source: trunk/FACT++/src/feedback.cc@ 14244

Last change on this file since 14244 was 14186, checked in by tbretz, 12 years ago
Fixed a compilation issue.
File size: 47.0 KB
Line 
1#include <valarray>
2
3#include "Dim.h"
4#include "Event.h"
5#include "Shell.h"
6#include "StateMachineDim.h"
7#include "Connection.h"
8#include "Configuration.h"
9#include "Console.h"
10#include "Converter.h"
11#include "PixelMap.h"
12
13#include "tools.h"
14
15#include "LocalControl.h"
16
17#include "HeadersFAD.h"
18#include "HeadersFSC.h"
19#include "HeadersBIAS.h"
20#include "HeadersFeedback.h"
21
22#include "DimState.h"
23#include "DimDescriptionService.h"
24
25using namespace std;
26
27// ------------------------------------------------------------------------
28
29class StateMachineFeedback : public StateMachineDim
30{
31private:
32 enum control_t
33 {
34 kIdle,
35 kTemp,
36 kFeedback,
37 kFeedbackGlobal,
38 kCurrents,
39 };
40
41 control_t fControlType;
42
43 PixelMap fMap;
44
45 DimVersion fDim;
46 DimDescribedState fDimFAD;
47 DimDescribedState fDimFSC;
48 DimDescribedState fDimBias;
49
50 DimDescribedService fDimReference;
51 DimDescribedService fDimDeviation;
52 DimDescribedService fDimCalibration;
53
54 vector<int64_t> fCurrentsAvg;
55 vector<int64_t> fCurrentsRms;
56
57 vector<float> fCalibration;
58 vector<float> fVoltGapd;
59
60 vector<vector<float>> fData;
61
62 int64_t fCursorCur;
63 uint64_t fCursorAmpl;
64 uint64_t fCursorTemp;
65
66 Time fBiasLast;
67 Time fStartTime;
68
69 valarray<double> fPV[3]; // Process variable (intgerated/averaged amplitudes)
70 valarray<double> fSP; // Set point (target amplitudes)
71
72 double fKp; // Proportional constant
73 double fKi; // Integral constant
74 double fKd; // Derivative constant
75 double fT; // Time constant (cycle time)
76 double fGain; // Gain (conversion from a DRS voltage deviation into a BIAS voltage change at G-APD reference voltage)
77
78 double fT21;
79
80 double fBiasOffset;
81 double fTempOffset;
82 double fCalibrationOffset;
83 double fAppliedOffset;
84
85 uint16_t fCurrentRequestInterval;
86 uint16_t fNumCalibIgnore;
87 uint16_t fNumCalibRequests;
88
89 bool fOutputEnabled;
90
91 int HandleCameraTemp(const EventImp &evt)
92 {
93 if (fControlType!=kTemp && fControlType!=kCurrents)
94 return GetCurrentState();
95
96 if (evt.GetSize()!=60*sizeof(float))
97 return GetCurrentState();
98
99 const float *ptr = evt.Ptr<float>();
100
101 double avgt = 0;
102 int numt = 0;
103 for (int i=1; i<32; i++)
104 if (ptr[i]!=0)
105 {
106 avgt += ptr[i];
107 numt++;
108 }
109
110 if (numt==0)
111 {
112 Warn("Received sensor temperatures all invalid.");
113 return GetCurrentState();
114 }
115
116 avgt /= numt; // [deg C]
117
118 fTempOffset = (avgt-25)*4./70; // [V]
119
120 fCursorTemp++;
121
122 return HandleCurrentControl();
123 }
124
125 int HandleCurrentControl()
126 {
127 const double dUt = fTempOffset; // [V]
128
129 if (GetCurrentState()==Feedback::State::kCalibrating && fBiasOffset>dUt-1.2)
130 {
131 fCursorTemp = 0;
132
133 ostringstream msg;
134 msg << " (applied calibration offset " << fBiasOffset << "V exceeds temperature correction " << fTempOffset << "V - 1.2V.";
135 Warn("Trying to calibrate above G-APD breakdown volatge!");
136 Warn(msg);
137 return GetCurrentState();
138 }
139
140 // FIXME: If calibrating do not wait for the temperature!
141 fAppliedOffset = fBiasOffset;
142 if (GetCurrentState()!=Feedback::State::kCalibrating)
143 fAppliedOffset += dUt;
144
145 vector<float> vec(2*BIAS::kNumChannels+2);
146 for (int i=0; i<BIAS::kNumChannels; i++)
147 vec[i+BIAS::kNumChannels] = fAppliedOffset;
148
149 vec[BIAS::kNumChannels*2] = dUt;
150 vec[BIAS::kNumChannels*2+1] = fBiasOffset;
151
152 double avg[2] = { 0, 0 };
153 double min[2] = { 90, 90 };
154 double max[2] = { -90, -90 };
155 int num[2] = { 0, 0 };
156
157 vector<double> med[2];
158 med[0].resize(416);
159 med[1].resize(416);
160
161 if (fControlType==kCurrents)
162 {
163 if (fCursorCur==0)
164 {
165 //DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
166 return GetCurrentState();
167 }
168
169 // Pixel 583: 5 31 == 191 (5) C2 B3 P3
170 // Pixel 830: 2 2 == 66 (4) C0 B8 P1
171 // Pixel 1401: 6 1 == 193 (5) C2 B4 P0
172
173 // Convert from DAC counts to uA
174 const double conv = 5000./4096;
175
176 // 3900 Ohm/n + 1000 Ohm + 1100 Ohm (with n=4 or n=5)
177 const double R[2] = { 3075, 2870 };
178
179 const float *Iavg = fCalibration.data(); // Offset at U=fCalibrationOffset
180 const float *Ravg = fCalibration.data()+BIAS::kNumChannels*2; // Measured resistance
181
182 // U0 = fCalibrationOffset
183 // dT = fAppliedVoltage
184
185 // Ifeedback = Im[i] - (U[i]-U0)/Ravg[i] - Iavg[i];
186 // dUapplied[i] + dUneu[i] = R[g] * (Im[i] - (dUapplied[i]+dUneu[i]-U0+dT)/Ravg[i] - Iavg[i])
187
188 // The assumption here is that the offset calculated from the temperature
189 // does not significanly change within a single step
190
191 // dU[i] := dUtotal[i] = dUapplied[i] + dUneu[i]
192 // dU[i] / R[g] = Im[i] - (dU[i]+dT-U0)/Ravg[i] - Iavg[i]
193 // dU[i]/R[g] + dU[i]/Ravg[i] = Im[i] + U0/Ravg[i] - dT/Ravg[i] - Iavg[i]
194 // dU[i]*(1/R[g]+1/Ravg[i]) = Im[i] - Iavg[i] + U0/Ravg[i] - dT/Ravg[i]
195 // dU[i] = (Im[i] - Iavg[i] + U0/Ravg[i] - dT/Ravg[i]) / (1/R[g]+1/Ravg[i])
196 // dU[i] = { Im[i] - Iavg[i] + (U0-dT)/Ravg[i] } * r with r := 1 / (1/R[g]+1/Ravg[i])
197
198 const double U0 = fAppliedOffset-fCalibrationOffset;
199
200 for (int i=0; i<BIAS::kNumChannels; i++)
201 {
202 const PixelMapEntry &hv = fMap.hv(i);
203 if (!hv)
204 continue;
205
206 // Average measured current
207 const double Im = double(fCurrentsAvg[i])/fCursorCur * conv; // [uA]
208
209 // Group index (0 or 1) of the of the pixel (4 or 5 pixel patch)
210 const int g = hv.group();
211
212 // Serial resistors in front of the G-APD
213 double Rg = R[g];
214
215 // This is assuming that the broken pixels have a 390 Ohm instead of 3900 Ohm serial resistor
216 if (i==66) // Pixel 830(66)
217 Rg = 2400; // 2400 = (3/3900 + 1/390) + 1000 + 1100
218 if (i==191 || i==193) // Pixel 583(191) / Pixel 1401(193)
219 Rg = 2379; // 2379 = (4/3900 + 1/390) + 1000 + 1100
220
221 const double r = 1./(1./Rg + 1./Ravg[i]); // [Ohm]
222
223 // Offset induced by the voltage above the calibration point
224 const double dI = U0/Ravg[i]; // [V/Ohm]
225
226 // Offset at the calibration point (make sure that the calibration is
227 // valid (Im[i]>Iavg[i]) and we operate above the calibration point)
228 const double I = Im>Iavg[i] ? Im - Iavg[i] : 0; // [A]
229
230 // Make sure that the averaged resistor is valid
231 const double dU = Ravg[i]>10000 ? r*(I*1e-6 - dI) : 0;
232
233 vec[i+BIAS::kNumChannels] += dU;
234
235 // Angelegte Spannung: U0+dU
236 // Gemessener Strom: Im - Iavg
237 // Strom offset: (U0+dU) / Ravg
238 // Fliessender Strom: Im-Iavg - (U0+dU)/Ravg
239 // Korrektur: [ Im-Iavg - (U0+dU)/Ravg ] * Rg
240
241 // Aufgeloest nach dU: dU = ( Im-Iavg - dU/Ravg ) / ( 1/Rg + 1/Ravg )
242 // Equivalent zu: dU = ( I*Ravg - U0 ) / ( Ravg/Rg+1 )
243
244 // Calculate statistics only for channels with a valid calibration
245 if (Iavg[i]>0)
246 {
247 med[g][num[g]] = dU;
248 avg[g] += dU;
249 num[g]++;
250
251 if (dU<min[g])
252 min[g] = dU;
253 if (dU>max[g])
254 max[g] = dU;
255 }
256 }
257
258 sort(med[0].begin(), med[0].begin()+num[0]);
259 sort(med[1].begin(), med[1].begin()+num[1]);
260
261 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
262 fCursorCur = 0;
263 }
264
265 fDimDeviation.setQuality(fControlType);
266 fDimDeviation.Update(vec);
267
268 if (!fOutputEnabled || fDimBias.state()!=BIAS::State::kVoltageOn)
269 return GetCurrentState();
270
271 // Trigger calibration
272 if (GetCurrentState()==Feedback::State::kCalibrating && fCursorTemp==2)
273 {
274 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
275 return GetCurrentState();
276 }
277
278 ostringstream msg;
279 msg << setprecision(4) << "Sending new absolute offset (" << fAppliedOffset << "V+" << (num[0]+num[1]>0?(avg[0]+avg[1])/(num[0]+num[1]):0) << "V) to biasctrl.";
280 Info(msg);
281
282 if (fControlType==kCurrents && num[0]>0 && num[1]>0)
283 {
284 msg.str("");
285 msg << " Avg0=" << setw(7) << avg[0]/num[0] << " | Avg1=" << setw(7) << avg[1]/num[1];
286 Debug(msg);
287
288 msg.str("");
289 msg << " Med0=" << setw(7) << med[0][num[0]/2] << " | Med1=" << setw(7) << med[1][num[1]/2];
290 Debug(msg);
291
292 msg.str("");
293 msg << " Min0=" << setw(7) << min[0] << " | Min1=" << setw(7) << min[1];
294 Debug(msg);
295
296 msg.str("");
297 msg << " Max0=" << setw(7) << max[0] << " | Max1=" << setw(7) << max[1];
298 Debug(msg);
299 }
300
301 DimClient::sendCommandNB("BIAS_CONTROL/SET_ALL_CHANNELS_OFFSET",
302 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
303
304 return GetCurrentState();
305 }
306
307 int AverageCurrents(const EventImp &evt)
308 {
309 if (evt.GetSize()!=BIAS::kNumChannels*sizeof(int16_t))
310 return -1;
311
312 if (fDimBias.state()!=BIAS::State::kVoltageOn)
313 return false;
314
315 if (fCursorCur++<0)
316 return true;
317
318 const int16_t *ptr = evt.Ptr<int16_t>();
319
320 for (int i=0; i<BIAS::kNumChannels; i++)
321 {
322 fCurrentsAvg[i] += ptr[i];
323 fCurrentsRms[i] += ptr[i]*ptr[i];
324 }
325
326 return true;
327 }
328
329
330 void HandleCalibration(const EventImp &evt)
331 {
332 const int rc = AverageCurrents(evt);
333 if (rc<0)
334 return;
335
336 if (fCursorCur<fNumCalibRequests)
337 {
338 if (fDimBias.state()==BIAS::State::kVoltageOn)
339 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
340 return;
341 }
342
343 if (rc==0)
344 return;
345
346 fCalibration.resize(BIAS::kNumChannels*3);
347
348 float *avg = fCalibration.data();
349 float *rms = fCalibration.data()+BIAS::kNumChannels;
350 float *res = fCalibration.data()+BIAS::kNumChannels*2;
351
352 const double conv = 5000./4096;
353
354 for (int i=0; i<BIAS::kNumChannels; i++)
355 {
356 const double I = double(fCurrentsAvg[i])/fCursorCur;
357
358 res[i] = (fVoltGapd[i]+fCalibrationOffset)/I / conv * 1e6;
359 avg[i] = conv * I;
360 rms[i] = conv * sqrt(double(fCurrentsRms[i])/fCursorCur-I*I);
361 }
362
363 fDimCalibration.Update(fCalibration);
364
365 fOutputEnabled = false;
366 fControlType = kIdle;
367
368 Info("Calibration successfully done.");
369
370 if (fDimBias.state()==BIAS::State::kVoltageOn)
371 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
372 }
373
374 void HandleFeedback(const EventImp &evt)
375 {
376 if (evt.GetSize()!=1440*sizeof(float))
377 return;
378
379 // -------- Check age of last stored event --------
380
381 const Time tm(evt.GetTime());
382
383 if (Time()-fBiasLast>boost::posix_time::seconds(30))
384 {
385 Warn("Last received event data older than 30s... resetting average calculation.");
386 ResetData();
387 }
388 fBiasLast = tm;
389
390 // -------- Store new event --------
391
392 fData[fCursorAmpl%fData.size()].assign(evt.Ptr<float>(), evt.Ptr<float>()+1440);
393 if (++fCursorAmpl<fData.size())
394 return;
395
396 // -------- Calculate statistics --------
397
398 valarray<double> med(1440);
399
400 for (int ch=0; ch<1440; ch++)
401 {
402 vector<float> arr(fData.size());
403 for (size_t i=0; i<fData.size(); i++)
404 arr[i] = fData[i][ch];
405
406 sort(arr.begin(), arr.end());
407
408 med[ch] = arr[arr.size()/2];
409 }
410
411 /*
412 vector<float> med(1440);
413 vector<float> rms(1440);
414 for (size_t i=0; i<fData.size(); i++)
415 {
416 if (fData[i].size()==0)
417 return;
418
419 for (int j=0; j<1440; j++)
420 {
421 med[j] += fData[i][j];
422 rms[j] += fData[i][j]*fData[i][j];
423 }
424 }
425 */
426
427 vector<double> avg(BIAS::kNumChannels);
428 vector<int> num(BIAS::kNumChannels);
429 for (int i=0; i<1440; i++)
430 {
431 const PixelMapEntry &ch = fMap.hw(i);
432
433 // FIXME: Add a consistency check if the median makes sense...
434 // FIXME: Add a consistency check to remove pixels with bright stars (median?)
435
436 avg[ch.hv()] += med[i];
437 num[ch.hv()]++;
438 }
439
440 for (int i=0; i<BIAS::kNumChannels; i++)
441 {
442 if (num[i])
443 avg[i] /= num[i];
444
445 }
446
447 // -------- Calculate correction --------
448
449 // http://bestune.50megs.com/typeABC.htm
450
451 // CO: Controller output
452 // PV: Process variable
453 // SP: Set point
454 // T: Sampling period (loop update period)
455 // e = SP - PV
456 //
457 // Kp : No units
458 // Ki : per seconds
459 // Kd : seconds
460
461 // CO(k)-CO(k-1) = - Kp[ PV(k) - PV(k-1) ] + Ki * T * (SP(k)-PV(k)) - Kd/T [ PV(k) - 2PV(k-1) + PV(k-2) ]
462
463 if (fCursorAmpl%fData.size()>0)
464 return;
465
466 // FIXME: Take out broken / dead boards.
467
468 const Time tm0 = Time();
469
470 /*const*/ double T21 = fT>0 ? fT : (tm0-fStartTime).total_microseconds()/1000000.;
471 const double T10 = fT21;
472 fT21 = T21;
473
474 fStartTime = tm0;
475
476 ostringstream out;
477 out << "New " << fData.size() << " event received: " << fCursorAmpl << " / " << setprecision(3) << T21 << "s";
478 Info(out);
479
480 if (fPV[0].size()==0)
481 {
482 fPV[0].resize(avg.size());
483 fPV[0] = valarray<double>(avg.data(), avg.size());
484 return;
485 }
486
487 if (fPV[1].size()==0)
488 {
489 fPV[1].resize(avg.size());
490 fPV[1] = valarray<double>(avg.data(), avg.size());
491 return;
492 }
493
494 if (fPV[2].size()==0)
495 {
496 fPV[2].resize(avg.size());
497 fPV[2] = valarray<double>(avg.data(), avg.size());
498 return;
499 }
500
501 fPV[0] = fPV[1];
502 fPV[1] = fPV[2];
503
504 fPV[2].resize(avg.size());
505 fPV[2] = valarray<double>(avg.data(), avg.size());
506
507 if (T10<=0 || T21<=0)
508 return;
509
510 //cout << "Calculating (" << fCursor << ":" << T21 << ")... " << endl;
511
512 // fKi[j] = response[j]*gain;
513 // Kp = 0;
514 // Kd = 0;
515
516 // => Kp = 0.01 * gain = 0.00005
517 // => Ki = 0.8 * gain/20s = 0.00025
518 // => Kd = 0.1 * gain/20s = 0.00003
519
520 /*
521 fKp = 0;
522 fKd = 0;
523 fKi = 0.00003*20;
524 T21 = 1;
525 */
526
527 //valarray<double> correction = - Kp*(PV[2] - PV[1]) + Ki * dT * (SP-PV[2]) - Kd/dT * (PV[2] - 2*PV[1] + PV[0]);
528 //valarray<double> correction =
529 // - Kp * (PV[2] - PV[1])
530 // + dT * Ki * (SP - PV[2])
531 // - Kd / dT * (PV[2] - 2*PV[1] + PV[0]);
532 //
533 // - (Kp+Kd/dT1) * (PV[2] - PV[1])
534 // + dT2 * Ki * (SP - PV[2])
535 // + Kd / dT1 * (PV[1] - PV[0]);
536 //
537 // - Kp * (PV[2] - PV[1])
538 // + Ki * (SP - PV[2])*dT
539 // - Kd * (PV[2] - PV[1])/dT
540 // + Kd * (PV[1] - PV[0])/dT;
541 //
542 //valarray<double> correction =
543 // - Kp*(PV[2] - PV[1]) + Ki * T21 * (SP-PV[2]) - Kd*(PV[2]-PV[1])/T21 - Kd*(PV[0]-PV[1])/T01;
544 const valarray<double> correction = 1./fGain/1000*
545 (
546 - (fKp+fKd/T21)*(fPV[2] - fPV[1])
547 + fKi*T21*(fSP-fPV[2])
548 + fKd/T10*(fPV[1]-fPV[0])
549 );
550
551 /*
552 integral = 0
553 start:
554 integral += (fSP - fPV[2])*dt
555
556 output = Kp*(fSP - fPV[2]) + Ki*integral - Kd*(fPV[2] - fPV[1])/dt
557
558 wait(dt)
559
560 goto start
561 */
562
563 vector<float> vec(2*BIAS::kNumChannels+2);
564 for (int i=0; i<BIAS::kNumChannels; i++)
565 vec[i] = fPV[2][i]-fSP[i];
566
567 for (int i=0; i<BIAS::kNumChannels; i++)
568 vec[i+BIAS::kNumChannels] = avg[i]<5*2.5 ? 0 : correction[i];
569
570 fDimDeviation.setQuality(fControlType);
571 fDimDeviation.Update(vec);
572
573 if (!fOutputEnabled || fDimBias.state()!=BIAS::State::kVoltageOn)
574 return;
575
576 Info("Sending new relative offset to biasctrl.");
577
578 DimClient::sendCommandNB("BIAS_CONTROL/INCREASE_ALL_CHANNELS_VOLTAGE",
579 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
580 }
581
582 void HandleGlobalFeedback(const EventImp &evt)
583 {
584 if (evt.GetSize()!=1440*sizeof(float))
585 return;
586
587 // -------- Store new event --------
588
589 vector<float> arr(evt.Ptr<float>(), evt.Ptr<float>()+1440);
590
591 sort(arr.begin(), arr.end());
592
593 const float med = arr[arr.size()/2];
594
595 fData[fCursorAmpl%fData.size()].resize(1); //assign(&med, &med);
596 fData[fCursorAmpl%fData.size()][0] = med; //assign(&med, &med);
597
598 if (++fCursorAmpl<fData.size())
599 return;
600
601 // -------- Calculate statistics --------
602
603 double avg=0;
604 double rms=0;
605 for (size_t i=0; i<fData.size(); i++)
606 {
607 avg += fData[i][0];
608 rms += fData[i][0]*fData[i][0];
609 }
610
611 avg /= fData.size();
612 rms /= fData.size();
613
614 rms = sqrt(rms-avg*avg);
615
616 // -------- Calculate correction --------
617
618 if (fCursorAmpl%fData.size()!=0)
619 return;
620
621 Out() << "Amplitude: " << avg << " +- " << rms << endl;
622
623 // FIXME: Take out broken / dead boards.
624
625 /*
626 ostringstream out;
627 out << "New " << fData.size() << " event received: " << fCursor << " / " << setprecision(3) << T21 << "s";
628 Info(out);
629 */
630
631 if (fPV[0].size()==0)
632 {
633 fPV[0].resize(1);
634 fPV[0] = valarray<double>(&avg, 1);
635 return;
636 }
637
638 if (fPV[1].size()==0)
639 {
640 fPV[1].resize(1);
641 fPV[1] = valarray<double>(&avg, 1);
642 return;
643 }
644
645 if (fPV[2].size()==0)
646 {
647 fPV[2].resize(1);
648 fPV[2] = valarray<double>(&avg, 1);
649 return;
650 }
651
652 fPV[0] = fPV[1];
653 fPV[1] = fPV[2];
654
655 fPV[2].resize(1);
656 fPV[2] = valarray<double>(&avg, 1);
657
658 // ----- Calculate average currents -----
659
660 vector<float> A(BIAS::kNumChannels);
661 for (int i=0; i<BIAS::kNumChannels; i++)
662 A[i] = double(fCurrentsAvg[i]) / fCursorCur;
663
664 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
665 fCursorCur = 0;
666
667 // -------- Calculate correction --------
668
669 // correction = (fSP[0]-fPV[2])*fKi
670 /*
671 const double T21 = 1; // feedback is 1s
672 const double T10 = 1; // feedback is 20s
673
674 const valarray<double> correction = 1./fGain/1000*
675 (
676 - (fKp+fKd/T21)*(fPV[2] - fPV[1])
677 + fKi*T21*(fSP[0]-fPV[2])
678 + fKd/T10*(fPV[1]-fPV[0])
679 );
680 */
681
682 // pow of 1.6 comes from the non-linearity of the
683 // amplitude vs bias voltage
684 const valarray<double> correction = 1./fGain/1000*
685 (
686 //fKi*(pow(fSP[0], 1./1.6)-pow(fPV[2], 1./1.6))
687 fKi*(fSP[0]-fPV[2])
688 );
689
690 Out() << "Correction: " << correction[0] << "V (" << fSP[0] << ")" << endl;
691
692 const int nch = BIAS::kNumChannels;
693
694 // FIXME: Sanity check!
695
696 vector<float> vec;
697 vec.reserve(2*nch+2);
698 vec.insert(vec.begin(), nch, fPV[2][0]-fSP[0]);
699 vec.insert(vec.begin()+nch, nch, correction[0]);
700 vec.push_back(0);
701 vec.push_back(0);
702
703 fDimDeviation.setQuality(fControlType);
704 fDimDeviation.Update(vec);
705
706 if (!fOutputEnabled || fDimBias.state()!=BIAS::State::kVoltageOn)
707 return;
708
709 Info("Sending new global relative offset to biasctrl.");
710
711 DimClient::sendCommandNB("BIAS_CONTROL/INCREASE_ALL_CHANNELS_VOLTAGE",
712 vec.data()+BIAS::kNumChannels, BIAS::kNumChannels*sizeof(float));
713 }
714
715 int HandleBiasCurrent(const EventImp &evt)
716 {
717 if (fControlType==kTemp && GetCurrentState()==Feedback::State::kCalibrating)
718 HandleCalibration(evt);
719
720 if (fControlType==kFeedbackGlobal || fControlType==kCurrents)
721 AverageCurrents(evt);
722
723 /*
724 if (fControlType==kCurrents && fCursorTemp>0 && fCursorCur>0)
725 {
726 // fCursorTemp: 1 2 3 4 5 6 7 8
727 // fCursor%x: 1 1 1 2 2 2 3 3 // 9 steps in ~15s
728 //if (fCursorTemp<3 && fCursorCur%(fCursorTemp/3+1)==0)
729 HandleCurrentControl();
730 }*/
731
732 return GetCurrentState();
733 }
734
735 int HandleBiasData(const EventImp &evt)
736 {
737 if (fControlType==kFeedback)
738 HandleFeedback(evt);
739
740 if (fControlType==kFeedbackGlobal)
741 HandleGlobalFeedback(evt);
742
743 return GetCurrentState();
744 }
745
746 int HandleBiasNom(const EventImp &evt)
747 {
748 fVoltGapd.assign(evt.Ptr<float>(), evt.Ptr<float>()+416);
749
750 Info("Nominal bias voltages received.");
751
752 return GetCurrentState();
753 }
754
755 bool CheckEventSize(size_t has, const char *name, size_t size)
756 {
757 if (has==size)
758 return true;
759
760 ostringstream msg;
761 msg << name << " - Received event has " << has << " bytes, but expected " << size << ".";
762 Fatal(msg);
763 return false;
764 }
765
766 int Print() const
767 {
768 Out() << fDim << endl;
769 Out() << fDimFAD << endl;
770 Out() << fDimFSC << endl;
771 Out() << fDimBias << endl;
772
773 return GetCurrentState();
774 }
775
776 int PrintCalibration()
777 {
778 if (fCalibration.size()==0)
779 {
780 Out() << "No calibration performed so far." << endl;
781 return GetCurrentState();
782 }
783
784 const float *avg = fCalibration.data();
785 const float *rms = fCalibration.data()+BIAS::kNumChannels;
786 const float *res = fCalibration.data()+BIAS::kNumChannels*2;
787
788 Out() << "Average current at " << fCalibrationOffset << "V below G-APD operation voltage:\n";
789
790 for (int k=0; k<13; k++)
791 for (int j=0; j<8; j++)
792 {
793 Out() << setw(2) << k << "|" << setw(2) << j*4 << "|";
794 for (int i=0; i<4; i++)
795 Out() << Tools::Form(" %6.1f+-%4.1f", avg[k*32+j*4+i], rms[k*32+j*4+i]);
796 Out() << '\n';
797 }
798 Out() << '\n';
799
800 Out() << "Measured calibration resistor:\n";
801 for (int k=0; k<13; k++)
802 for (int j=0; j<4; j++)
803 {
804 Out() << setw(2) << k << "|" << setw(2) << j*8 << "|";
805 for (int i=0; i<8; i++)
806 Out() << Tools::Form(" %5.0f", res[k*32+j*8+i]);
807 Out() << '\n';
808 }
809
810 Out() << flush;
811
812 return GetCurrentState();
813 }
814
815 void WarnState(bool needfsc, bool needfad)
816 {
817 const bool bias = fDimBias.state() >= BIAS::State::kConnecting;
818 const bool fsc = fDimFSC.state() >= FSC::State::kConnected;
819 const bool fad = fDimFAD.state() >= FAD::State::kConnected;
820
821 if (!bias)
822 Warn("Bias control not yet ready.");
823 if (needfsc && !fsc)
824 Warn("FSC control not yet ready.");
825 if (needfad && !fad)
826 Warn("FAD control not yet ready.");
827 }
828
829 int SetConstant(const EventImp &evt, int constant)
830 {
831 if (!CheckEventSize(evt.GetSize(), "SetConstant", 8))
832 return kSM_FatalError;
833
834 switch (constant)
835 {
836 case 0: fKi = evt.GetDouble(); break;
837 case 1: fKp = evt.GetDouble(); break;
838 case 2: fKd = evt.GetDouble(); break;
839 case 3: fT = evt.GetDouble(); break;
840 case 4: fGain = evt.GetDouble(); break;
841 default:
842 Fatal("SetConstant got an unexpected constant id -- this is a program bug!");
843 return kSM_FatalError;
844 }
845
846 return GetCurrentState();
847 }
848
849 int EnableOutput(const EventImp &evt)
850 {
851 if (!CheckEventSize(evt.GetSize(), "EnableOutput", 1))
852 return kSM_FatalError;
853
854 fOutputEnabled = evt.GetBool();
855
856 if (fControlType==kCurrents)
857 if (fCursorTemp>1)
858 fCursorTemp = 1;
859
860 return GetCurrentState();
861 }
862
863 void ResetData(int16_t n=-1)
864 {
865 fData.assign(n>0 ? n : fData.size(), vector<float>(0));
866
867 fCursorAmpl = 0;
868 fCursorCur = 0;
869 fCursorTemp = 0;
870
871 fStartTime = Time();
872
873 fSP = valarray<double>(0., BIAS::kNumChannels);
874
875 vector<float> vec(2*BIAS::kNumChannels+2, fBiasOffset);
876 vec[2*BIAS::kNumChannels] = 0;
877 fDimDeviation.setQuality(kIdle);
878 fDimDeviation.Update(vec);
879
880 fPV[0].resize(0);
881 fPV[1].resize(0);
882 fPV[2].resize(0);
883
884 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
885 fCurrentsRms.assign(BIAS::kNumChannels, 0);
886
887 if (fKp==0 && fKi==0 && fKd==0)
888 Warn("Control loop parameters are all set to zero.");
889 }
890
891 int StartFeedback(const EventImp &evt)
892 {
893 if (!CheckEventSize(evt.GetSize(), "StartFeedback", 2))
894 return kSM_FatalError;
895
896 WarnState(false, true);
897
898 fBiasOffset = 0;
899 ResetData(evt.GetShort());
900
901 fControlType = kFeedback;
902
903 return GetCurrentState();
904 }
905
906 int StartFeedbackGlobal(const EventImp &evt)
907 {
908 if (!CheckEventSize(evt.GetSize(), "StartFeedbackGlobal", 2))
909 return kSM_FatalError;
910
911 WarnState(false, true);
912
913 fBiasOffset = 0;
914 ResetData(evt.GetShort());
915
916 fControlType = kFeedbackGlobal;
917
918 return GetCurrentState();
919 }
920
921 int StartTempCtrl(const EventImp &evt)
922 {
923 if (!CheckEventSize(evt.GetSize(), "StartTempCtrl", 4))
924 return kSM_FatalError;
925
926 WarnState(true, false);
927
928 fBiasOffset = evt.GetFloat();
929 fControlType = kTemp;
930
931 ostringstream out;
932 out << "Starting temperature feedback with an offset of " << fBiasOffset << "V";
933 Message(out);
934
935 if (fDimBias.state()==BIAS::State::kVoltageOn)
936 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
937
938 return GetCurrentState();
939 }
940
941 int StartCurrentCtrl(const EventImp &evt)
942 {
943 if (!CheckEventSize(evt.GetSize(), "StartCurrentCtrl", 4))
944 return kSM_FatalError;
945
946 if (fCalibration.size()==0)
947 {
948 Warn("Current control needs a bias crate calibration first... command ignored.");
949 return GetCurrentState();
950 }
951
952 WarnState(true, false);
953
954 fBiasOffset = evt.GetFloat();
955 fTempOffset = -3;
956 ResetData(0);
957 fControlType = kCurrents;
958
959 ostringstream out;
960 out << "Starting current/temp feedback with an offset of " << fBiasOffset << "V";
961 Message(out);
962
963 return GetCurrentState();
964 }
965
966 int StopFeedback()
967 {
968 fControlType = kIdle;
969
970 return GetCurrentState();
971 }
972
973 int StoreReference()
974 {
975 if (!fPV[0].size() && !fPV[1].size() && !fPV[2].size())
976 {
977 Warn("No values in memory. Take enough events first!");
978 return GetCurrentState();
979 }
980
981 // FIXME: Check age
982
983 if (!fPV[1].size() && !fPV[2].size())
984 fSP = fPV[0];
985
986 if (!fPV[2].size())
987 fSP = fPV[1];
988 else
989 fSP = fPV[2];
990
991 vector<float> vec(BIAS::kNumChannels);
992 for (int i=0; i<BIAS::kNumChannels; i++)
993 vec[i] = fSP[i];
994 fDimReference.Update(vec);
995
996 return GetCurrentState();
997 }
998
999 int SetReference(const EventImp &evt)
1000 {
1001 if (!CheckEventSize(evt.GetSize(), "SetReference", 4))
1002 return kSM_FatalError;
1003
1004 const float val = evt.GetFloat();
1005 /*
1006 if (!fPV[0].size() && !fPV[1].size() && !fPV[2].size())
1007 {
1008 Warn("No values in memory. Take enough events first!");
1009 return GetCurrentState();
1010 }*/
1011
1012 vector<float> vec(BIAS::kNumChannels);
1013 for (int i=0; i<BIAS::kNumChannels; i++)
1014 vec[i] = fSP[i] = val;
1015 fDimReference.Update(vec);
1016
1017 Out() << "New global reference value: " << val << "mV" << endl;
1018
1019 return GetCurrentState();
1020 }
1021
1022 int CalibrateCurrents()
1023 {
1024// if (!CheckEventSize(evt.GetSize(), "StartTempCtrl", 4))
1025// return kSM_FatalError;
1026
1027 if (fDimBias.state()==BIAS::State::kRamping)
1028 {
1029 Warn("Calibration cannot be started when biasctrl is in state Ramping.");
1030 return GetCurrentState();
1031 }
1032
1033 if (fVoltGapd.size()==0)
1034 {
1035 Error("No G-APD reference voltages received yet (BIAS_CONTROL/NOMINAL).");
1036 return GetCurrentState();
1037 }
1038
1039 WarnState(true, false);
1040
1041 ostringstream out;
1042 out << "Starting temperature feedback for calibration with an offset of " << fCalibrationOffset << "V";
1043 Message(out);
1044
1045 fBiasOffset = fCalibrationOffset;
1046 fControlType = kTemp;
1047 fCursorCur = -fNumCalibIgnore;
1048 fCursorTemp = 0;
1049 fCurrentsAvg.assign(BIAS::kNumChannels, 0);
1050 fCurrentsRms.assign(BIAS::kNumChannels, 0);
1051 fCalibration.resize(0);
1052 fStartTime = Time();
1053 fOutputEnabled = true;
1054
1055 return Feedback::State::kCalibrating;
1056 }
1057
1058 int SetCurrentRequestInterval(const EventImp &evt)
1059 {
1060 if (!CheckEventSize(evt.GetSize(), "SetCurrentRequestInterval", 2))
1061 return kSM_FatalError;
1062
1063 fCurrentRequestInterval = evt.GetUShort();
1064
1065 Out() << "New current request interval: " << fCurrentRequestInterval << "ms" << endl;
1066
1067 return GetCurrentState();
1068 }
1069
1070 int Execute()
1071 {
1072 // Dispatch (execute) at most one handler from the queue. In contrary
1073 // to run_one(), it doesn't wait until a handler is available
1074 // which can be dispatched, so poll_one() might return with 0
1075 // handlers dispatched. The handlers are always dispatched/executed
1076 // synchronously, i.e. within the call to poll_one()
1077 //poll_one();
1078
1079 if (!fDim.online())
1080 return Feedback::State::kDimNetworkNA;
1081
1082 const bool bias = fDimBias.state() >= BIAS::State::kConnecting;
1083 const bool fad = fDimFAD.state() >= FAD::State::kConnected;
1084 const bool fsc = fDimFSC.state() >= FSC::State::kConnected;
1085
1086 // All subsystems are not connected
1087 if (!bias && !fad && !fsc)
1088 return Feedback::State::kDisconnected;
1089
1090 // At least one subsystem apart from bias is connected
1091 if (bias && !fad && !fsc)
1092 return Feedback::State::kConnecting;
1093
1094/*
1095 // All subsystems are connected
1096 if (GetCurrentStatus()==Feedback::State::kConfiguringStep1)
1097 {
1098 if (fCursor<1)
1099 return Feedback::State::kConfiguringStep1;
1100
1101 if (fCursor==1)
1102 {
1103 fStartTime = Time();
1104 return Feedback::State::kConfiguringStep2;
1105 }
1106 }
1107 if (GetCurrentStatus()==Feedback::State::kConfiguringStep2)
1108 {
1109 if (fCursor==1)
1110 {
1111 if ((Time()-fStartTime).total_microseconds()/1000000.<1.5)
1112 return Feedback::State::kConfiguringStep2;
1113
1114 Dim::SendCommand("BIAS_CONTROL/REQUEST_STATUS");
1115 }
1116 if (fCursor==2)
1117 {
1118
1119 int n=0;
1120 double avg = 0;
1121 for (size_t i=0; i<fCurrents.size(); i++)
1122 if (fCurrents[i]>=0)
1123 {
1124 avg += fCurrents[i];
1125 n++;
1126 }
1127
1128 cout << avg/n << endl;
1129 }
1130 return Feedback::State::kConnected;
1131 }
1132 */
1133
1134 // Needs connection of FAD and BIAS
1135 if (bias && fad)
1136 {
1137 if (fControlType==kFeedback || fControlType==kFeedbackGlobal)
1138 return fOutputEnabled ? Feedback::State::kFeedbackCtrlRunning : Feedback::State::kFeedbackCtrlIdle;
1139 }
1140
1141 // Needs connection of FSC and BIAS
1142 if (bias && fsc)
1143 {
1144 if (fControlType==kTemp)
1145 {
1146 if (GetCurrentState()==Feedback::State::kCalibrating && fCursorCur<fNumCalibRequests)
1147 return GetCurrentState();
1148
1149 return fOutputEnabled ? Feedback::State::kTempCtrlRunning : Feedback::State::kTempCtrlIdle;
1150 }
1151 if (fControlType==kCurrents)
1152 {
1153 static Time past;
1154 if (fCurrentRequestInterval>0 && Time()-past>boost::posix_time::milliseconds(fCurrentRequestInterval))
1155 {
1156 if (fDimBias.state()==BIAS::State::kVoltageOn)
1157 DimClient::sendCommandNB("BIAS_CONTROL/REQUEST_STATUS", NULL, 0);
1158 past = Time();
1159 }
1160
1161 return fOutputEnabled && fCursorTemp>0 ? Feedback::State::kCurrentCtrlRunning : Feedback::State::kCurrentCtrlIdle;
1162 }
1163 }
1164
1165 if (bias && fad && !fsc)
1166 return Feedback::State::kConnectedFAD;
1167
1168 if (bias && fsc && !fad)
1169 return Feedback::State::kConnectedFSC;
1170
1171 return Feedback::State::kConnected;
1172 }
1173
1174public:
1175 StateMachineFeedback(ostream &out=cout) : StateMachineDim(out, "FEEDBACK"),
1176 //---
1177 fDimFAD("FAD_CONTROL"),
1178 fDimFSC("FSC_CONTROL"),
1179 fDimBias("BIAS_CONTROL"),
1180 //---
1181 fDimReference("FEEDBACK/REFERENCE", "F:416",
1182 "Amplitude reference value(s)"
1183 "Vref[mV]:Amplitude reference"),
1184 fDimDeviation("FEEDBACK/DEVIATION", "F:416;F:416;F:1;F:1",
1185 "Control loop information"
1186 "|DeltaAmpl[mV]:Amplitude offset measures"
1187 "|DeltaBias[mV]:Correction value calculated"
1188 "|DeltaTemp[mV]:Correction calculated from temperature"
1189 "|DeltaUser[mV]:Additional offset specified by user"),
1190 fDimCalibration("FEEDBACK/CALIBRATION", "F:416;F:416;F:416",
1191 "Current offsets"
1192 "|Avg[uA]:Average offset"
1193 "|Rms[uA]:Rms of offset"
1194 "|R[Ohm]:Measured calibration resistor"),
1195 fSP(BIAS::kNumChannels),
1196 fKp(0), fKi(0), fKd(0), fT(-1),
1197 fCalibrationOffset(-3),
1198 fCurrentRequestInterval(0),
1199 fNumCalibIgnore(30),
1200 fNumCalibRequests(300),
1201 fOutputEnabled(false)
1202 {
1203 // ba::io_service::work is a kind of keep_alive for the loop.
1204 // It prevents the io_service to go to stopped state, which
1205 // would prevent any consecutive calls to run()
1206 // or poll() to do nothing. reset() could also revoke to the
1207 // previous state but this might introduce some overhead of
1208 // deletion and creation of threads and more.
1209
1210 fDim.Subscribe(*this);
1211 fDimFAD.Subscribe(*this);
1212 fDimFSC.Subscribe(*this);
1213 fDimBias.Subscribe(*this);
1214
1215 Subscribe("BIAS_CONTROL/CURRENT")
1216 (bind(&StateMachineFeedback::HandleBiasCurrent, this, placeholders::_1));
1217 Subscribe("BIAS_CONTROL/FEEDBACK_DATA")
1218 (bind(&StateMachineFeedback::HandleBiasData, this, placeholders::_1));
1219 Subscribe("FSC_CONTROL/TEMPERATURE")
1220 (bind(&StateMachineFeedback::HandleCameraTemp, this, placeholders::_1));
1221
1222 // State names
1223 AddStateName(Feedback::State::kDimNetworkNA, "DimNetworkNotAvailable",
1224 "The Dim DNS is not reachable.");
1225
1226 AddStateName(Feedback::State::kDisconnected, "Disconnected",
1227 "The Dim DNS is reachable, but the required subsystems are not available.");
1228
1229 AddStateName(Feedback::State::kConnecting, "Connecting",
1230 "Only biasctrl is available and connected with its hardware.");
1231
1232 AddStateName(Feedback::State::kConnectedFSC, "ConnectedFSC",
1233 "biasctrl and fscctrl are available and connected with their hardware.");
1234 AddStateName(Feedback::State::kConnectedFAD, "ConnectedFAD",
1235 "biasctrl and fadctrl are available and connected with their hardware.");
1236 AddStateName(Feedback::State::kConnected, "Connected",
1237 "biasctrl, fadctrl and fscctrl are available and connected with their hardware.");
1238
1239 AddStateName(Feedback::State::kFeedbackCtrlIdle, "FeedbackIdle",
1240 "Feedback control activated, but voltage output disabled.");
1241 AddStateName(Feedback::State::kTempCtrlIdle, "TempCtrlIdle",
1242 "Temperature control activated, but voltage output disabled.");
1243 AddStateName(Feedback::State::kCurrentCtrlIdle, "CurrentCtrlIdle",
1244 "Current control activated, but voltage output disabled.");
1245
1246 AddStateName(Feedback::State::kFeedbackCtrlRunning, "FeedbackControl",
1247 "Feedback control activated and voltage output enabled.");
1248 AddStateName(Feedback::State::kTempCtrlRunning, "TempControl",
1249 "Temperature control activated and voltage output enabled.");
1250 AddStateName(Feedback::State::kCurrentCtrlRunning, "CurrentControl",
1251 "Current/Temp control activated and voltage output enabled.");
1252 AddStateName(Feedback::State::kCalibrating, "Calibrating",
1253 "Calibrating current offsets.");
1254
1255 AddEvent("START_FEEDBACK_CONTROL", "S:1", Feedback::State::kConnectedFAD, Feedback::State::kConnected)
1256 (bind(&StateMachineFeedback::StartFeedback, this, placeholders::_1))
1257 ("Start the feedback control loop"
1258 "|Num[short]:Number of events 'medianed' to calculate the correction value");
1259
1260 AddEvent("START_GLOBAL_FEEDBACK", "S:1", Feedback::State::kConnectedFAD, Feedback::State::kConnected)
1261 (bind(&StateMachineFeedback::StartFeedbackGlobal, this, placeholders::_1))
1262 ("Start the global feedback control loop"
1263 "Num[short]:Number of events averaged to calculate the correction value");
1264
1265 AddEvent("START_TEMP_CONTROL", "F:1", Feedback::State::kConnectedFSC, Feedback::State::kConnected)
1266 (bind(&StateMachineFeedback::StartTempCtrl, this, placeholders::_1))
1267 ("Start the temperature control loop"
1268 "|offset[V]:Offset from the nominal temperature corrected value in Volts");
1269
1270 AddEvent("START_CURRENT_CONTROL", "F:1", Feedback::State::kConnectedFSC, Feedback::State::kConnected)
1271 (bind(&StateMachineFeedback::StartCurrentCtrl, this, placeholders::_1))
1272 ("Start the current/temperature control loop"
1273 "|offset[V]:Offset from the nominal current/temperature corrected value in Volts");
1274
1275 // Feedback::State::kTempCtrlIdle, Feedback::State::kFeedbackCtrlIdle, Feedback::State::kTempCtrlRunning, Feedback::State::kFeedbackCtrlRunning
1276 AddEvent("STOP")
1277 (bind(&StateMachineFeedback::StopFeedback, this))
1278 ("Stop any control loop");
1279
1280 AddEvent("ENABLE_OUTPUT", "B:1")//, Feedback::State::kIdle)
1281 (bind(&StateMachineFeedback::EnableOutput, this, placeholders::_1))
1282 ("Enable sending of correction values caluclated by the control loop to the biasctrl");
1283
1284 AddEvent("STORE_REFERENCE")//, Feedback::State::kIdle)
1285 (bind(&StateMachineFeedback::StoreReference, this))
1286 ("Store the last (averaged) value as new reference (for debug purpose only)");
1287
1288 AddEvent("SET_REFERENCE", "F:1")//, Feedback::State::kIdle)
1289 (bind(&StateMachineFeedback::SetReference, this, placeholders::_1))
1290 ("Set a new global reference value (for debug purpose only)");
1291
1292 AddEvent("SET_Ki", "D:1")//, Feedback::State::kIdle)
1293 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 0))
1294 ("Set integral constant Ki");
1295
1296 AddEvent("SET_Kp", "D:1")//, Feedback::State::kIdle)
1297 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 1))
1298 ("Set proportional constant Kp");
1299
1300 AddEvent("SET_Kd", "D:1")//, Feedback::State::kIdle)
1301 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 2))
1302 ("Set derivative constant Kd");
1303
1304 AddEvent("SET_T", "D:1")//, Feedback::State::kIdle)
1305 (bind(&StateMachineFeedback::SetConstant, this, placeholders::_1, 3))
1306 ("Set time-constant. (-1 to use the cycle time, i.e. the time for the last average cycle, instead)");
1307
1308 AddEvent("CALIBRATE_CURRENTS", Feedback::State::kConnectedFSC, Feedback::State::kConnected)//, Feedback::State::kIdle)
1309 (bind(&StateMachineFeedback::CalibrateCurrents, this))
1310 ("");
1311
1312 AddEvent("SET_CURRENT_REQUEST_INTERVAL", Feedback::State::kConnectedFSC, Feedback::State::kConnected)//, Feedback::State::kIdle)
1313 (bind(&StateMachineFeedback::SetCurrentRequestInterval, this, placeholders::_1))
1314 ("|interval[ms]:Interval between two current requests in modes which need that.");
1315
1316 // Verbosity commands
1317// AddEvent("SET_VERBOSE", "B:1")
1318// (bind(&StateMachineMCP::SetVerbosity, this, placeholders::_1))
1319// ("set verbosity state"
1320// "|verbosity[bool]:disable or enable verbosity for received data (yes/no), except dynamic data");
1321
1322 AddEvent("PRINT")
1323 (bind(&StateMachineFeedback::Print, this))
1324 ("");
1325
1326 AddEvent("PRINT_CALIBRATION")
1327 (bind(&StateMachineFeedback::PrintCalibration, this))
1328 ("");
1329 }
1330
1331 int EvalOptions(Configuration &conf)
1332 {
1333 if (!fMap.Read(conf.Get<string>("pixel-map-file")))
1334 {
1335 Error("Reading mapping table from "+conf.Get<string>("pixel-map-file")+" failed.");
1336 return 1;
1337 }
1338
1339 fGain = 0.1; // V(Amplitude) / V(Bias)
1340
1341 // 148 -> 248
1342
1343 // 33 : 10s < 2%
1344 // 50 : 5s < 2%
1345 // 66 : 3s < 2%
1346 // 85 : 2s < 2%
1347
1348 fKp = 0;
1349 fKd = 0;
1350 fKi = 0.75;
1351 fT = 1;
1352
1353 // Is that independent of the aboslute real amplitude of
1354 // the light pulser?
1355
1356 ostringstream msg;
1357 msg << "Control loop parameters: ";
1358 msg << "Kp=" << fKp << ", Kd=" << fKd << ", Ki=" << fKi << ", ";
1359 if (fT>0)
1360 msg << fT;
1361 else
1362 msg << "<auto>";
1363 msg << ", Gain(DRS/BIAS)=" << fGain << "V/V";
1364
1365 Message(msg);
1366
1367 fCurrentRequestInterval = conf.Get<uint16_t>("current-request-interval");
1368 fNumCalibIgnore = conf.Get<uint16_t>("num-calib-ignore");
1369 fNumCalibRequests = conf.Get<uint16_t>("num-calib-average");
1370 fCalibrationOffset = conf.Get<float>("calibration-offset");
1371
1372 return -1;
1373 }
1374};
1375
1376// ------------------------------------------------------------------------
1377
1378#include "Main.h"
1379
1380template<class T>
1381int RunShell(Configuration &conf)
1382{
1383 return Main::execute<T, StateMachineFeedback>(conf);
1384}
1385
1386void SetupConfiguration(Configuration &conf)
1387{
1388 po::options_description control("Feedback options");
1389 control.add_options()
1390 ("pixel-map-file", var<string>("FACTmapV5a.txt"), "Pixel mapping file. Used here to get the default reference voltage.")
1391 ("current-request-interval", var<uint16_t>(1000), "Interval between two current requests.")
1392 ("num-calib-ignore", var<uint16_t>(30), "Number of current requests to be ignored before averaging")
1393 ("num-calib-average", var<uint16_t>(300), "Number of current requests to be averaged")
1394 ("calibration-offset", var<float>(-3), "Absolute offset relative to the G-APD operation voltage when calibrating")
1395 ;
1396
1397 conf.AddOptions(control);
1398}
1399
1400/*
1401 Extract usage clause(s) [if any] for SYNOPSIS.
1402 Translators: "Usage" and "or" here are patterns (regular expressions) which
1403 are used to match the usage synopsis in program output. An example from cp
1404 (GNU coreutils) which contains both strings:
1405 Usage: cp [OPTION]... [-T] SOURCE DEST
1406 or: cp [OPTION]... SOURCE... DIRECTORY
1407 or: cp [OPTION]... -t DIRECTORY SOURCE...
1408 */
1409void PrintUsage()
1410{
1411 cout <<
1412 "The feedback control the BIAS voltages based on the calibration signal.\n"
1413 "\n"
1414 "The default is that the program is started without user intercation. "
1415 "All actions are supposed to arrive as DimCommands. Using the -c "
1416 "option, a local shell can be initialized. With h or help a short "
1417 "help message about the usuage can be brought to the screen.\n"
1418 "\n"
1419 "Usage: feedback [-c type] [OPTIONS]\n"
1420 " or: feedback [OPTIONS]\n";
1421 cout << endl;
1422}
1423
1424void PrintHelp()
1425{
1426 Main::PrintHelp<StateMachineFeedback>();
1427
1428 /* Additional help text which is printed after the configuration
1429 options goes here */
1430
1431 /*
1432 cout << "bla bla bla" << endl << endl;
1433 cout << endl;
1434 cout << "Environment:" << endl;
1435 cout << "environment" << endl;
1436 cout << endl;
1437 cout << "Examples:" << endl;
1438 cout << "test exam" << endl;
1439 cout << endl;
1440 cout << "Files:" << endl;
1441 cout << "files" << endl;
1442 cout << endl;
1443 */
1444}
1445
1446int main(int argc, const char* argv[])
1447{
1448 Configuration conf(argv[0]);
1449 conf.SetPrintUsage(PrintUsage);
1450 Main::SetupConfiguration(conf);
1451 SetupConfiguration(conf);
1452
1453 if (!conf.DoParse(argc, argv, PrintHelp))
1454 return 127;
1455
1456 //try
1457 {
1458 // No console access at all
1459 if (!conf.Has("console"))
1460 {
1461// if (conf.Get<bool>("no-dim"))
1462// return RunShell<LocalStream, StateMachine, ConnectionFSC>(conf);
1463// else
1464 return RunShell<LocalStream>(conf);
1465 }
1466 // Cosole access w/ and w/o Dim
1467/* if (conf.Get<bool>("no-dim"))
1468 {
1469 if (conf.Get<int>("console")==0)
1470 return RunShell<LocalShell, StateMachine, ConnectionFSC>(conf);
1471 else
1472 return RunShell<LocalConsole, StateMachine, ConnectionFSC>(conf);
1473 }
1474 else
1475*/ {
1476 if (conf.Get<int>("console")==0)
1477 return RunShell<LocalShell>(conf);
1478 else
1479 return RunShell<LocalConsole>(conf);
1480 }
1481 }
1482 /*catch (std::exception& e)
1483 {
1484 cerr << "Exception: " << e.what() << endl;
1485 return -1;
1486 }*/
1487
1488 return 0;
1489}
Note: See TracBrowser for help on using the repository browser.