#include #include #include #include #include "Dim.h" #include "Event.h" #include "Shell.h" #include "StateMachineDim.h" #include "Connection.h" #include "Configuration.h" #include "Console.h" #include "Converter.h" #include "tools.h" #include "HeadersFTM.h" namespace ba = boost::asio; namespace bs = boost::system; using namespace std; // ------------------------------------------------------------------------ class ConnectionFTM : public Connection { vector fBuffer; bool fHasHeader; int fState; bool fIsVerbose; bool fIsDynamicOut; bool fIsHexOutput; // string fDefaultSetup; // --verbose // --hex-out // --dynamic-out // --load-file // --leds // --trigger-interval // --physcis-coincidence // --calib-coincidence // --physcis-window // --physcis-window // --trigger-delay // --time-marker-delay // --dead-time // --clock-conditioner-r0 // --clock-conditioner-r1 // --clock-conditioner-r8 // --clock-conditioner-r9 // --clock-conditioner-r11 // --clock-conditioner-r13 // --clock-conditioner-r14 // --clock-conditioner-r15 // ... protected: map fCounter; FTM::Header fHeader; FTM::FtuList fFtuList; FTM::StaticData fStaticData; FTM::DynamicData fDynamicData; FTM::Error fError; virtual void UpdateFirstHeader() { // FIXME: Message() ? Out() << endl << kBold << "First header received:" << endl; Out() << fHeader; if (fIsHexOutput) Out() << Converter::GetHex(fHeader, 16) << endl; } virtual void UpdateHeader() { // emit service with trigger counter from header if (!fIsVerbose) return; if (fHeader.fType==FTM::kDynamicData && !fIsDynamicOut) return; Out() << endl << kBold << "Header received:" << endl; Out() << fHeader; if (fIsHexOutput) Out() << Converter::GetHex(fHeader, 16) << endl; } virtual void UpdateFtuList() { if (!fIsVerbose) return; Out() << endl << kBold << "FtuList received:" << endl; Out() << fFtuList; if (fIsHexOutput) Out() << Converter::GetHex(fFtuList, 16) << endl; } virtual void UpdateStaticData() { if (!fIsVerbose) return; Out() << endl << kBold << "Static data received:" << endl; Out() << fStaticData; if (fIsHexOutput) Out() << Converter::GetHex(fStaticData, 16) << endl; } virtual void UpdateDynamicData() { if (!fIsDynamicOut) return; Out() << endl << kBold << "Dynamic data received:" << endl; Out() << fDynamicData; if (fIsHexOutput) Out() << Converter::GetHex(fDynamicData, 16) << endl; } virtual void UpdateError() { if (!fIsVerbose) return; Out() << endl << kRed << "Error received:" << endl; Out() << fError; if (fIsHexOutput) Out() << Converter::GetHex(fError, 16) << endl; } virtual void UpdateCounter() { if (!fIsVerbose) return; if (!fIsDynamicOut) return; Out() << "Received: "; Out() << "H=" << fCounter[FTM::kHeader] << " "; Out() << "S=" << fCounter[FTM::kStaticData] << " "; Out() << "D=" << fCounter[FTM::kDynamicData] << " "; Out() << "F=" << fCounter[FTM::kFtuList] << " "; Out() << "E=" << fCounter[FTM::kErrorList] << " "; Out() << "R=" << fCounter[FTM::kRegister] << endl; } bool CheckConsistency() { bool warn1 = false; if (fStaticData.IsEnabled(FTM::StaticData::kPedestal) != (fStaticData.GetSequencePed() >0) || fStaticData.IsEnabled(FTM::StaticData::kLPint) != (fStaticData.GetSequenceLPint()>0) || fStaticData.IsEnabled(FTM::StaticData::kLPext) != (fStaticData.GetSequenceLPext()>0)) { warn1 = true; fStaticData.Enable(FTM::StaticData::kPedestal, fStaticData.GetSequencePed()>0); fStaticData.Enable(FTM::StaticData::kLPint, fStaticData.GetSequenceLPint()>0); fStaticData.Enable(FTM::StaticData::kLPext, fStaticData.GetSequenceLPext()>0); } bool warn2 = false; const uint16_t ref = fStaticData[0].fPrescaling; for (int i=1; i<40; i++) { if (fStaticData[i].fPrescaling != ref) { warn2 = true; fStaticData[i].fPrescaling = ref; } } if (warn1) Warn("GeneralSettings not consistent with trigger sequence."); if (warn2) Warn("Prescaling not consistent for all boards."); return !warn1 && !warn2; } private: void HandleReceivedData(const bs::error_code& err, size_t bytes_received, int /*type*/) { // Do not schedule a new read if the connection failed. if (bytes_received==0 || err) { if (err==ba::error::eof) Warn("Connection closed by remote host (FTM)."); // 107: Transport endpoint is not connected (bs::error_code(107, bs::system_category)) // 125: Operation canceled if (err && err!=ba::error::eof && // Connection closed by remote host err!=ba::error::basic_errors::not_connected && // Connection closed by remote host err!=ba::error::basic_errors::operation_aborted) // Connection closed by us { ostringstream str; str << "Reading from " << URL() << ": " << err.message() << " (" << err << ")";// << endl; Error(str); } PostClose(err!=ba::error::basic_errors::operation_aborted); return; } // If we have not yet received a header we expect one now // This could be moved to a HandleReceivedHeader function if (!fHasHeader) { if (bytes_received!=sizeof(FTM::Header)) { ostringstream str; str << "Excepted " << sizeof(FTM::Header) << " bytes (FTM::Header) but received " << bytes_received << "."; Error(str); PostClose(false); return; } fHeader = fBuffer; // Check the data integrity if (fHeader.fDelimiter!=FTM::kDelimiterStart) { ostringstream str; str << "Invalid header received: start delimiter wrong, received "; str << hex << fHeader.fDelimiter << ", expected " << FTM::kDelimiterStart << "."; Error(str); PostClose(false); return; } fHasHeader = true; // Convert FTM state into FtmCtrl state switch (fHeader.fState) { case FTM::kFtmIdle: case FTM::kFtmConfig: fState = FTM::kIdle; break; case FTM::kFtmCalib: case FTM::kFtmRunning: fState = FTM::kTakingData; break; } if (++fCounter[FTM::kHeader]==1) UpdateFirstHeader(); UpdateCounter(); UpdateHeader(); // Start reading of data switch (fHeader.fType) { case FTM::kStaticData: case FTM::kDynamicData: case FTM::kFtuList: case FTM::kRegister: case FTM::kErrorList: // This is not very efficient because the space is reallocated // maybe we can check if the capacity of the std::vector // is ever decreased. If not, everythign is fine. fBuffer.resize(fHeader.fDataSize); AsyncRead(ba::buffer(fBuffer)); AsyncWait(fInTimeout, 50, &Connection::HandleReadTimeout); return; default: ostringstream str; str << "Unknonw type " << fHeader.fType << " in received header." << endl; Error(str); PostClose(false); return; } return; } // Check the data integrity (check end delimiter) if (ntohs(fBuffer.back())!=FTM::kDelimiterEnd) { ostringstream str; str << "Invalid data received: end delimiter wrong, received "; str << hex << ntohs(fBuffer.back()) << ", expected " << FTM::kDelimiterEnd << "."; Error(str); PostClose(false); return; } // Remove end delimiter fBuffer.pop_back(); try { // If we have already received a header this is the data now // This could be moved to a HandleReceivedData function fCounter[fHeader.fType]++; UpdateCounter(); switch (fHeader.fType) { case FTM::kFtuList: fFtuList = fBuffer; UpdateFtuList(); break; case FTM::kStaticData: fStaticData = fBuffer; if (fCounter[FTM::kStaticData]==1) if (!CheckConsistency()) { CmdSendStatDat(); break; } UpdateStaticData(); break; case FTM::kDynamicData: fDynamicData = fBuffer; UpdateDynamicData(); break; case FTM::kRegister: if (fIsVerbose) { Out() << endl << kBold << "Register received: " << endl; Out() << "Addr: " << ntohs(fBuffer[0]) << endl; Out() << "Value: " << ntohs(fBuffer[1]) << endl; } break; case FTM::kErrorList: fError = fBuffer; UpdateError(); break; default: ostringstream str; str << "Unknonw type " << fHeader.fType << " in header." << endl; Error(str); PostClose(false); return; } } catch (const logic_error &e) { ostringstream str; str << "Exception converting buffer into data structure: " << e.what(); Error(str); PostClose(false); return; } fInTimeout.cancel(); fHeader.clear(); fHasHeader = false; fBuffer.resize(sizeof(FTM::Header)/2); AsyncRead(ba::buffer(fBuffer)); } // This is called when a connection was established void ConnectionEstablished() { fState = FTM::kConnected; fCounter.clear(); fHeader.clear(); fHasHeader = false; fBuffer.resize(sizeof(FTM::Header)/2); AsyncRead(ba::buffer(fBuffer)); // if (!fDefaultSetup.empty()) // LoadStaticData(fDefaultSetup); // Get a header and configdata! CmdReqStatDat(); // get the DNA of the FTUs CmdPing(); } void HandleReadTimeout(const bs::error_code &error) { if (error==ba::error::basic_errors::operation_aborted) return; if (error) { ostringstream str; str << "Read timeout of " << URL() << ": " << error.message() << " (" << error << ")";// << endl; Error(str); PostClose(); return; } if (!is_open()) { // For example: Here we could schedule a new accept if we // would not want to allow two connections at the same time. return; } // Check whether the deadline has passed. We compare the deadline // against the current time since a new asynchronous operation // may have moved the deadline before this actor had a chance // to run. if (fInTimeout.expires_at() > ba::deadline_timer::traits_type::now()) return; Error("Timeout reading data from "+URL()); PostClose(); } template void PostCmd(boost::array dat, uint16_t u1=0, uint16_t u2=0, uint16_t u3=0, uint16_t u4=0) { boost::array cmd = {{ '@', u1, u2, u3, u4 }}; ostringstream msg; msg << "Sending command:" << hex; msg << " 0x" << setw(4) << setfill('0') << cmd[0]; msg << " 0x" << setw(4) << setfill('0') << u1; msg << " 0x" << setw(4) << setfill('0') << u2; msg << " 0x" << setw(4) << setfill('0') << u3; msg << " 0x" << setw(4) << setfill('0') << u4; msg << " (+" << dec << dat.size() << " words)"; Message(msg); vector out(cmd.size()+dat.size()); transform(cmd.begin(), cmd.end(), out.begin(), htons); transform(dat.begin(), dat.end(), out.begin()+cmd.size(), htons); PostMessage(out); } void PostCmd(vector dat, uint16_t u1=0, uint16_t u2=0, uint16_t u3=0, uint16_t u4=0) { boost::array cmd = {{ '@', u1, u2, u3, u4 }}; ostringstream msg; msg << "Sending command:" << hex; msg << " 0x" << setw(4) << setfill('0') << cmd[0]; msg << " 0x" << setw(4) << setfill('0') << u1; msg << " 0x" << setw(4) << setfill('0') << u2; msg << " 0x" << setw(4) << setfill('0') << u3; msg << " 0x" << setw(4) << setfill('0') << u4; msg << " (+" << dec << dat.size() << " words)"; Message(msg); vector out(cmd.size()+dat.size()); transform(cmd.begin(), cmd.end(), out.begin(), htons); copy(dat.begin(), dat.end(), out.begin()+cmd.size()); PostMessage(out); } void PostCmd(uint16_t u1=0, uint16_t u2=0, uint16_t u3=0, uint16_t u4=0) { PostCmd(boost::array(), u1, u2, u3, u4); } public: // static const uint16_t kMaxAddr; public: ConnectionFTM(ba::io_service& ioservice, MessageImp &imp) : Connection(ioservice, imp()), fState(0), fIsVerbose(true), fIsDynamicOut(true), fIsHexOutput(true) { SetLogStream(&imp); } void CmdToggleLed() { PostCmd(FTM::kCmdToggleLed); } void CmdPing() { PostCmd(FTM::kCmdPing); } void CmdReqDynDat() { PostCmd(FTM::kCmdRead, FTM::kCmdDynamicData); } void CmdReqStatDat() { PostCmd(FTM::kCmdRead, FTM::kCmdStaticData); } void CmdSendStatDat() { PostCmd(fStaticData.HtoN(), FTM::kCmdWrite, FTM::kCmdStaticData); // Request the changed configuration to ensure the // change is distributed in the network CmdReqStatDat(); } void CmdStartRun() { PostCmd(FTM::kCmdStartRun, FTM::kStartRun); // Update state information by requesting a new header CmdGetRegister(0); } void CmdStopRun() { PostCmd(FTM::kCmdStopRun); // Update state information by requesting a new header CmdGetRegister(0); } void CmdTakeNevents(uint32_t n) { const boost::array data = {{ uint16_t(n>>16), uint16_t(n&0xffff) }}; PostCmd(data, FTM::kCmdStartRun, FTM::kTakeNevents); // Update state information by requesting a new header CmdGetRegister(0); } bool CmdSetRegister(uint16_t addr, uint16_t val) { if (addr>FTM::StaticData::kMaxAddr) return false; const boost::array data = {{ addr, val }}; PostCmd(data, FTM::kCmdWrite, FTM::kCmdRegister); // Request the changed configuration to ensure the // change is distributed in the network CmdReqStatDat(); return true; } bool CmdGetRegister(uint16_t addr) { if (addr>FTM::StaticData::kMaxAddr) return false; const boost::array data = {{ addr }}; PostCmd(data, FTM::kCmdRead, FTM::kCmdRegister); return true; } bool CmdResetCrate(uint16_t addr) { if (addr>3) return false; PostCmd(FTM::kCmdCrateReset, 1<(&data), sizeof(FTM::StaticData)); if (fin.gcount()(&fStaticData), sizeof(FTM::StaticData)); return !fout.bad(); } bool SetThreshold(int32_t patch, int32_t value) { if (patch>159) return false; if (value<0 || value>0xffff) return false; if (patch<0) { bool ident = true; for (int i=0; i<160; i++) if (fStaticData[i/4].fDAC[patch%4] != value) { ident = false; break; } if (ident) return true; for (int i=0; i<160; i++) fStaticData[i/4].fDAC[i%4] = value; } else { if (fStaticData[patch/4].fDAC[patch%4] == value) return true; fStaticData[patch/4].fDAC[patch%4] = value; } // Maybe move to a "COMMIT" command? CmdSendStatDat(); return true; } bool SetPrescaling(uint32_t value) { if (value>0xffff) return false; bool ident = true; for (int i=0; i<40; i++) if (fStaticData[i].fPrescaling != value) { ident = false; break; } if (ident) return true; for (int i=0; i<40; i++) fStaticData[i].fPrescaling = value; // Maybe move to a "COMMIT" command? CmdSendStatDat(); return true; } bool EnableFTU(int32_t board, bool enable) { if (board>39) return false; if (board<0) { if (enable) fStaticData.EnableAllFTU(); else fStaticData.DisableAllFTU(); } else { if (enable) fStaticData.EnableFTU(board); else fStaticData.DisableFTU(board); } // Maybe move to a "COMMIT" command? CmdSendStatDat(); return true; } bool ToggleFTU(uint32_t board) { if (board>39) return false; fStaticData.ToggleFTU(board); // Maybe move to a "COMMIT" command? CmdSendStatDat(); return true; } bool SetVal(uint16_t *dest, uint32_t val, uint32_t max) { if (val>max) return false; if (*dest==val) return true; *dest = val; CmdSendStatDat(); return true; } bool SetTriggerInterval(uint32_t val) { return SetVal(&fStaticData.fTriggerInterval, val, FTM::StaticData::kMaxTriggerInterval); } bool SetTriggerDelay(uint32_t val) { return SetVal(&fStaticData.fDelayTrigger, val, FTM::StaticData::kMaxDelayTrigger); } bool SetTimeMarkerDelay(uint32_t val) { return SetVal(&fStaticData.fDelayTimeMarker, val, FTM::StaticData::kMaxDelayTimeMarker); } bool SetDeadTime(uint32_t val) { return SetVal(&fStaticData.fDeadTime, val, FTM::StaticData::kMaxDeadTime); } void Enable(FTM::StaticData::GeneralSettings type, bool enable) { if (fStaticData.IsEnabled(type)!=enable) { fStaticData.Enable(type, enable); CmdSendStatDat(); } } bool SetTriggerSeq(const uint16_t d[3]) { const uint16_t oldset = fStaticData.fGeneralSettings; const uint16_t oldseq = fStaticData.fTriggerSequence; if (d[0]>FTM::StaticData::kMaxSequence || d[1]>FTM::StaticData::kMaxSequence || d[2]>FTM::StaticData::kMaxSequence) return false; fStaticData.Enable(FTM::StaticData::kPedestal, d[0]>0); fStaticData.Enable(FTM::StaticData::kLPext, d[1]>0); fStaticData.Enable(FTM::StaticData::kLPint, d[2]>0); fStaticData.fTriggerSequence = (uint16_t(d[0])<<10) | (uint16_t(d[2])<<5) | uint16_t(d[1]); if (oldseq!=fStaticData.fTriggerSequence || oldset!=fStaticData.fGeneralSettings) CmdSendStatDat(); return true; } bool SetTriggerMultiplicity(uint16_t n) { if (n==0 || n>FTM::StaticData::kMaxMultiplicity) return false; if (n==fStaticData.fMultiplicityPhysics) return true; fStaticData.fMultiplicityPhysics = n; CmdSendStatDat(); return true; } bool SetTriggerWindow(uint16_t win) { if (win>FTM::StaticData::kMaxWindow) return false; if (win==fStaticData.fWindowPhysics) return true; fStaticData.fWindowPhysics = win; CmdSendStatDat(); return true; } bool SetCalibMultiplicity(uint16_t n) { if (n==0 || n>FTM::StaticData::kMaxMultiplicity) return false; if (n==fStaticData.fMultiplicityCalib) return true; fStaticData.fMultiplicityCalib = n; CmdSendStatDat(); return true; } bool SetCalibWindow(uint16_t win) { if (win>FTM::StaticData::kMaxWindow) return false; if (win==fStaticData.fWindowCalib) return true; fStaticData.fWindowCalib = win; CmdSendStatDat(); return true; } bool SetClockRegister(const uint64_t reg[]) { for (int i=0; i<8; i++) { if (reg[i]>0xffffffff) return false; fStaticData.fClockConditioner[i] = reg[i]; } CmdSendStatDat(); return true; } bool EnablePixel(int16_t idx, bool enable) { if (idx<-1 || idx>FTM::StaticData::kMaxPixelIdx) return false; if (idx==-1) for (int i=0; i<=FTM::StaticData::kMaxPixelIdx; i++) fStaticData.EnablePixel(i, enable); else fStaticData.EnablePixel(idx, enable); CmdSendStatDat(); return true; } bool DisableAllPixelsExcept(uint16_t idx) { if (idx>FTM::StaticData::kMaxPixelIdx) return false; for (int i=0; i<=FTM::StaticData::kMaxPixelIdx; i++) fStaticData.EnablePixel(i, i==idx); CmdSendStatDat(); return true; } bool DisableAllPatchesExcept(uint16_t idx) { if (idx>FTM::StaticData::kMaxPatchIdx) return false; for (int i=0; i<=FTM::StaticData::kMaxPixelIdx; i++) fStaticData.EnablePixel(i, i/9==idx); CmdSendStatDat(); return true; } bool TogglePixel(uint16_t idx) { if (idx>FTM::StaticData::kMaxPixelIdx) return false; fStaticData.EnablePixel(idx, !fStaticData.Enabled(idx)); CmdSendStatDat(); return true; } int GetState() const { return IsConnected() ? fState : (int)FTM::kDisconnected; } }; //const uint16_t ConnectionFTM::kMaxAddr = 0xfff; // ------------------------------------------------------------------------ #include "DimDescriptionService.h" class ConnectionDimFTM : public ConnectionFTM { private: DimDescribedService fDimPassport; DimDescribedService fDimTriggerCounter; DimDescribedService fDimError; DimDescribedService fDimFtuList; DimDescribedService fDimStaticData; DimDescribedService fDimDynamicData; DimDescribedService fDimCounter; void UpdateFirstHeader() { ConnectionFTM::UpdateFirstHeader(); const FTM::DimPassport data(fHeader); fDimPassport.Update(data); } void UpdateHeader() { ConnectionFTM::UpdateHeader(); if (fHeader.fType!=FTM::kDynamicData) return; const FTM::DimTriggerCounter data(fHeader); fDimTriggerCounter.Update(data); } void UpdateFtuList() { ConnectionFTM::UpdateFtuList(); const FTM::DimFtuList data(fHeader, fFtuList); fDimFtuList.Update(data); } void UpdateStaticData() { ConnectionFTM::UpdateStaticData(); const FTM::DimStaticData data(fHeader, fStaticData); fDimStaticData.Update(data); } void UpdateDynamicData() { ConnectionFTM::UpdateDynamicData(); const FTM::DimDynamicData data(fHeader, fDynamicData); fDimDynamicData.Update(data); } void UpdateError() { ConnectionFTM::UpdateError(); const FTM::DimError data(fHeader, fError); fDimError.Update(data); } void UpdateCounter() { ConnectionFTM::UpdateCounter(); const uint32_t counter[6] = { fCounter[FTM::kHeader], fCounter[FTM::kStaticData], fCounter[FTM::kDynamicData], fCounter[FTM::kFtuList], fCounter[FTM::kErrorList], fCounter[FTM::kRegister], }; fDimCounter.Update(counter); } public: ConnectionDimFTM(ba::io_service& ioservice, MessageImp &imp) : ConnectionFTM(ioservice, imp), fDimPassport ("FTM_CONTROL/PASSPORT", "X:1;S:1", ""), fDimTriggerCounter("FTM_CONTROL/TRIGGER_COUNTER", "X:1;I:1", ""), fDimError ("FTM_CONTROL/ERROR", "X:1;S:1;S:28", ""), fDimFtuList ("FTM_CONTROL/FTU_LIST", "X:1;X:1;S:1;C:4;X:40;C:40;C:40", ""), fDimStaticData ("FTM_CONTROL/STATIC_DATA", "X:1;S:1;S:1;X:1;S:1;S:3;S:1;S:1;S:1;S:1;S:1;S:1;I:1;I:8;S:90;S:160;S:40;S:40", ""), fDimDynamicData ("FTM_CONTROL/DYNAMIC_DATA", "X:1;X:1;F:4;I:160;I:40;S:40;S:40", ""), fDimCounter ("FTM_CONTROL/COUNTER", "I:6", "") { } // A B [C] [D] E [F] G H [I] J K [L] M N O P Q R [S] T U V W [X] Y Z }; // ------------------------------------------------------------------------ template class StateMachineFTM : public T, public ba::io_service, public ba::io_service::work { int Wrap(boost::function f) { f(); return T::GetCurrentState(); } boost::function Wrapper(boost::function func) { return boost::bind(&StateMachineFTM::Wrap, this, func); } private: S fFTM; enum states_t { kStateDisconnected = FTM::kDisconnected, kStateConnected = FTM::kConnected, kStateIdle = FTM::kIdle, kStateTakingData = FTM::kTakingData, kCmdTest }; bool CheckEventSize(size_t has, const char *name, size_t size) { if (has==size) return true; ostringstream msg; msg << name << " - Received event has " << has << " bytes, but expected " << size << "."; T::Fatal(msg); return false; } int SetRegister(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetRegister", 8)) return T::kSM_FatalError; const uint32_t *dat = evt.Ptr(); if (dat[1]>uint16_t(-1)) { ostringstream msg; msg << hex << "Value " << dat[1] << " out of range."; T::Error(msg); return T::GetCurrentState(); } if (dat[0]>uint16_t(-1) || !fFTM.CmdSetRegister(dat[0], dat[1])) { ostringstream msg; msg << hex << "Address " << dat[0] << " out of range."; T::Error(msg); } return T::GetCurrentState(); } int GetRegister(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "GetRegister", 4)) return T::kSM_FatalError; const unsigned int addr = evt.GetInt(); if (addr>uint16_t(-1) || !fFTM.CmdGetRegister(addr)) { ostringstream msg; msg << hex << "Address " << addr << " out of range."; T::Error(msg); } return T::GetCurrentState(); } int TakeNevents(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "TakeNevents", 4)) return T::kSM_FatalError; const unsigned int dat = evt.GetUInt(); /* if (dat[1]>uint32_t(-1)) { ostringstream msg; msg << hex << "Value " << dat[1] << " out of range."; T::Error(msg); return T::GetCurrentState(); }*/ fFTM.CmdTakeNevents(dat); return T::GetCurrentState(); } int DisableReports(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "DisableReports", 1)) return T::kSM_FatalError; fFTM.CmdDisableReports(evt.GetBool()); return T::GetCurrentState(); } int SetVerbosity(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetVerbosity", 1)) return T::kSM_FatalError; fFTM.SetVerbose(evt.GetBool()); return T::GetCurrentState(); } int SetHexOutput(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetHexOutput", 1)) return T::kSM_FatalError; fFTM.SetHexOutput(evt.GetBool()); return T::GetCurrentState(); } int SetDynamicOut(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetDynamicOut", 1)) return T::kSM_FatalError; fFTM.SetDynamicOut(evt.GetBool()); return T::GetCurrentState(); } int LoadStaticData(const EventImp &evt) { if (fFTM.LoadStaticData(evt.GetString())) return T::GetCurrentState(); ostringstream msg; msg << "Loading static data from file '" << evt.GetString() << "' failed "; if (errno) msg << "(" << strerror(errno) << ")"; else msg << "(wrong size, expected " << sizeof(FTM::StaticData) << " bytes)"; T::Warn(msg); return T::GetCurrentState(); } int SaveStaticData(const EventImp &evt) { if (fFTM.SaveStaticData(evt.GetString())) return T::GetCurrentState(); ostringstream msg; msg << "Writing static data to file '" << evt.GetString() << "' failed "; msg << "(" << strerror(errno) << ")"; T::Warn(msg); return T::GetCurrentState(); } int SetThreshold(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetThreshold", 8)) return T::kSM_FatalError; const int32_t *data = evt.Ptr(); if (!fFTM.SetThreshold(data[0], data[1])) T::Warn("SetThreshold - Maximum allowed patch number 159, valid value range 0-0xffff"); return T::GetCurrentState(); } int EnableFTU(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "EnableFTU", 5)) return T::kSM_FatalError; const int32_t &board = evt.Get(); const int8_t &enable = evt.Get(4); if (!fFTM.EnableFTU(board, enable)) T::Warn("EnableFTU - Board number must be <40."); return T::GetCurrentState(); } int ToggleFTU(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "ToggleFTU", 4)) return T::kSM_FatalError; if (!fFTM.ToggleFTU(evt.GetInt())) T::Warn("ToggleFTU - Allowed range of boards 0-39."); return T::GetCurrentState(); } int SetTriggerInterval(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerInterval", 4)) return T::kSM_FatalError; if (!fFTM.SetTriggerInterval(evt.GetInt())) T::Warn("SetTriggerInterval - Value out of range."); return T::GetCurrentState(); } int SetTriggerDelay(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerDelay", 4)) return T::kSM_FatalError; if (!fFTM.SetTriggerDelay(evt.GetInt())) T::Warn("SetTriggerDealy - Value out of range."); return T::GetCurrentState(); } int SetTimeMarkerDelay(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTimeMarkerDelay", 4)) return T::kSM_FatalError; if (!fFTM.SetTimeMarkerDelay(evt.GetInt())) T::Warn("SetTimeMarkerDelay - Value out of range."); return T::GetCurrentState(); } int SetPrescaling(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetPrescaling", 4)) return T::kSM_FatalError; if (!fFTM.SetPrescaling(evt.GetInt()-1)) T::Warn("SetPrescaling - Value out of range."); return T::GetCurrentState(); } int SetTriggerSeq(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerSeq", 6)) return T::kSM_FatalError; const uint16_t *data = evt.Ptr(); if (!fFTM.SetTriggerSeq(data)) T::Warn("SetTriggerSeq - Value out of range."); return T::GetCurrentState(); } int SetDeadTime(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetDeadTime", 4)) return T::kSM_FatalError; if (!fFTM.SetDeadTime(evt.GetInt())) T::Warn("SetDeadTime - Value out of range."); return T::GetCurrentState(); } int SetTriggerMultiplicity(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerMultiplicity", 2)) return T::kSM_FatalError; if (!fFTM.SetTriggerMultiplicity(evt.GetUShort())) T::Warn("SetTriggerMultiplicity - Value out of range."); return T::GetCurrentState(); } int SetCalibMultiplicity(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetCalibMultiplicity", 2)) return T::kSM_FatalError; if (!fFTM.SetCalibMultiplicity(evt.GetUShort())) T::Warn("SetCalibMultiplicity - Value out of range."); return T::GetCurrentState(); } int SetTriggerWindow(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerWindow", 2)) return T::kSM_FatalError; if (!fFTM.SetTriggerWindow(evt.GetUShort())) T::Warn("SetTriggerWindow - Value out of range."); return T::GetCurrentState(); } int SetCalibWindow(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetCalibWindow", 2)) return T::kSM_FatalError; if (!fFTM.SetCalibWindow(evt.GetUShort())) T::Warn("SetCalibWindow - Value out of range."); return T::GetCurrentState(); } int SetClockRegister(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetClockRegister", 8*8)) return T::kSM_FatalError; const uint64_t *reg = evt.Ptr(); if (!fFTM.SetClockRegister(reg)) T::Warn("SetClockRegister - Value out of range."); return T::GetCurrentState(); } //map fClockConditionerMap; int SetClockFrequency(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetClockFrequency", 4)) return T::kSM_FatalError; const uint32_t freq = evt.GetUInt(); //map::const_iterator = fClockConditionerMap.find(freq); static const uint64_t R0hi = 0x00030000; static const uint64_t R8 = 0x10000908; static const uint64_t R9 = 0xa0032a09; static const uint64_t R11 = 0x0082000b; static const uint64_t R13 = 0x020a000d; static const uint64_t R14hi = 0x08300000; static const uint64_t freq0800[8] = { R0hi|0xfe00, 0x00010101, R8, R9, R11, R13, R14hi|0x800e, 0x18017b0f }; static const uint64_t freq1000[8] = { R0hi|0xd000, 0x00010101, R8, R9, R11, R13, R14hi|0x400e, 0x1801450f }; static const uint64_t freq2000[8] = { R0hi|0x8000, 0x00010101, R8, R9, R11, R13, R14hi|0x280e, 0x1400fa0f }; static const uint64_t freq3000[8] = { R0hi|0x9000, 0x00030100, R8, R9, R11, R13, R14hi|0x400e, 0x0602a30f }; static const uint64_t freq4000[8] = { R0hi|0x4000, 0x00010101, R8, R9, R11, R13, R14hi|0x280e, 0x1400fa0f }; static const uint64_t freq5000[8] = { R0hi|0x8000, 0x00030200, R8, R9, R11, R13, R14hi|0x280e, 0x0802710f }; const uint64_t *reg = 0; switch (freq) { case 800: reg = freq0800; break; case 1000: reg = freq1000; break; case 2000: reg = freq2000; break; case 3000: reg = freq3000; break; case 4000: reg = freq4000; break; case 5000: reg = freq5000; break; default: T::Warn("SetClockFrequency - Frequency not supported."); return T::GetCurrentState(); } if (!fFTM.SetClockRegister(reg)) T::Warn("SetClockFrequency - Register values out of range."); return T::GetCurrentState(); } int Enable(const EventImp &evt, FTM::StaticData::GeneralSettings type) { if (!CheckEventSize(evt.GetSize(), "Enable", 1)) return T::kSM_FatalError; fFTM.Enable(type, evt.GetBool()); return T::GetCurrentState(); } int EnablePixel(const EventImp &evt, bool b) { if (!CheckEventSize(evt.GetSize(), "EnablePixel", 2)) return T::kSM_FatalError; if (!fFTM.EnablePixel(evt.GetUShort(), b)) T::Warn("EnablePixel - Value out of range."); return T::GetCurrentState(); } int DisableAllPixelsExcept(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "DisableAllPixelsExcept", 2)) return T::kSM_FatalError; if (!fFTM.DisableAllPixelsExcept(evt.GetUShort())) T::Warn("DisableAllPixelsExcept - Value out of range."); return T::GetCurrentState(); } int DisableAllPatchesExcept(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "DisableAllPatchesExcept", 2)) return T::kSM_FatalError; if (!fFTM.DisableAllPatchesExcept(evt.GetUShort())) T::Warn("DisableAllPatchesExcept - Value out of range."); return T::GetCurrentState(); } int TogglePixel(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "TogglePixel", 2)) return T::kSM_FatalError; if (!fFTM.TogglePixel(evt.GetUShort())) T::Warn("TogglePixel - Value out of range."); return T::GetCurrentState(); } int ResetCrate(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "ResetCrate", 2)) return T::kSM_FatalError; fFTM.CmdResetCrate(evt.GetUShort()); return T::GetCurrentState(); } int Disconnect() { // Close all connections fFTM.PostClose(false); /* // Now wait until all connection have been closed and // all pending handlers have been processed poll(); */ return T::GetCurrentState(); } int Reconnect(const EventImp &evt) { // Close all connections to supress the warning in SetEndpoint fFTM.PostClose(false); // Now wait until all connection have been closed and // all pending handlers have been processed poll(); if (evt.GetBool()) fFTM.SetEndpoint(evt.GetString()); // Now we can reopen the connection fFTM.PostClose(true); return T::GetCurrentState(); } /* int Transition(const Event &evt) { switch (evt.GetTargetState()) { case kStateDisconnected: case kStateConnected: } return T::kSM_FatalError; }*/ int Execute() { // Dispatch (execute) at most one handler from the queue. In contrary // to run_one(), it doesn't wait until a handler is available // which can be dispatched, so poll_one() might return with 0 // handlers dispatched. The handlers are always dispatched/executed // synchronously, i.e. within the call to poll_one() poll_one(); return fFTM.GetState(); } public: StateMachineFTM(ostream &out=cout) : T(out, "FTM_CONTROL"), ba::io_service::work(static_cast(*this)), fFTM(*this, *this) { // ba::io_service::work is a kind of keep_alive for the loop. // It prevents the io_service to go to stopped state, which // would prevent any consecutive calls to run() // or poll() to do nothing. reset() could also revoke to the // previous state but this might introduce some overhead of // deletion and creation of threads and more. // State names AddStateName(kStateDisconnected, "Disconnected", "FTM board not connected via ethernet."); AddStateName(kStateConnected, "Connected", "Ethernet connection to FTM established (no state received yet)."); AddStateName(kStateIdle, "Idle", "Ethernet connection to FTM established, FTM in idle state."); AddStateName(kStateTakingData, "TakingData", "Ethernet connection to FTM established, FTM is in taking data state."); // FTM Commands AddEvent("TOGGLE_LED", kStateIdle) (Wrapper(boost::bind(&ConnectionFTM::CmdToggleLed, &fFTM))) ("toggle led"); AddEvent("PING", kStateIdle) (Wrapper(boost::bind(&ConnectionFTM::CmdPing, &fFTM))) ("send ping"); AddEvent("REQUEST_DYNAMIC_DATA", kStateIdle) (Wrapper(boost::bind(&ConnectionFTM::CmdReqDynDat, &fFTM))) ("request transmission of dynamic data block"); AddEvent("REQUEST_STATIC_DATA", kStateIdle) (Wrapper(boost::bind(&ConnectionFTM::CmdReqStatDat, &fFTM))) ("request transmission of static data from FTM to memory"); AddEvent("GET_REGISTER", "I", kStateIdle) (boost::bind(&StateMachineFTM::GetRegister, this, _1)) ("read register from address addr" "|addr[short]:Address of register"); AddEvent("SET_REGISTER", "I:2", kStateIdle) (boost::bind(&StateMachineFTM::SetRegister, this, _1)) ("set register to value" "|addr[short]:Address of register" "|val[short]:Value to be set"); AddEvent("START_RUN", kStateIdle) (Wrapper(boost::bind(&ConnectionFTM::CmdStartRun, &fFTM))) ("start a run (start distributing triggers)"); AddEvent("STOP_RUN", kStateTakingData) (Wrapper(boost::bind(&ConnectionFTM::CmdStopRun, &fFTM))) ("stop a run (stop distributing triggers)"); AddEvent("TAKE_N_EVENTS", "I", kStateIdle) (boost::bind(&StateMachineFTM::TakeNevents, this, _1)) ("take n events (distribute n triggers)|number[int]:Number of events to be taken"); AddEvent("DISABLE_REPORTS", "B", kStateIdle) (boost::bind(&StateMachineFTM::DisableReports, this, _1)) ("disable sending rate reports" "|status[bool]:disable or enable that the FTM sends rate reports (yes/no)"); AddEvent("SET_THRESHOLD", "I:2", kStateIdle) (boost::bind(&StateMachineFTM::SetThreshold, this, _1)) ("Set the comparator threshold" "|Patch[idx]:Index of the patch (0-159), -1 for all" "|Threshold[counts]:Threshold to be set in binary counts"); AddEvent("SET_PRESCALING", "I:1", kStateIdle) (boost::bind(&StateMachineFTM::SetPrescaling, this, _1)) ("" "|[]:"); AddEvent("ENABLE_FTU", "I:1;B:1", kStateIdle) (boost::bind(&StateMachineFTM::EnableFTU, this, _1)) ("Enable or disable FTU" "|Board[idx]:Index of the board (0-39), -1 for all" "|Enable[bool]:Whether FTU should be enabled or disabled (yes/no)"); AddEvent("DISABLE_PIXEL", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::EnablePixel, this, _1, false)) ("(-1 or all)"); AddEvent("ENABLE_PIXEL", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::EnablePixel, this, _1, true)) ("(-1 or all)"); AddEvent("DISABLE_ALL_PIXELS_EXCEPT", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::DisableAllPixelsExcept, this, _1)) (""); AddEvent("DISABLE_ALL_PATCHES_EXCEPT", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::DisableAllPatchesExcept, this, _1)) (""); AddEvent("TOGGLE_PIXEL", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::TogglePixel, this, _1)) (""); AddEvent("TOGGLE_FTU", "I:1", kStateIdle) (boost::bind(&StateMachineFTM::ToggleFTU, this, _1)) ("Toggle status of FTU (this is mainly meant to be used in the GUI)" "|Board[idx]:Index of the board (0-39)"); AddEvent("SET_TRIGGER_INTERVAL", "I:1", kStateIdle) (boost::bind(&StateMachineFTM::SetTriggerInterval, this, _1)) ("Sets the trigger interval which is the distance between two consecutive artificial triggers." "|interval[int]:The applied trigger interval is: interval*4ns+8ns"); AddEvent("SET_TRIGGER_DELAY", "I:1", kStateIdle) (boost::bind(&StateMachineFTM::SetTriggerDelay, this, _1)) ("" "|delay[int]:The applied trigger delay is: delay*4ns+8ns"); AddEvent("SET_TIME_MARKER_DELAY", "I:1", kStateIdle) (boost::bind(&StateMachineFTM::SetTimeMarkerDelay, this, _1)) ("" "|delay[int]:The applied time marker delay is: delay*4ns+8ns"); AddEvent("SET_DEAD_TIME", "I:1", kStateIdle) (boost::bind(&StateMachineFTM::SetDeadTime, this, _1)) ("" "|dead_time[int]:The applied dead time is: dead_time*4ns+8ns"); AddEvent("ENABLE_TRIGGER", "B:1", kStateIdle) (boost::bind(&StateMachineFTM::Enable, this, _1, FTM::StaticData::kTrigger)) ("Switch on the physics trigger" "|Enable[bool]:Enable physics trigger (yes/no)"); // FIXME: Switch on/off depending on sequence AddEvent("ENABLE_EXT1", "B:1", kStateIdle) (boost::bind(&StateMachineFTM::Enable, this, _1, FTM::StaticData::kExt1)) ("Switch on the triggers through the first external line" "|Enable[bool]:Enable ext1 trigger (yes/no)"); // FIXME: Switch on/off depending on sequence AddEvent("ENABLE_EXT2", "B:1", kStateIdle) (boost::bind(&StateMachineFTM::Enable, this, _1, FTM::StaticData::kExt2)) ("Switch on the triggers through the second external line" "|Enable[bool]:Enable ext2 trigger (yes/no)"); AddEvent("ENABLE_VETO", "B:1", kStateIdle) (boost::bind(&StateMachineFTM::Enable, this, _1, FTM::StaticData::kVeto)) ("Enable veto line" "|Enable[bool]:Enable veto (yes/no)"); AddEvent("ENABLE_CLOCK_CONDITIONER", "B:1", kStateIdle) (boost::bind(&StateMachineFTM::Enable, this, _1, FTM::StaticData::kClockConditioner)) ("Enable clock conidtioner output in favor of time marker output" "|Enable[bool]:Enable clock conditioner (yes/no)"); AddEvent("SET_TRIGGER_SEQUENCE", "S:3", kStateIdle) (boost::bind(&StateMachineFTM::SetTriggerSeq, this, _1)) ("Setup the sequence of artificial triggers produced by the FTM" "|Ped[short]:number of pedestal triggers in a row" "|LPext[short]:number of triggers of the external light pulser" "|LPint[short]:number of triggers of the internal light pulser"); AddEvent("SET_TRIGGER_MULTIPLICITY", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::SetTriggerMultiplicity, this, _1)) ("Setup the Multiplicity condition for physcis triggers" "|N[int]:Number of requirered coincident triggers from sum-patches (1-40)"); AddEvent("SET_TRIGGER_WINDOW", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::SetTriggerWindow, this, _1)) (""); AddEvent("SET_CALIBRATION_MULTIPLICITY", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::SetCalibMultiplicity, this, _1)) ("Setup the Multiplicity condition for artificial (calibration) triggers" "|N[int]:Number of requirered coincident triggers from sum-patches (1-40)"); AddEvent("SET_CALIBRATION_WINDOW", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::SetCalibWindow, this, _1)) (""); AddEvent("SET_CLOCK_FREQUENCY", "I:1", kStateIdle) (boost::bind(&StateMachineFTM::SetClockFrequency, this, _1)) (""); AddEvent("SET_CLOCK_REGISTER", "X:8", kStateIdle) (boost::bind(&StateMachineFTM::SetClockRegister, this, _1)) (""); AddEvent("RESET_CRATE", "S:1", kStateIdle) (boost::bind(&StateMachineFTM::ResetCrate, this, _1)) ("Reset one of the crates 0-3" "|crate[short]:Crate number to be reseted (0-3)"); AddEvent("RESET_CAMERA", kStateIdle) (Wrapper(boost::bind(&ConnectionFTM::CmdResetCamera, &fFTM))) ("Reset all crates. The commands are sent in the order 0,1,2,3"); // Load/save static data block T::AddEvent("SAVE", "C", kStateIdle) (boost::bind(&StateMachineFTM::SaveStaticData, this, _1)) ("Saves the static data (FTM configuration) from memory to a file" "|filename[string]:Filename (can include a path), .bin is automatically added"); T::AddEvent("LOAD", "C", kStateIdle) (boost::bind(&StateMachineFTM::LoadStaticData, this, _1)) ("Loads the static data (FTM configuration) from a file into memory and sends it to the FTM" "|filename[string]:Filename (can include a path), .bin is automatically added"); // Verbosity commands T::AddEvent("SET_VERBOSE", "B") (boost::bind(&StateMachineFTM::SetVerbosity, this, _1)) ("set verbosity state" "|verbosity[bool]:disable or enable verbosity for received data (yes/no), except dynamic data"); T::AddEvent("SET_HEX_OUTPUT", "B") (boost::bind(&StateMachineFTM::SetHexOutput, this, _1)) ("enable or disable hex output for received data" "|hexout[bool]:disable or enable hex output for received data (yes/no)"); T::AddEvent("SET_DYNAMIC_OUTPUT", "B") (boost::bind(&StateMachineFTM::SetDynamicOut, this, _1)) ("enable or disable output for received dynamic data (data is still broadcasted via Dim)" "|dynout[bool]:disable or enable output for dynamic data (yes/no)"); // Conenction commands AddEvent("DISCONNECT", kStateConnected, kStateIdle) (boost::bind(&StateMachineFTM::Disconnect, this)) ("disconnect from ethernet"); AddEvent("RECONNECT", "O", kStateDisconnected, kStateConnected, kStateIdle) (boost::bind(&StateMachineFTM::Reconnect, this, _1)) ("(Re)connect ethernet connection to FTM, a new address can be given" "|[host][string]:new ethernet address in the form "); fFTM.StartConnect(); } void SetEndpoint(const string &url) { fFTM.SetEndpoint(url); } int EvalConfiguration(const Configuration &conf) { SetEndpoint(conf.Get("addr")); fFTM.SetVerbose(!conf.Get("quiet")); fFTM.SetHexOutput(conf.Get("hex-out")); fFTM.SetDynamicOut(conf.Get("dynamic-out")); // fFTM.SetDefaultSetup(conf.Get("default-setup")); return -1; } }; // ------------------------------------------------------------------------ #include "Main.h" /* void RunThread(StateMachineImp *io_service) { // This is necessary so that the StateMachien Thread can signal the // Readline to exit io_service->Run(); Readline::Stop(); } */ /* template int RunDim(Configuration &conf) { WindowLog wout; ReadlineColor::PrintBootMsg(wout, conf.GetName(), false); if (conf.Has("log")) if (!wout.OpenLogFile(conf.Get("log"))) wout << kRed << "ERROR - Couldn't open log-file " << conf.Get("log") << ": " << strerror(errno) << endl; // Start io_service.Run to use the StateMachineImp::Run() loop // Start io_service.run to only use the commandHandler command detaching StateMachineFTM io_service(wout); if (!io_service.EvalConfiguration(conf)) return -1; io_service.Run(); return 0; } */ template int RunShell(Configuration &conf) { return Main>(conf); /* static T shell(conf.GetName().c_str(), conf.Get("console")!=1); WindowLog &win = shell.GetStreamIn(); WindowLog &wout = shell.GetStreamOut(); if (conf.Has("log")) if (!wout.OpenLogFile(conf.Get("log"))) win << kRed << "ERROR - Couldn't open log-file " << conf.Get("log") << ": " << strerror(errno) << endl; StateMachineFTM io_service(wout); if (!io_service.EvalConfiguration(conf)) return -1; shell.SetReceiver(io_service); boost::thread t(boost::bind(RunThread, &io_service)); // boost::thread t(boost::bind(&StateMachineFTM::Run, &io_service)); if (conf.Has("cmd")) { const vector v = conf.Get>("cmd"); for (vector::const_iterator it=v.begin(); it!=v.end(); it++) shell.ProcessLine(*it); } if (conf.Has("exec")) { const vector v = conf.Get>("exec"); for (vector::const_iterator it=v.begin(); it!=v.end(); it++) shell.Execute(*it); } if (conf.Get("quit")) shell.Stop(); shell.Run(); // Run the shell io_service.Stop(); // Signal Loop-thread to stop // io_service.Close(); // Obsolete, done by the destructor // Wait until the StateMachine has finished its thread // before returning and destroying the dim objects which might // still be in use. t.join(); return 0; */ } void SetupConfiguration(Configuration &conf) { const string n = conf.GetName()+".log"; po::options_description config("Program options"); config.add_options() ("dns", var("localhost"), "Dim nameserver host name (Overwites DIM_DNS_NODE environment variable)") ("log,l", var(n), "Write log-file") ("no-dim,d", po_bool(), "Disable dim services") ("console,c", var(), "Use console (0=shell, 1=simple buffered, X=simple unbuffered)") ("cmd", vars(), "Execute one or more commands at startup") ("exec,e", vars(), "Execute one or more scrips at startup") ("quit", po_switch(), "Quit after startup"); ; po::options_description control("FTM control options"); control.add_options() ("addr,a", var("localhost:5000"), "Network address of FTM") ("quiet,q", po_bool(), "Disable printing contents of all received messages (except dynamic data) in clear text.") ("hex-out", po_bool(), "Enable printing contents of all printed messages also as hex data.") ("dynamic-out", po_bool(), "Enable printing received dynamic data.") // ("default-setup", var(), "Binary file with static data loaded whenever a connection to the FTM was established.") ; conf.AddEnv("dns", "DIM_DNS_NODE"); conf.AddOptions(config); conf.AddOptions(control); } /* Extract usage clause(s) [if any] for SYNOPSIS. Translators: "Usage" and "or" here are patterns (regular expressions) which are used to match the usage synopsis in program output. An example from cp (GNU coreutils) which contains both strings: Usage: cp [OPTION]... [-T] SOURCE DEST or: cp [OPTION]... SOURCE... DIRECTORY or: cp [OPTION]... -t DIRECTORY SOURCE... */ void PrintUsage() { cout << "The ftmctrl controls the FTM (FACT Trigger Master) board.\n" "\n" "The default is that the program is started without user intercation. " "All actions are supposed to arrive as DimCommands. Using the -c " "option, a local shell can be initialized. With h or help a short " "help message about the usuage can be brought to the screen.\n" "\n" "Usage: ftmctrl [-c type] [OPTIONS]\n" " or: ftmctrl [OPTIONS]\n"; cout << endl; } void PrintHelp() { /* Additional help text which is printed after the configuration options goes here */ /* cout << "bla bla bla" << endl << endl; cout << endl; cout << "Environment:" << endl; cout << "environment" << endl; cout << endl; cout << "Examples:" << endl; cout << "test exam" << endl; cout << endl; cout << "Files:" << endl; cout << "files" << endl; cout << endl; */ } int main(int argc, const char* argv[]) { Configuration conf(argv[0]); conf.SetPrintUsage(PrintUsage); SetupConfiguration(conf); po::variables_map vm; try { vm = conf.Parse(argc, argv); } #if BOOST_VERSION > 104000 catch (po::multiple_occurrences &e) { cerr << "Program options invalid due to: " << e.what() << " of '" << e.get_option_name() << "'." << endl; return -1; } #endif catch (exception& e) { cerr << "Program options invalid due to: " << e.what() << endl; return -1; } if (conf.HasVersion() || conf.HasPrint()) return -1; if (conf.HasHelp()) { PrintHelp(); return -1; } Dim::Setup(conf.Get("dns")); //try { // No console access at all if (!conf.Has("console")) { if (conf.Get("no-dim")) return RunShell(conf); else return RunShell(conf); } // Cosole access w/ and w/o Dim if (conf.Get("no-dim")) { if (conf.Get("console")==0) return RunShell(conf); else return RunShell(conf); } else { if (conf.Get("console")==0) return RunShell(conf); else return RunShell(conf); } } /*catch (std::exception& e) { cerr << "Exception: " << e.what() << endl; return -1; }*/ return 0; }