //
574 //valarray<double> correction =
575 // - Kp*(PV[2] - PV[1]) + Ki * T21 * (SP-PV[2]) - Kd*(PV[2]-PV[1])/T21 - Kd*(PV[0]-PV[1])/T01;
576 const valarray<double> correction = 1./fGain/1000*
577 (
578 - (fKp+fKd/T21)*(fPV[2] - fPV[1])
579 + fKi*T21*(fSP-fPV[2])
580 + fKd/T10*(fPV[1]-fPV[0])
581 );
582
583 /*
584 integral = 0
585 start:
586 integral += (fSP - fPV[2])*dt
587
588 output = Kp*(fSP - fPV[2]) + Ki*integral - Kd*(fPV[2] - fPV[1])/dt
589
590 wait(dt)
591
592 goto start
593 */
594
595 vector<float> vec(2*BIAS::kNumChannels+2);
596 for (int i=0; i<BIAS::kNumChannels; i++)
597 vec[i] = fPV[2][i]-fSP[i];
598
599 for (int i=0; i<BIAS::kNumChannels; i++)
600 vec[i+BIAS::kNumChannels] = avg[i]<5*2.5 ? 0 : correction[i];
601
602 fDimDeviation.setQuality(fControlType);
603 fDimDeviation.Update(vec);
604
605 if (!fOutputEnabled || fStatusBias.second!=BIAS::kVoltageOn)
606 return;
607
608 Info("Sending new relative offset to biasctrl.");
609
610 DimClient::sendCommandNB("BIAS_CONTROL/INCREASE_ALL_CHANNELS_VOLTAGE",
611 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
612 }
613
614 void HandleGlobalFeedback()
615 {
616 if (fBiasData.getSize()!=1440*sizeof(float))
617 return;
618
619 // -------- Store new event --------
620
621 vector<float> arr(reinterpret_cast<float*>(fBiasData.getData()),
622 reinterpret_cast<float*>(fBiasData.getData())+1440);
623
624 sort(arr.begin(), arr.end());
625
626 const float med = arr[arr.size()/2];
627
628 fData[fCursorAmpl%fData.size()].resize(1); //assign(&med, &med);
629 fData[fCursorAmpl%fData.size()][0] = med; //assign(&med, &med);
630
631 if (++fCursorAmpl<fData.size())
632 return;
633
634 // -------- Calculate statistics --------
635
636 double avg=0;
637 double rms=0;
638 for (size_t i=0; i<fData.size(); i++)
639 {
640 avg += fData[i][0];
641 rms += fData[i][0]*fData[i][0];
642 }
643
644 avg /= fData.size();
645 rms /= fData.size();
646
647 rms = sqrt(rms-avg*avg);
648
649 // -------- Calculate correction --------
650
651 if (fCursorAmpl%fData.size()!=0)
652 return;
653
654 Out() << "Amplitude: " << avg << " +- " << rms << endl;
655
656 // FIXME: Take out broken / dead boards.
657
658 /*
659 ostringstream out;
660 out << "New " << fData.size() << " event received: " << fCursor << " / " << setprecision(3) << T21 << "s";
661 Info(out);
662 */
663
664 if (fPV[0].size()==0)
665 {
666 fPV[0].resize(1);
667 fPV[0] = valarray<double>(&avg, 1);
668 return;
669 }
670
671 if (fPV[1].size()==0)
672 {
673 fPV[1].resize(1);
674 fPV[1] = valarray<double>(&avg, 1);
675 return;
676 }
677
678 if (fPV[2].size()==0)
679 {
680 fPV[2].resize(1);
681 fPV[2] = valarray<double>(&avg, 1);
682 return;
683 }
684
685 fPV[0] = fPV[1];
686 fPV[1] = fPV[2];
687
688 fPV[2].resize(1);
689 fPV[2] = valarray<double>(&avg, 1);
690
691 // ----- Calculate average currents -----
692
693 vector<float> A(BIAS::kNumChannels);
694 for (int i=0; i<BIAS::kNumChannels; i++)
695 A[i] = double(fCurrentsAvg[i]) / fCursorCur;
696
697 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
698 fCursorCur = 0;
699
700 // -------- Calculate correction --------
701
702 // correction = (fSP[0]-fPV[2])*fKi
703 /*
704 const double T21 = 1; // feedback is 1s
705 const double T10 = 1; // feedback is 20s
706
707 const valarray<double> correction = 1./fGain/1000*
708 (
709 - (fKp+fKd/T21)*(fPV[2] - fPV[1])
710 + fKi*T21*(fSP[0]-fPV[2])
711 + fKd/T10*(fPV[1]-fPV[0])
712 );
713 */
714
715 // pow of 1.6 comes from the non-linearity of the
716 // amplitude vs bias voltage
717 const valarray<double> correction = 1./fGain/1000*
718 (
719 //fKi*(pow(fSP[0], 1./1.6)-pow(fPV[2], 1./1.6))
720 fKi*(fSP[0]-fPV[2])
721 );
722
723 Out() << "Correction: " << correction[0] << "V (" << fSP[0] << ")" << endl;
724
725 const int nch = BIAS::kNumChannels;
726
727 // FIXME: Sanity check!
728
729 vector<float> vec;
730 vec.reserve(2*nch+2);
731 vec.insert(vec.begin(), nch, fPV[2][0]-fSP[0]);
732 vec.insert(vec.begin()+nch, nch, correction[0]);
733 vec.push_back(0);
734 vec.push_back(0);
735
736 fDimDeviation.setQuality(fControlType);
737 fDimDeviation.Update(vec);
738
739 if (!fOutputEnabled || fStatusBias.second!=BIAS::kVoltageOn)
740 return;
741
742 Info("Sending new global relative offset to biasctrl.");
743
744 DimClient::sendCommandNB("BIAS_CONTROL/INCREASE_ALL_CHANNELS_VOLTAGE",
745 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
746 }
747
748 void infoHandler()
749 {
750 DimInfo *curr = getInfo(); // get current DimInfo address
751 if (!curr)
752 return;
753
754 if (curr==&fBias)
755 {
756 fStatusBias = GetNewState(fBias);
757 return;
758 }
759
760 if (curr==&fFAD)
761 {
762 fStatusFAD = GetNewState(fFAD);
763 return;
764 }
765
766 if (curr==&fFSC)
767 {
768 fStatusFSC = GetNewState(fFSC);
769 return;
770 }
771
772 if (curr==&fDim)
773 {
774 fStatusDim = GetNewState(fDim);
775 fStatusDim.second = curr->getSize()==4 ? curr->getInt() : 0;
776 return;
777 }
778
779 if (curr==&fBiasNom)
780 {
781 const float *ptr = reinterpret_cast<float*>(fBiasNom.getData());
782 fVoltGapd.assign(ptr, ptr+416);
783 Info("Nominal bias voltages received.");
784 return;
785 }
786
787 if (curr==&fCameraTemp && (fControlType==kTemp || fControlType==kCurrents))
788 HandleCameraTemp();
789
790 if (curr==&fBiasA && fControlType==kTemp && GetCurrentState()==kStateCalibrating)
791 HandleCalibration();
792
793 if (curr==&fBiasA && (fControlType==kFeedbackGlobal || fControlType==kCurrents))
794 AverageCurrents();
795
796 if (curr==&fBiasData && fControlType==kFeedback)
797 HandleFeedback();
798
799 if (curr==&fBiasData && fControlType==kFeedbackGlobal)
800 HandleGlobalFeedback();
801 }
802
803 bool CheckEventSize(size_t has, const char *name, size_t size)
804 {
805 if (has==size)
806 return true;
807
808 ostringstream msg;
809 msg << name << " - Received event has " << has << " bytes, but expected " << size << ".";
810 Fatal(msg);
811 return false;
812 }
813
814 void PrintState(const pair<Time,int> &state, const char *server)
815 {
816 const State rc = fNetwork.GetState(server, state.second);
817
818 Out() << state.first.GetAsStr("%H:%M:%S.%f").substr(0, 12) << " - ";
819 Out() << kBold << server << ": ";
820 Out() << rc.name << "[" << rc.index << "]";
821 Out() << kReset << " - " << kBlue << rc.comment << endl;
822 }
823
824 int Print()
825 {
826 Out() << fStatusDim.first.GetAsStr("%H:%M:%S.%f").substr(0, 12) << " - ";
827 Out() << kBold << "DIM_DNS: ";
828 if (fStatusDim.second==0)
829 Out() << "Offline" << endl;
830 else
831 Out() << "V" << fStatusDim.second/100 << 'r' << fStatusDim.second%100 << endl;
832
833 PrintState(fStatusFAD, "FAD_CONTROL");
834 PrintState(fStatusFSC, "FSC_CONTROL");
835 PrintState(fStatusBias, "BIAS_CONTROL");
836
837 return GetCurrentState();
838 }
839
840 int PrintCalibration()
841 {
842 if (fCalibration.size()==0)
843 {
844 Out() << "No calibration performed so far." << endl;
845 return GetCurrentState();
846 }
847
848 const float *avg = fCalibration.data();
849 const float *rms = fCalibration.data()+BIAS::kNumChannels;
850 const float *res = fCalibration.data()+BIAS::kNumChannels*2;
851
852 Out() << "Average current at " << fCalibrationOffset << "V below G-APD operation voltage:\n";
853
854 for (int k=0; k<13; k++)
855 for (int j=0; j<8; j++)
856 {
857 Out() << setw(2) << k << "|" << setw(2) << j*4 << "|";
858 for (int i=0; i<4; i++)
859 Out() << Tools::Form(" %6.1f+-%4.1f", avg[k*32+j*4+i], rms[k*32+j*4+i]);
860 Out() << '\n';
861 }
862 Out() << '\n';
863
864 Out() << "Measured calibration resistor:\n";
865 for (int k=0; k<13; k++)
866 for (int j=0; j<4; j++)
867 {
868 Out() << setw(2) << k << "|" << setw(2) << j*8 << "|";
869 for (int i=0; i<8; i++)
870 Out() << Tools::Form(" %5.0f", res[k*32+j*8+i]);
871 Out() << '\n';
872 }
873
874 Out() << flush;
875
876 return GetCurrentState();
877 }
878
879 void WarnState(bool needfsc, bool needfad)
880 {
881 const bool bias = fStatusBias.second >= BIAS::kConnecting;
882 const bool fsc = fStatusFSC.second >= 2;
883 const bool fad = fStatusFAD.second >= FAD::kConnected;
884
885 if (!bias)
886 Warn("Bias control not yet ready.");
887 if (needfsc && !fsc)
888 Warn("FSC control not yet ready.");
889 if (needfad && !fad)
890 Warn("FAD control not yet ready.");
891 }
892
893 int SetConstant(const EventImp &evt, int constant)
894 {
895 if (!CheckEventSize(evt.GetSize(), "SetConstant", 8))
896 return kSM_FatalError;
897
898 switch (constant)
899 {
900 case 0: fKi = evt.GetDouble(); break;
901 case 1: fKp = evt.GetDouble(); break;
902 case 2: fKd = evt.GetDouble(); break;
903 case 3: fT = evt.GetDouble(); break;
904 case 4: fGain = evt.GetDouble(); break;
905 default:
906 Fatal("SetConstant got an unexpected constant id -- this is a program bug!");
907 return kSM_FatalError;
908 }
909
910 return GetCurrentState();
911 }
912
913 int EnableOutput(const EventImp &evt)
914 {
915 if (!CheckEventSize(evt.GetSize(), "EnableOutput", 1))
916 return kSM_FatalError;
917
918 fOutputEnabled = evt.GetBool();
919
920 return GetCurrentState();
921 }
922
923 void ResetData(int16_t n=-1)
924 {
925 fData.assign(n>0 ? n : fData.size(), vector<float>(0));
926
927 fCursorAmpl = 0;
928 fCursorCur = 0;
929 fCursorTemp = 0;
930
931 fStartTime = Time();
932
933 fSP = valarray<double>(0., BIAS::kNumChannels);
934
935 vector<float> vec(2*BIAS::kNumChannels+2);
936 vec[2*BIAS::kNumChannels+1] = fBiasOffset;
937 fDimDeviation.setQuality(kIdle);
938 fDimDeviation.Update(vec);
939
940 fPV[0].resize(0);
941 fPV[1].resize(0);
942 fPV[2].resize(0);
943
944 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
945 fCurrentsRms.assign(BIAS::kNumChannels, 0);
946
947 if (fKp==0 && fKi==0 && fKd==0)
948 Warn("Control loop parameters are all set to zero.");
949 }
950
951 int StartFeedback(const EventImp &evt)
952 {
953 if (!CheckEventSize(evt.GetSize(), "StartFeedback", 2))
954 return kSM_FatalError;
955
956 WarnState(false, true);
957
958 fBiasOffset = 0;
959 ResetData(evt.GetShort());
960
961 fControlType = kFeedback;
962
963 return GetCurrentState();
964 }
965
966 int StartFeedbackGlobal(const EventImp &evt)
967 {
968 if (!CheckEventSize(evt.GetSize(), "StartFeedbackGlobal", 2))
969 return kSM_FatalError;
970
971 WarnState(false, true);
972
973 fBiasOffset = 0;
974 ResetData(evt.GetShort());
975
976 fControlType = kFeedbackGlobal;
977
978 return GetCurrentState();
979 }
980
981 int StartTempCtrl(const EventImp &evt)
982 {
983 if (!CheckEventSize(evt.GetSize(), "StartTempCtrl", 4))
984 return kSM_FatalError;
985
986 WarnState(true, false);
987
988 fBiasOffset = evt.GetFloat();
989 fControlType = kTemp;
990
991 ostringstream out;
992 out << "Starting temperature feedback with an offset of " << fBiasOffset << "V";
993 Message(out);
994
995 if (fStatusBias.second==BIAS::kVoltageOn)
996 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
997
998 return GetCurrentState();
999 }
1000
1001 int StartCurrentCtrl(const EventImp &evt)
1002 {
1003 if (!CheckEventSize(evt.GetSize(), "StartCurrentCtrl", 4))
1004 return kSM_FatalError;
1005
1006 if (fCalibration.size()==0)
1007 {
1008 Warn("Current control needs a bias crate calibration first... command ignored.");
1009 return GetCurrentState();
1010 }
1011
1012 WarnState(true, false);
1013
1014 fBiasOffset = evt.GetFloat();
1015 ResetData(0);
1016 fControlType = kCurrents;
1017
1018 ostringstream out;
1019 out << "Starting current/temp feedback with an offset of " << fBiasOffset << "V";
1020 Message(out);
1021
1022 return GetCurrentState();
1023 }
1024
1025 int StopFeedback()
1026 {
1027 fControlType = kIdle;
1028
1029 return GetCurrentState();
1030 }
1031
1032 int StoreReference()
1033 {
1034 if (!fPV[0].size() && !fPV[1].size() && !fPV[2].size())
1035 {
1036 Warn("No values in memory. Take enough events first!");
1037 return GetCurrentState();
1038 }
1039
1040 // FIXME: Check age
1041
1042 if (!fPV[1].size() && !fPV[2].size())
1043 fSP = fPV[0];
1044
1045 if (!fPV[2].size())
1046 fSP = fPV[1];
1047 else
1048 fSP = fPV[2];
1049
1050 vector<float> vec(BIAS::kNumChannels);
1051 for (int i=0; i<BIAS::kNumChannels; i++)
1052 vec[i] = fSP[i];
1053 fDimReference.Update(vec);
1054
1055 return GetCurrentState();
1056 }
1057
1058 int SetReference(const EventImp &evt)
1059 {
1060 if (!CheckEventSize(evt.GetSize(), "SetReference", 4))
1061 return kSM_FatalError;
1062
1063 const float val = evt.GetFloat();
1064 /*
1065 if (!fPV[0].size() && !fPV[1].size() && !fPV[2].size())
1066 {
1067 Warn("No values in memory. Take enough events first!");
1068 return GetCurrentState();
1069 }*/
1070
1071 vector<float> vec(BIAS::kNumChannels);
1072 for (int i=0; i<BIAS::kNumChannels; i++)
1073 vec[i] = fSP[i] = val;
1074 fDimReference.Update(vec);
1075
1076 Out() << "New global reference value: " << val << "mV" << endl;
1077
1078 return GetCurrentState();
1079 }
1080
1081 int CalibrateCurrents()
1082 {
1083// if (!CheckEventSize(evt.GetSize(), "StartTempCtrl", 4))
1084// return kSM_FatalError;
1085
1086 if (fStatusBias.second==BIAS::kRamping)
1087 {
1088 Warn("Calibration cannot be started when biasctrl is in state Ramping.");
1089 return GetCurrentState();
1090 }
1091
1092 if (fVoltGapd.size()==0)
1093 {
1094 Error("No G-APD reference voltages received yet (BIAS_CONTROL/NOMINAL).");
1095 return GetCurrentState();
1096 }
1097
1098 WarnState(true, false);
1099
1100 ostringstream out;
1101 out << "Starting temperature feedback for calibration with an offset of " << fCalibrationOffset << "V";
1102 Message(out);
1103
1104 fBiasOffset = fCalibrationOffset;
1105 fControlType = kTemp;
1106 fCursorCur = -fNumCalibIgnore;
1107 fCursorTemp = 0;
1108 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
1109 fCurrentsRms.assign(BIAS::kNumChannels, 0);
1110 fCalibration.resize(0);
1111 fStartTime = Time();
1112 fOutputEnabled = true;
1113
1114 return kStateCalibrating;
1115 }
1116
1117 int SetCurrentRequestInterval(const EventImp &evt)
1118 {
1119 if (!CheckEventSize(evt.GetSize(), "SetCurrentRequestInterval", 2))
1120 return kSM_FatalError;
1121
1122 fCurrentRequestInterval = evt.GetUShort();
1123
1124 Out() << "New current request interval: " << fCurrentRequestInterval << "ms" << endl;
1125
1126 return GetCurrentState();
1127 }
1128
1129 int Execute()
1130 {
1131 // Dispatch (execute) at most one handler from the queue. In contrary
1132 // to run_one(), it doesn't wait until a handler is available
1133 // which can be dispatched, so poll_one() might return with 0
1134 // handlers dispatched. The handlers are always dispatched/executed
1135 // synchronously, i.e. within the call to poll_one()
1136 //poll_one();
1137
1138 if (fStatusDim.second==0)
1139 return kStateDimNetworkNA;
1140
1141 const bool bias = fStatusBias.second >= BIAS::kConnecting;
1142 const bool fad = fStatusFAD.second >= FAD::kConnected;
1143 const bool fsc = fStatusFSC.second >= 2;
1144
1145 // All subsystems are not connected
1146 if (!bias && !fad && !fsc)
1147 return kStateDisconnected;
1148
1149 // At least one subsystem apart from bias is connected
1150 if (bias && !fad && !fsc)
1151 return kStateConnecting;
1152
1153/*
1154 // All subsystems are connected
1155 if (GetCurrentStatus()==kStateConfiguringStep1)
1156 {
1157 if (fCursor<1)
1158 return kStateConfiguringStep1;
1159
1160 if (fCursor==1)
1161 {
1162 fStartTime = Time();
1163 return kStateConfiguringStep2;
1164 }
1165 }
1166 if (GetCurrentStatus()==kStateConfiguringStep2)
1167 {
1168 if (fCursor==1)
1169 {
1170 if ((Time()-fStartTime).total_microseconds()/1000000.<1.5)
1171 return kStateConfiguringStep2;
1172
1173 Dim::SendCommand("BIAS_CONTROL/REQUEST_STATUS");
1174 }
1175 if (fCursor==2)
1176 {
1177
1178 int n=0;
1179 double avg = 0;
1180 for (size_t i=0; i<fCurrents.size(); i++)
1181 if (fCurrents[i]>=0)
1182 {
1183 avg += fCurrents[i];
1184 n++;
1185 }
1186
1187 cout << avg/n << endl;
1188 }
1189 return kStateConnected;
1190 }
1191 */
1192
1193 // Needs connection of FAD and BIAS
1194 if (bias && fad)
1195 {
1196 if (fControlType==kFeedback || fControlType==kFeedbackGlobal)
1197 return fOutputEnabled ? kStateFeedbackCtrlRunning : kStateFeedbackCtrlIdle;
1198 }
1199
1200 // Needs connection of FSC and BIAS
1201 if (bias && fsc)
1202 {
1203 if (fControlType==kTemp)
1204 {
1205 if (GetCurrentState()==kStateCalibrating && fCursorCur<fNumCalibRequests)
1206 return GetCurrentState();
1207
1208 return fOutputEnabled ? kStateTempCtrlRunning : kStateTempCtrlIdle;
1209 }
1210 if (fControlType==kCurrents)
1211 {
1212 static Time past;
1213 if (fCurrentRequestInterval>0 && Time()-past>boost::posix_time::milliseconds(fCurrentRequestInterval))
1214 {
1215 if (fStatusBias.second==BIAS::kVoltageOn)
1216 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
1217 past = Time();
1218 }
1219
1220 return fOutputEnabled ? kStateCurrentCtrlRunning : kStateCurrentCtrlIdle;
1221 }
1222 }
1223
1224 if (bias && fad && !fsc)
1225 return kStateConnectedFAD;
1226
1227 if (bias && fsc && !fad)
1228 return kStateConnectedFSC;
1229
1230 return kStateConnected;
1231 }
1232
1233public:
1234 StateMachineFeedback(ostream &out=cout) : StateMachineDim(out, "FEEDBACK"),
1235 fStatusDim(make_pair(Time(), -2)),
1236 fStatusFAD(make_pair(Time(), -2)),
1237 fStatusBias(make_pair(Time(), -2)),
1238 fDim("DIS_DNS/VERSION_NUMBER", (void*)NULL, 0, this),
1239 fFAD("FAD_CONTROL/STATE", (void*)NULL, 0, this),
1240 fFSC("FSC_CONTROL/STATE", (void*)NULL, 0, this),
1241 fBias("BIAS_CONTROL/STATE", (void*)NULL, 0, this),
1242 fBiasA("BIAS_CONTROL/CURRENT", (void*)NULL, 0, this),
1243 fBiasData("FAD_CONTROL/FEEDBACK_DATA", (void*)NULL, 0, this),
1244 fBiasNom("BIAS_CONTROL/NOMINAL", (void*)NULL, 0, this),
1245 fCameraTemp("FSC_CONTROL/TEMPERATURE", (void*)NULL, 0, this),
1246 fDimReference("FEEDBACK/REFERENCE", "F:416",
1247 "Amplitude reference value(s)"
1248 "Vref[mV]:Amplitude reference"),
1249 fDimDeviation("FEEDBACK/DEVIATION", "F:416;F:416;F:1;F:1",
1250 "Control loop information"
1251 "|DeltaAmpl[mV]:Amplitude offset measures"
1252 "|DeltaBias[mV]:Correction value calculated"
1253 "|DeltaTemp[mV]:Correction calculated from temperature"
1254 "|DeltaUser[mV]:Additional offset specified by user"),
1255 fDimCalibration("FEEDBACK/CALIBRATION", "F:416;F:416;F:416",
1256 "Current offsets"
1257 "|Avg[uA]:Average offset"
1258 "|Rms[uA]:Rms of offset"
1259 "|R[Ohm]:Measured calibration resistor"),
1260 fSP(BIAS::kNumChannels),
1261 fKp(0), fKi(0), fKd(0), fT(-1),
1262 fCalibrationOffset(-3),
1263 fCurrentRequestInterval(0),
1264 fNumCalibIgnore(30),
1265 fNumCalibRequests(300),
1266 fOutputEnabled(false)
1267 {
1268 // ba::io_service::work is a kind of keep_alive for the loop.
1269 // It prevents the io_service to go to stopped state, which
1270 // would prevent any consecutive calls to run()
1271 // or poll() to do nothing. reset() could also revoke to the
1272 // previous state but this might introduce some overhead of
1273 // deletion and creation of threads and more.
1274
1275// fSP.resize(416);
1276
1277 // State names
1278 AddStateName(kStateDimNetworkNA, "DimNetworkNotAvailable",
1279 "The Dim DNS is not reachable.");
1280
1281 AddStateName(kStateDisconnected, "Disconnected",
1282 "The Dim DNS is reachable, but the required subsystems are not available.");
1283
1284 AddStateName(kStateConnecting, "Connecting",
1285 "Only biasctrl is available and connected with its hardware.");
1286
1287 AddStateName(kStateConnectedFSC, "ConnectedFSC",
1288 "biasctrl and fscctrl are available and connected with their hardware.");
1289 AddStateName(kStateConnectedFAD, "ConnectedFAD",
1290 "biasctrl and fadctrl are available and connected with their hardware.");
1291 AddStateName(kStateConnected, "Connected",
1292 "biasctrl, fadctrl and fscctrl are available and connected with their hardware.");
1293
1294 AddStateName(kStateFeedbackCtrlIdle, "FeedbackIdle",
1295 "Feedback control activated, but voltage output disabled.");
1296 AddStateName(kStateTempCtrlIdle, "TempCtrlIdle",
1297 "Temperature control activated, but voltage output disabled.");
1298 AddStateName(kStateCurrentCtrlIdle, "CurrentCtrlIdle",
1299 "Current control activated, but voltage output disabled.");
1300
1301 AddStateName(kStateFeedbackCtrlRunning, "FeedbackControl",
1302 "Feedback control activated and voltage output enabled.");
1303 AddStateName(kStateTempCtrlRunning, "TempControl",
1304 "Temperature control activated and voltage output enabled.");
1305 AddStateName(kStateCurrentCtrlRunning, "CurrentControl",
1306 "Current/Temp control activated and voltage output enabled.");
1307 AddStateName(kStateCalibrating, "Calibrating",
1308 "Calibrating current offsets.");
1309
1310 AddEvent("START_FEEDBACK_CONTROL", "S:1", kStateConnectedFAD, kStateConnected)
1311 (bind(&StateMachineFeedback::StartFeedback, this, placeholders::_1))
1312 ("Start the feedback control loop"
1313 "|Num[short]:Number of events 'medianed' to calculate the correction value");
1314
1315 AddEvent("START_GLOBAL_FEEDBACK", "S:1", kStateConnectedFAD, kStateConnected)
1316 (bind(&StateMachineFeedback::StartFeedbackGlobal, this, placeholders::_1))
1317 ("Start the global feedback control loop"
1318 "Num[short]:Number of events averaged to calculate the correction value");
1319
1320 AddEvent("START_TEMP_CONTROL", "F:1", kStateConnectedFSC, kStateConnected)
1321 (bind(&StateMachineFeedback::StartTempCtrl, this, placeholders::_1))
1322 ("Start the temperature control loop"
1323 "|offset[V]:Offset from the nominal temperature corrected value in Volts");
1324
1325 AddEvent("START_CURRENT_CONTROL", "F:1", kStateConnectedFSC, kStateConnected)
1326 (bind(&StateMachineFeedback::StartCurrentCtrl, this, placeholders::_1))
1327 ("Start the current/temperature control loop"
1328 "|offset[V]:Offset from the nominal current/temperature corrected value in Volts");
1329
1330 // kStateTempCtrlIdle, kStateFeedbackCtrlIdle, kStateTempCtrlRunning, kStateFeedbackCtrlRunning
1331 AddEvent("STOP")
1332 (bind(&StateMachineFeedback::StopFeedback, this))
1333 ("Stop any control loop");
1334
1335 AddEvent("ENABLE_OUTPUT", "B:1")//, kStateIdle)
1336 (bind(&StateMachineFeedback::EnableOutput, this, placeholders::_1))
1337 ("Enable sending of correction values caluclated by the control loop to the biasctrl");
1338
1339 AddEvent("STORE_REFERENCE")//, kStateIdle)
1340 (bind(&StateMachineFeedback::StoreReference, this))
1341 ("Store the last (averaged) value as new reference (for debug purpose only)");
1342
1343 AddEvent("SET_REFERENCE", "F:1")//, kStateIdle)
1344 (bind(&StateMachineFeedback::SetReference, this, placeholders::_1))
1345 ("Set a new global reference value (for debug purpose only)");
1346
1347 AddEvent("SET_Ki", "D:1")//, kStateIdle)
1348 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 0))
1349 ("Set integral constant Ki");
1350
1351 AddEvent("SET_Kp", "D:1")//, kStateIdle)
1352 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 1))
1353 ("Set proportional constant Kp");
1354
1355 AddEvent("SET_Kd", "D:1")//, kStateIdle)
1356 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 2))
1357 ("Set derivative constant Kd");
1358
1359 AddEvent("SET_T", "D:1")//, kStateIdle)
1360 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 3))
1361 ("Set time-constant. (-1 to use the cycle time, i.e. the time for the last average cycle, instead)");
1362
1363 AddEvent("CALIBRATE_CURRENTS", kStateConnectedFSC, kStateConnected)//, kStateIdle)
1364 (bind(&StateMachineFeedback::CalibrateCurrents, this))
1365 ("");
1366
1367 AddEvent("SET_CURRENT_REQUEST_INTERVAL", kStateConnectedFSC, kStateConnected)//, kStateIdle)
1368 (bind(&StateMachineFeedback::SetCurrentRequestInterval, this, placeholders::_1))
1369 ("|interval[ms]:Interval between two current requests in modes which need that.");
1370
1371 // Verbosity commands
1372// AddEvent("SET_VERBOSE", "B:1")
1373// (bind(&StateMachineMCP::SetVerbosity, this, placeholders::_1))
1374// ("set verbosity state"
1375// "|verbosity[bool]:disable or enable verbosity for received data (yes/no), except dynamic data");
1376
1377 AddEvent("PRINT")
1378 (bind(&StateMachineFeedback::Print, this))
1379 ("");
1380
1381 AddEvent("PRINT_CALIBRATION")
1382 (bind(&StateMachineFeedback::PrintCalibration, this))
1383 ("");
1384 }
1385
1386 int EvalOptions(Configuration &conf)
1387 {
1388 if (!fMap.Read(conf.Get<string>("pixel-map-file")))
1389 {
1390 Error("Reading mapping table from "+conf.Get<string>("pixel-map-file")+" failed.");
1391 return 1;
1392 }
1393
1394 fGain = 0.1; // V(Amplitude) / V(Bias)
1395
1396 // 148 -> 248
1397
1398 // 33 : 10s < 2%
1399 // 50 : 5s < 2%
1400 // 66 : 3s < 2%
1401 // 85 : 2s < 2%
1402
1403 fKp = 0;
1404 fKd = 0;
1405 fKi = 0.75;
1406 fT = 1;
1407
1408 // Is that independent of the aboslute real amplitude of
1409 // the light pulser?
1410
1411 ostringstream msg;
1412 msg << "Control loop parameters: ";
1413 msg << "Kp=" << fKp << ", Kd=" << fKd << ", Ki=" << fKi << ", ";
1414 if (fT>0)
1415 msg << fT;
1416 else
1417 msg << "<auto>";
1418 msg << ", Gain(DRS/BIAS)=" << fGain << "V/V";
1419
1420 Message(msg);
1421
1422 fCurrentRequestInterval = conf.Get<uint16_t>("current-request-interval");
1423 fNumCalibIgnore = conf.Get<uint16_t>("num-calib-ignore");
1424 fNumCalibRequests = conf.Get<uint16_t>("num-calib-average");
1425 fCalibrationOffset = conf.Get<float>("calibration-offset");
1426
1427 return -1;
1428 }
1429};
1430
1431// ------------------------------------------------------------------------
1432
1433#include "Main.h"
1434
1435template<class T>
1436int RunShell(Configuration &conf)
1437{
1438 return Main::execute<T, StateMachineFeedback>(conf);
1439}
1440
1441void SetupConfiguration(Configuration &conf)
1442{
1443 po::options_description control("Feedback options");
1444 control.add_options()
1445 ("pixel-map-file", var<string>("FACTmapV5a.txt"), "Pixel mapping file. Used here to get the default reference voltage.")
1446 ("current-request-interval", var<uint16_t>(1000), "Interval between two current requests.")
1447 ("num-calib-ignore", var<uint16_t>(30), "Number of current requests to be ignored before averaging")
1448 ("num-calib-average", var<uint16_t>(300), "Number of current requests to be averaged")
1449 ("calibration-offset", var<float>(-3), "Absolute offset relative to the G-APD operation voltage when calibrating")
1450 ;
1451
1452 conf.AddOptions(control);
1453}
1454
1455/*
1456 Extract usage clause(s) [if any] for SYNOPSIS.
1457 Translators: "Usage" and "or" here are patterns (regular expressions) which
1458 are used to match the usage synopsis in program output. An example from cp
1459 (GNU coreutils) which contains both strings:
1460 Usage: cp [OPTION]... [-T] SOURCE DEST
1461 or: cp [OPTION]... SOURCE... DIRECTORY
1462 or: cp [OPTION]... -t DIRECTORY SOURCE...
1463 */
1464void PrintUsage()
1465{
1466 cout <<
1467 "The feedback control the BIAS voltages based on the calibration signal.\n"
1468 "\n"
1469 "The default is that the program is started without user intercation. "
1470 "All actions are supposed to arrive as DimCommands. Using the -c "
1471 "option, a local shell can be initialized. With h or help a short "
1472 "help message about the usuage can be brought to the screen.\n"
1473 "\n"
1474 "Usage: feedback [-c type] [OPTIONS]\n"
1475 " or: feedback [OPTIONS]\n";
1476 cout << endl;
1477}
1478
1479void PrintHelp()
1480{
1481 Main::PrintHelp<StateMachineFeedback>();
1482
1483 /* Additional help text which is printed after the configuration
1484 options goes here */
1485
1486 /*
1487 cout << "bla bla bla" << endl << endl;
1488 cout << endl;
1489 cout << "Environment:" << endl;
1490 cout << "environment" << endl;
1491 cout << endl;
1492 cout << "Examples:" << endl;
1493 cout << "test exam" << endl;
1494 cout << endl;
1495 cout << "Files:" << endl;
1496 cout << "files" << endl;
1497 cout << endl;
1498 */
1499}
1500
1501int main(int argc, const char* argv[])
1502{
1503 Configuration conf(argv[0]);
1504 conf.SetPrintUsage(PrintUsage);
1505 Main::SetupConfiguration(conf);
1506 SetupConfiguration(conf);
1507
1508 if (!conf.DoParse(argc, argv, PrintHelp))
1509 return -1;
1510
1511 //try
1512 {
1513 // No console access at all
1514 if (!conf.Has("console"))
1515 {
1516// if (conf.Get<bool>("no-dim"))
1517// return RunShell<LocalStream, StateMachine, ConnectionFSC>(conf);
1518// else
1519 return RunShell<LocalStream>(conf);
1520 }
1521 // Cosole access w/ and w/o Dim
1522/* if (conf.Get<bool>("no-dim"))
1523 {
1524 if (conf.Get<int>("console")==0)
1525 return RunShell<LocalShell, StateMachine, ConnectionFSC>(conf);
1526 else
1527 return RunShell<LocalConsole, StateMachine, ConnectionFSC>(conf);
1528 }
1529 else
1530*/ {
1531 if (conf.Get<int>("console")==0)
1532 return RunShell<LocalShell>(conf);
1533 else
1534 return RunShell<LocalConsole>(conf);
1535 }
1536 }
1537 /*catch (std::exception& e)
1538 {
1539 cerr << "Exception: " << e.what() << endl;
1540 return -1;
1541 }*/
1542
1543 return 0;
1544}
Note: See TracBrowser for help on using the repository browser.