#include #include "Dim.h" #include "Event.h" #include "Shell.h" #include "StateMachineDim.h" #include "Connection.h" #include "Configuration.h" #include "Console.h" #include "Converter.h" #include "tools.h" #include "HeadersFTM.h" namespace ba = boost::asio; namespace bs = boost::system; using namespace std; using namespace std::placeholders; // ------------------------------------------------------------------------ class ConnectionFTM : public Connection { public: enum States { // State Machine states kDisconnected = 1, kConnected, kIdle, kConfigured, // Returned if idle and fBufStaticData==fStaticData kTakingData, }; private: vector fBuffer; bool fHasHeader; bool fIsVerbose; bool fIsDynamicOut; bool fIsHexOutput; // string fDefaultSetup; // --verbose // --hex-out // --dynamic-out // --load-file // --leds // --trigger-interval // --physcis-coincidence // --calib-coincidence // --physcis-window // --physcis-window // --trigger-delay // --time-marker-delay // --dead-time // --clock-conditioner-r0 // --clock-conditioner-r1 // --clock-conditioner-r8 // --clock-conditioner-r9 // --clock-conditioner-r11 // --clock-conditioner-r13 // --clock-conditioner-r14 // --clock-conditioner-r15 // ... protected: map fCounter; FTM::Header fHeader; FTM::FtuList fFtuList; FTM::StaticData fStaticData; FTM::DynamicData fDynamicData; FTM::Error fError; FTM::StaticData fBufStaticData; virtual void UpdateFirstHeader() { // FIXME: Message() ? Out() << endl << kBold << "First header received:" << endl; Out() << fHeader; if (fIsHexOutput) Out() << Converter::GetHex(fHeader, 16) << endl; } virtual void UpdateHeader() { // emit service with trigger counter from header if (!fIsVerbose) return; if (fHeader.fType==FTM::kDynamicData && !fIsDynamicOut) return; Out() << endl << kBold << "Header received:" << endl; Out() << fHeader; if (fIsHexOutput) Out() << Converter::GetHex(fHeader, 16) << endl; } virtual void UpdateFtuList() { if (!fIsVerbose) return; Out() << endl << kBold << "FtuList received:" << endl; Out() << fFtuList; if (fIsHexOutput) Out() << Converter::GetHex(fFtuList, 16) << endl; } virtual void UpdateStaticData() { if (!fIsVerbose) return; Out() << endl << kBold << "Static data received:" << endl; Out() << fStaticData; if (fIsHexOutput) Out() << Converter::GetHex(fStaticData, 16) << endl; } virtual void UpdateDynamicData() { if (!fIsDynamicOut) return; Out() << endl << kBold << "Dynamic data received:" << endl; Out() << fDynamicData; if (fIsHexOutput) Out() << Converter::GetHex(fDynamicData, 16) << endl; } virtual void UpdateError() { if (!fIsVerbose) return; Out() << endl << kRed << "Error received:" << endl; Out() << fError; if (fIsHexOutput) Out() << Converter::GetHex(fError, 16) << endl; } virtual void UpdateCounter() { if (!fIsVerbose) return; if (!fIsDynamicOut) return; Out() << "Received: "; Out() << "H=" << fCounter[FTM::kHeader] << " "; Out() << "S=" << fCounter[FTM::kStaticData] << " "; Out() << "D=" << fCounter[FTM::kDynamicData] << " "; Out() << "F=" << fCounter[FTM::kFtuList] << " "; Out() << "E=" << fCounter[FTM::kErrorList] << " "; Out() << "R=" << fCounter[FTM::kRegister] << endl; } bool CheckConsistency(FTM::StaticData &data) { bool warn1 = false; if (data.IsEnabled(FTM::StaticData::kPedestal) != (data.GetSequencePed() >0) || data.IsEnabled(FTM::StaticData::kLPint) != (data.GetSequenceLPint()>0) || data.IsEnabled(FTM::StaticData::kLPext) != (data.GetSequenceLPext()>0)) { warn1 = true; data.Enable(FTM::StaticData::kPedestal, data.GetSequencePed()>0); data.Enable(FTM::StaticData::kLPint, data.GetSequenceLPint()>0); data.Enable(FTM::StaticData::kLPext, data.GetSequenceLPext()>0); } bool warn2 = false; const uint16_t ref = data[0].fPrescaling; for (int i=1; i<40; i++) { if (data[i].fPrescaling != ref) { warn2 = true; data[i].fPrescaling = ref; } } bool warn3 = false; for (int i=0; i<4; i++) if (data.fActiveFTU[i]!=0x3ff) { warn3 = true; data.fActiveFTU[i]=0x3ff; } if (warn1) Warn("GeneralSettings not consistent with trigger sequence."); if (warn2) Warn("Prescaling not consistent for all boards."); if (warn3) Warn("Not all FTUs are enabled - enable all FTUs."); return !warn1 && !warn2 && !warn3; } private: void HandleReceivedData(const bs::error_code& err, size_t bytes_received, int /*type*/) { // Do not schedule a new read if the connection failed. if (bytes_received==0 || err) { if (err==ba::error::eof) Warn("Connection closed by remote host (FTM)."); // 107: Transport endpoint is not connected (bs::error_code(107, bs::system_category)) // 125: Operation canceled if (err && err!=ba::error::eof && // Connection closed by remote host err!=ba::error::basic_errors::not_connected && // Connection closed by remote host err!=ba::error::basic_errors::operation_aborted) // Connection closed by us { ostringstream str; str << "Reading from " << URL() << ": " << err.message() << " (" << err << ")";// << endl; Error(str); } PostClose(err!=ba::error::basic_errors::operation_aborted); return; } // If we have not yet received a header we expect one now // This could be moved to a HandleReceivedHeader function if (!fHasHeader) { if (bytes_received!=sizeof(FTM::Header)) { ostringstream str; str << "Excepted " << sizeof(FTM::Header) << " bytes (FTM::Header) but received " << bytes_received << "."; Error(str); PostClose(false); return; } fHeader = fBuffer; // Check the data integrity if (fHeader.fDelimiter!=FTM::kDelimiterStart) { ostringstream str; str << "Invalid header received: start delimiter wrong, received "; str << hex << fHeader.fDelimiter << ", expected " << FTM::kDelimiterStart << "."; Error(str); PostClose(false); return; } fHasHeader = true; // Convert FTM state into FtmCtrl state if (++fCounter[FTM::kHeader]==1) UpdateFirstHeader(); UpdateCounter(); UpdateHeader(); // Start reading of data switch (fHeader.fType) { case FTM::kStaticData: case FTM::kDynamicData: case FTM::kFtuList: case FTM::kRegister: case FTM::kErrorList: // This is not very efficient because the space is reallocated // maybe we can check if the capacity of the std::vector // is ever decreased. If not, everythign is fine. fBuffer.resize(fHeader.fDataSize); AsyncRead(ba::buffer(fBuffer)); AsyncWait(fInTimeout, 50, &Connection::HandleReadTimeout); return; default: ostringstream str; str << "Unknonw type " << fHeader.fType << " in received header." << endl; Error(str); PostClose(false); return; } return; } // Check the data integrity (check end delimiter) if (ntohs(fBuffer.back())!=FTM::kDelimiterEnd) { ostringstream str; str << "Invalid data received: end delimiter wrong, received "; str << hex << ntohs(fBuffer.back()) << ", expected " << FTM::kDelimiterEnd << "."; Error(str); PostClose(false); return; } // Remove end delimiter fBuffer.pop_back(); try { // If we have already received a header this is the data now // This could be moved to a HandleReceivedData function fCounter[fHeader.fType]++; UpdateCounter(); switch (fHeader.fType) { case FTM::kFtuList: fFtuList = fBuffer; UpdateFtuList(); break; case FTM::kStaticData: if (fCounter[FTM::kStaticData]==1) { // This check is only done at startup FTM::StaticData data(fBuffer); if (!CheckConsistency(data)) { CmdSendStatDat(data); CmdPing(); // FIXME: Only needed in case of warn3 break; } } fStaticData = fBuffer; UpdateStaticData(); break; case FTM::kDynamicData: fDynamicData = fBuffer; UpdateDynamicData(); break; case FTM::kRegister: if (fIsVerbose) { Out() << endl << kBold << "Register received: " << endl; Out() << "Addr: " << ntohs(fBuffer[0]) << endl; Out() << "Value: " << ntohs(fBuffer[1]) << endl; } break; case FTM::kErrorList: fError = fBuffer; UpdateError(); break; default: ostringstream str; str << "Unknonw type " << fHeader.fType << " in header." << endl; Error(str); PostClose(false); return; } } catch (const logic_error &e) { ostringstream str; str << "Exception converting buffer into data structure: " << e.what(); Error(str); PostClose(false); return; } fInTimeout.cancel(); //fHeader.clear(); fHasHeader = false; fBuffer.resize(sizeof(FTM::Header)/2); AsyncRead(ba::buffer(fBuffer)); } // This is called when a connection was established void ConnectionEstablished() { fCounter.clear(); fBufStaticData.clear(); fHeader.clear(); fHasHeader = false; fBuffer.resize(sizeof(FTM::Header)/2); AsyncRead(ba::buffer(fBuffer)); // if (!fDefaultSetup.empty()) // LoadStaticData(fDefaultSetup); // Get a header and configdata! CmdReqStatDat(); // get the DNA of the FTUs CmdPing(); } void HandleReadTimeout(const bs::error_code &error) { if (error==ba::error::basic_errors::operation_aborted) return; if (error) { ostringstream str; str << "Read timeout of " << URL() << ": " << error.message() << " (" << error << ")";// << endl; Error(str); PostClose(); return; } if (!is_open()) { // For example: Here we could schedule a new accept if we // would not want to allow two connections at the same time. return; } // Check whether the deadline has passed. We compare the deadline // against the current time since a new asynchronous operation // may have moved the deadline before this actor had a chance // to run. if (fInTimeout.expires_at() > ba::deadline_timer::traits_type::now()) return; Error("Timeout reading data from "+URL()); PostClose(); } template void PostCmd(array dat, uint16_t u1=0, uint16_t u2=0, uint16_t u3=0, uint16_t u4=0) { array cmd = {{ '@', u1, u2, u3, u4 }}; ostringstream msg; msg << "Sending command:" << hex; msg << " 0x" << setw(4) << setfill('0') << cmd[0]; msg << " 0x" << setw(4) << setfill('0') << u1; msg << " 0x" << setw(4) << setfill('0') << u2; msg << " 0x" << setw(4) << setfill('0') << u3; msg << " 0x" << setw(4) << setfill('0') << u4; msg << " (+" << dec << dat.size() << " words)"; Message(msg); vector out(cmd.size()+dat.size()); transform(cmd.begin(), cmd.end(), out.begin(), htons); transform(dat.begin(), dat.end(), out.begin()+cmd.size(), htons); PostMessage(out); } void PostCmd(vector dat, uint16_t u1=0, uint16_t u2=0, uint16_t u3=0, uint16_t u4=0) { array cmd = {{ '@', u1, u2, u3, u4 }}; ostringstream msg; msg << "Sending command:" << hex; msg << " 0x" << setw(4) << setfill('0') << cmd[0]; msg << " 0x" << setw(4) << setfill('0') << u1; msg << " 0x" << setw(4) << setfill('0') << u2; msg << " 0x" << setw(4) << setfill('0') << u3; msg << " 0x" << setw(4) << setfill('0') << u4; msg << " (+" << dec << dat.size() << " words)"; Message(msg); vector out(cmd.size()+dat.size()); transform(cmd.begin(), cmd.end(), out.begin(), htons); copy(dat.begin(), dat.end(), out.begin()+cmd.size()); PostMessage(out); } void PostCmd(uint16_t u1=0, uint16_t u2=0, uint16_t u3=0, uint16_t u4=0) { PostCmd(array(), u1, u2, u3, u4); } public: // static const uint16_t kMaxAddr; public: ConnectionFTM(ba::io_service& ioservice, MessageImp &imp) : Connection(ioservice, imp()), fIsVerbose(true), fIsDynamicOut(true), fIsHexOutput(true) { SetLogStream(&imp); } void CmdToggleLed() { PostCmd(FTM::kCmdToggleLed); } void CmdPing() { PostCmd(FTM::kCmdPing); } void CmdReqDynDat() { PostCmd(FTM::kCmdRead, FTM::kCmdDynamicData); } void CmdReqStatDat() { PostCmd(FTM::kCmdRead, FTM::kCmdStaticData); } void CmdSendStatDat(const FTM::StaticData &data) { fBufStaticData = data; PostCmd(data.HtoN(), FTM::kCmdWrite, FTM::kCmdStaticData); // Request the changed configuration to ensure the // change is distributed in the network CmdReqStatDat(); } void CmdStartRun() { PostCmd(FTM::kCmdStartRun, FTM::kStartRun); // Update state information by requesting a new header CmdGetRegister(0); } void CmdStopRun() { PostCmd(FTM::kCmdStopRun); // Update state information by requesting a new header CmdGetRegister(0); } void CmdTakeNevents(uint32_t n) { const array data = {{ uint16_t(n>>16), uint16_t(n&0xffff) }}; PostCmd(data, FTM::kCmdStartRun, FTM::kTakeNevents); // Update state information by requesting a new header CmdGetRegister(0); } bool CmdSetRegister(uint16_t addr, uint16_t val) { if (addr>FTM::StaticData::kMaxAddr) return false; const array data = {{ addr, val }}; PostCmd(data, FTM::kCmdWrite, FTM::kCmdRegister); reinterpret_cast(&fBufStaticData)[addr] = val; // Request the changed configuration to ensure the // change is distributed in the network CmdReqStatDat(); return true; } bool CmdGetRegister(uint16_t addr) { if (addr>FTM::StaticData::kMaxAddr) return false; const array data = {{ addr }}; PostCmd(data, FTM::kCmdRead, FTM::kCmdRegister); return true; } bool CmdResetCrate(uint16_t addr) { if (addr>3) return false; PostCmd(FTM::kCmdCrateReset, 1<(&data), sizeof(FTM::StaticData)); if (fin.gcount()(&fStaticData), sizeof(FTM::StaticData)); return !fout.bad(); } bool SetThreshold(int32_t patch, int32_t value) { if (patch>FTM::StaticData::kMaxPatchIdx) return false; if (value<0 || value>FTM::StaticData::kMaxDAC) return false; if (patch<0) { FTM::StaticData data(fStaticData); bool ident = true; for (int i=0; i<=FTM::StaticData::kMaxPatchIdx; i++) if (data[i/4].fDAC[i%4] != value) { ident = false; break; } if (ident) return true; for (int i=0; i<=FTM::StaticData::kMaxPatchIdx; i++) data[i/4].fDAC[i%4] = value; // Maybe move to a "COMMIT" command? CmdSendStatDat(data); return true; } /* if (data[patch/4].fDAC[patch%4] == value) return true; data[patch/4].fDAC[patch%4] = value; CmdSendStatDat(data); return true; */ // Calculate offset in static data block const uint16_t addr = (uintptr_t(&fStaticData[patch/4].fDAC[patch%4])-uintptr_t(&fStaticData))/2; // From CmdSetRegister const array data = {{ addr, uint16_t(value) }}; PostCmd(data, FTM::kCmdWrite, FTM::kCmdRegister); reinterpret_cast(&fBufStaticData)[addr] = value; // Now execute change before the static data is requested back PostCmd(FTM::kCmdConfigFTU, (patch/40) | (((patch/4)%10)<<8)); //CmdGetRegister(addr); CmdReqStatDat(); return true; } bool SetPrescaling(uint32_t value) { if (value>0xffff) return false; FTM::StaticData data(fStaticData); bool ident = true; for (int i=0; i<40; i++) if (data[i].fPrescaling != value) { ident = false; break; } if (ident) return true; data.SetPrescaling(value); // Maybe move to a "COMMIT" command? CmdSendStatDat(data); return true; } bool EnableFTU(int32_t board, bool enable) { if (board>39) return false; FTM::StaticData data(fStaticData); if (board<0) { if (enable) data.EnableAllFTU(); else data.DisableAllFTU(); } else { if (enable) data.EnableFTU(board); else data.DisableFTU(board); } // Maybe move to a "COMMIT" command? CmdSendStatDat(data); return true; } bool ToggleFTU(uint32_t board) { if (board>39) return false; FTM::StaticData data(fStaticData); data.ToggleFTU(board); // Maybe move to a "COMMIT" command? CmdSendStatDat(data); return true; } bool SetVal(uint16_t *dest, uint32_t val, uint32_t max) { if (val>max) return false; if (*dest==val) return true; FTM::StaticData data(fStaticData); dest = reinterpret_cast(&data) + (dest - reinterpret_cast(&fStaticData)); *dest = val; CmdSendStatDat(data); return true; } bool SetTriggerInterval(uint32_t val) { return SetVal(&fStaticData.fTriggerInterval, val, FTM::StaticData::kMaxTriggerInterval); } bool SetTriggerDelay(uint32_t val) { return SetVal(&fStaticData.fDelayTrigger, val, FTM::StaticData::kMaxDelayTrigger); } bool SetTimeMarkerDelay(uint32_t val) { return SetVal(&fStaticData.fDelayTimeMarker, val, FTM::StaticData::kMaxDelayTimeMarker); } bool SetDeadTime(uint32_t val) { return SetVal(&fStaticData.fDeadTime, val, FTM::StaticData::kMaxDeadTime); } void Enable(FTM::StaticData::GeneralSettings type, bool enable) { //if (fStaticData.IsEnabled(type)==enable) // return; FTM::StaticData data(fStaticData); data.Enable(type, enable); CmdSendStatDat(data); } bool SetTriggerSeq(const uint16_t d[3]) { if (d[0]>FTM::StaticData::kMaxSequence || d[1]>FTM::StaticData::kMaxSequence || d[2]>FTM::StaticData::kMaxSequence) return false; FTM::StaticData data(fStaticData); /* data.Enable(FTM::StaticData::kPedestal, d[0]>0); data.Enable(FTM::StaticData::kLPext, d[1]>0); data.Enable(FTM::StaticData::kLPint, d[2]>0); */ data.SetSequence(d[0], d[2], d[1]); //if (fStaticData.fTriggerSeq !=data.fTriggerSequence || // fStaticData.fGeneralSettings!=data.fGeneralSettings) // CmdSendStatDat(data); CmdSendStatDat(data); return true; } bool SetTriggerMultiplicity(uint16_t n) { if (n==0 || n>FTM::StaticData::kMaxMultiplicity) return false; if (n==fStaticData.fMultiplicityPhysics) return true; FTM::StaticData data(fStaticData); data.fMultiplicityPhysics = n; CmdSendStatDat(data); return true; } bool SetTriggerWindow(uint16_t win) { if (win>FTM::StaticData::kMaxWindow) return false; if (win==fStaticData.fWindowPhysics) return true; FTM::StaticData data(fStaticData); data.fWindowPhysics = win; CmdSendStatDat(data); return true; } bool SetCalibMultiplicity(uint16_t n) { if (n==0 || n>FTM::StaticData::kMaxMultiplicity) return false; if (n==fStaticData.fMultiplicityCalib) return true; FTM::StaticData data(fStaticData); data.fMultiplicityCalib = n; CmdSendStatDat(data); return true; } bool SetCalibWindow(uint16_t win) { if (win>FTM::StaticData::kMaxWindow) return false; if (win==fStaticData.fWindowCalib) return true; FTM::StaticData data(fStaticData); data.fWindowCalib = win; CmdSendStatDat(data); return true; } bool SetClockRegister(const uint64_t reg[]) { FTM::StaticData data(fStaticData); for (int i=0; i<8; i++) if (reg[i]>0xffffffff) return false; data.SetClockRegister(reg); CmdSendStatDat(data); return true; } bool EnableLP(FTM::StaticData::GeneralSettings lp, FTM::StaticData::LightPulserEnable group, bool enable) { if (lp!=FTM::StaticData::kLPint && lp!=FTM::StaticData::kLPext) return false; FTM::StaticData data(fStaticData); if (lp==FTM::StaticData::kLPint) data.EnableLPint(group, enable); if (lp==FTM::StaticData::kLPext) data.EnableLPext(group, enable); CmdSendStatDat(data); return true; } bool SetIntensity(FTM::StaticData::GeneralSettings lp, uint16_t intensity) { if (intensity>FTM::StaticData::kMaxIntensity) return false; if (lp!=FTM::StaticData::kLPint && lp!=FTM::StaticData::kLPext) return false; FTM::StaticData data(fStaticData); if (lp==FTM::StaticData::kLPint) data.fIntensityLPint = intensity; if (lp==FTM::StaticData::kLPext) data.fIntensityLPext = intensity; CmdSendStatDat(data); return true; } bool EnablePixel(int16_t idx, bool enable) { if (idx<-1 || idx>FTM::StaticData::kMaxPixelIdx) return false; if (idx==-1) { FTM::StaticData data(fStaticData); for (int i=0; i<=FTM::StaticData::kMaxPixelIdx; i++) data.EnablePixel(i, enable); CmdSendStatDat(data); return true; } /* data.EnablePixel(idx, enable); CmdSendStatDat(data); return true; */ FTM::StaticData data(fStaticData); const uintptr_t base = uintptr_t(&data); const uint16_t *mem = data.EnablePixel(idx, enable); // Calculate offset in static data block const uint16_t addr = (uintptr_t(mem)-base)/2; // From CmdSetRegister const array cmd = {{ addr, *mem }}; PostCmd(cmd, FTM::kCmdWrite, FTM::kCmdRegister); reinterpret_cast(&fBufStaticData)[addr] = *mem; // Now execute change before the static data is requested back PostCmd(FTM::kCmdConfigFTU, (idx/360) | (((idx/36)%10)<<8)); // Now request the register back to ensure consistency //CmdGetRegister(addr); CmdReqStatDat(); return true; } bool DisableAllPixelsExcept(uint16_t idx) { if (idx>FTM::StaticData::kMaxPixelIdx) return false; FTM::StaticData data(fStaticData); for (int i=0; i<=FTM::StaticData::kMaxPixelIdx; i++) data.EnablePixel(i, i==idx); CmdSendStatDat(data); return true; } bool DisableAllPatchesExcept(int16_t idx) { if (idx>FTM::StaticData::kMaxPatchIdx) return false; FTM::StaticData data(fStaticData); for (int i=0; i<=FTM::StaticData::kMaxPixelIdx; i++) data.EnablePixel(i, i<0 || i/9==idx); CmdSendStatDat(data); return true; } bool TogglePixel(uint16_t idx) { if (idx>FTM::StaticData::kMaxPixelIdx) return false; FTM::StaticData data(fStaticData); data.EnablePixel(idx, !fStaticData.Enabled(idx)); CmdSendStatDat(data); return true; } States GetState() const { if (!IsConnected()) return kDisconnected; switch (fHeader.fState&FTM::kFtmStates) { case FTM::kFtmUndefined: return kConnected; case FTM::kFtmRunning: case FTM::kFtmCalib: return kTakingData; case FTM::kFtmIdle: case FTM::kFtmConfig: return fStaticData == fBufStaticData ? kConfigured : kIdle; } throw runtime_error("ConnectionFTM::GetState - Impossible code reached."); } int GetCounter(FTM::Types type) { return fCounter[type]; } const FTM::StaticData &GetStaticData() const { return fStaticData; } }; //const uint16_t ConnectionFTM::kMaxAddr = 0xfff; // ------------------------------------------------------------------------ #include "DimDescriptionService.h" class ConnectionDimFTM : public ConnectionFTM { private: DimDescribedService fDimPassport; DimDescribedService fDimTriggerCounter; DimDescribedService fDimError; DimDescribedService fDimFtuList; DimDescribedService fDimStaticData; DimDescribedService fDimDynamicData; DimDescribedService fDimCounter; void UpdateFirstHeader() { ConnectionFTM::UpdateFirstHeader(); const FTM::DimPassport data(fHeader); fDimPassport.Update(data); } void UpdateHeader() { ConnectionFTM::UpdateHeader(); if (fHeader.fType!=FTM::kDynamicData) return; const FTM::DimTriggerCounter data(fHeader); fDimTriggerCounter.Update(data); } void UpdateFtuList() { ConnectionFTM::UpdateFtuList(); const FTM::DimFtuList data(fHeader, fFtuList); fDimFtuList.Update(data); } void UpdateStaticData() { ConnectionFTM::UpdateStaticData(); const FTM::DimStaticData data(fHeader, fStaticData); fDimStaticData.Update(data); } void UpdateDynamicData() { ConnectionFTM::UpdateDynamicData(); const FTM::DimDynamicData data(fHeader, fDynamicData); fDimDynamicData.Update(data); } void UpdateError() { ConnectionFTM::UpdateError(); const FTM::DimError data(fHeader, fError); fDimError.Update(data); } void UpdateCounter() { ConnectionFTM::UpdateCounter(); const uint32_t counter[6] = { fCounter[FTM::kHeader], fCounter[FTM::kStaticData], fCounter[FTM::kDynamicData], fCounter[FTM::kFtuList], fCounter[FTM::kErrorList], fCounter[FTM::kRegister], }; fDimCounter.Update(counter); } public: ConnectionDimFTM(ba::io_service& ioservice, MessageImp &imp) : ConnectionFTM(ioservice, imp), fDimPassport ("FTM_CONTROL/PASSPORT", "X:1;S:1", ""), fDimTriggerCounter("FTM_CONTROL/TRIGGER_COUNTER", "X:1;I:1", ""), fDimError ("FTM_CONTROL/ERROR", "X:1;S:1;S:28", ""), fDimFtuList ("FTM_CONTROL/FTU_LIST", "X:1;X:1;S:1;C:4;X:40;C:40;C:40", ""), fDimStaticData ("FTM_CONTROL/STATIC_DATA", "X:1;S:1;S:1;X:1;S:1;S:3;S:1;S:1;S:1;S:1;S:1;S:1;I:1;I:8;S:90;S:160;S:40;S:40", ""), fDimDynamicData ("FTM_CONTROL/DYNAMIC_DATA", "X:1;X:1;F:4;I:160;I:40;S:40;S:40;S:1", ""), fDimCounter ("FTM_CONTROL/COUNTER", "I:6", "") { } // A B [C] [D] E [F] G H [I] J K [L] M N O P Q R [S] T U V W [X] Y Z }; // ------------------------------------------------------------------------ template class StateMachineFTM : public T, public ba::io_service, public ba::io_service::work { int Wrap(boost::function f) { f(); return T::GetCurrentState(); } function Wrapper(function func) { return bind(&StateMachineFTM::Wrap, this, func); } private: S fFTM; bool CheckEventSize(size_t has, const char *name, size_t size) { if (has==size) return true; ostringstream msg; msg << name << " - Received event has " << has << " bytes, but expected " << size << "."; T::Fatal(msg); return false; } int SetRegister(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetRegister", 8)) return T::kSM_FatalError; const uint32_t *dat = evt.Ptr(); if (dat[1]>uint16_t(-1)) { ostringstream msg; msg << hex << "Value " << dat[1] << " out of range."; T::Error(msg); return T::GetCurrentState(); } if (dat[0]>uint16_t(-1) || !fFTM.CmdSetRegister(dat[0], dat[1])) { ostringstream msg; msg << hex << "Address " << dat[0] << " out of range."; T::Error(msg); } return T::GetCurrentState(); } int GetRegister(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "GetRegister", 4)) return T::kSM_FatalError; const unsigned int addr = evt.GetInt(); if (addr>uint16_t(-1) || !fFTM.CmdGetRegister(addr)) { ostringstream msg; msg << hex << "Address " << addr << " out of range."; T::Error(msg); } return T::GetCurrentState(); } int TakeNevents(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "TakeNevents", 4)) return T::kSM_FatalError; const unsigned int dat = evt.GetUInt(); /* if (dat[1]>uint32_t(-1)) { ostringstream msg; msg << hex << "Value " << dat[1] << " out of range."; T::Error(msg); return T::GetCurrentState(); }*/ fFTM.CmdTakeNevents(dat); return T::GetCurrentState(); } int DisableReports(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "DisableReports", 1)) return T::kSM_FatalError; fFTM.CmdDisableReports(evt.GetBool()); return T::GetCurrentState(); } int SetVerbosity(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetVerbosity", 1)) return T::kSM_FatalError; fFTM.SetVerbose(evt.GetBool()); return T::GetCurrentState(); } int SetHexOutput(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetHexOutput", 1)) return T::kSM_FatalError; fFTM.SetHexOutput(evt.GetBool()); return T::GetCurrentState(); } int SetDynamicOut(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetDynamicOut", 1)) return T::kSM_FatalError; fFTM.SetDynamicOut(evt.GetBool()); return T::GetCurrentState(); } int LoadStaticData(const EventImp &evt) { if (fFTM.LoadStaticData(evt.GetString())) return T::GetCurrentState(); ostringstream msg; msg << "Loading static data from file '" << evt.GetString() << "' failed "; if (errno) msg << "(" << strerror(errno) << ")"; else msg << "(wrong size, expected " << sizeof(FTM::StaticData) << " bytes)"; T::Warn(msg); return T::GetCurrentState(); } int SaveStaticData(const EventImp &evt) { if (fFTM.SaveStaticData(evt.GetString())) return T::GetCurrentState(); ostringstream msg; msg << "Writing static data to file '" << evt.GetString() << "' failed "; msg << "(" << strerror(errno) << ")"; T::Warn(msg); return T::GetCurrentState(); } int SetThreshold(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetThreshold", 8)) return T::kSM_FatalError; const int32_t *data = evt.Ptr(); if (!fFTM.SetThreshold(data[0], data[1])) T::Warn("SetThreshold - Maximum allowed patch number 159, valid value range 0-0xffff"); return T::GetCurrentState(); } int EnableFTU(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "EnableFTU", 5)) return T::kSM_FatalError; const int32_t &board = evt.Get(); const int8_t &enable = evt.Get(4); if (!fFTM.EnableFTU(board, enable)) T::Warn("EnableFTU - Board number must be <40."); return T::GetCurrentState(); } int ToggleFTU(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "ToggleFTU", 4)) return T::kSM_FatalError; if (!fFTM.ToggleFTU(evt.GetInt())) T::Warn("ToggleFTU - Allowed range of boards 0-39."); return T::GetCurrentState(); } int SetTriggerInterval(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerInterval", 4)) return T::kSM_FatalError; if (!fFTM.SetTriggerInterval(evt.GetInt())) T::Warn("SetTriggerInterval - Value out of range."); return T::GetCurrentState(); } int SetTriggerDelay(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerDelay", 4)) return T::kSM_FatalError; if (!fFTM.SetTriggerDelay(evt.GetInt())) T::Warn("SetTriggerDealy - Value out of range."); return T::GetCurrentState(); } int SetTimeMarkerDelay(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTimeMarkerDelay", 4)) return T::kSM_FatalError; if (!fFTM.SetTimeMarkerDelay(evt.GetInt())) T::Warn("SetTimeMarkerDelay - Value out of range."); return T::GetCurrentState(); } int SetPrescaling(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetPrescaling", 4)) return T::kSM_FatalError; if (!fFTM.SetPrescaling(evt.GetInt()-1)) T::Warn("SetPrescaling - Value out of range."); return T::GetCurrentState(); } int SetTriggerSeq(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerSeq", 6)) return T::kSM_FatalError; const uint16_t *data = evt.Ptr(); if (!fFTM.SetTriggerSeq(data)) T::Warn("SetTriggerSeq - Value out of range."); return T::GetCurrentState(); } int SetDeadTime(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetDeadTime", 4)) return T::kSM_FatalError; if (!fFTM.SetDeadTime(evt.GetInt())) T::Warn("SetDeadTime - Value out of range."); return T::GetCurrentState(); } int SetTriggerMultiplicity(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerMultiplicity", 2)) return T::kSM_FatalError; if (!fFTM.SetTriggerMultiplicity(evt.GetUShort())) T::Warn("SetTriggerMultiplicity - Value out of range."); return T::GetCurrentState(); } int SetCalibMultiplicity(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetCalibMultiplicity", 2)) return T::kSM_FatalError; if (!fFTM.SetCalibMultiplicity(evt.GetUShort())) T::Warn("SetCalibMultiplicity - Value out of range."); return T::GetCurrentState(); } int SetTriggerWindow(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetTriggerWindow", 2)) return T::kSM_FatalError; if (!fFTM.SetTriggerWindow(evt.GetUShort())) T::Warn("SetTriggerWindow - Value out of range."); return T::GetCurrentState(); } int SetCalibWindow(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetCalibWindow", 2)) return T::kSM_FatalError; if (!fFTM.SetCalibWindow(evt.GetUShort())) T::Warn("SetCalibWindow - Value out of range."); return T::GetCurrentState(); } int SetClockRegister(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetClockRegister", 8*8)) return T::kSM_FatalError; const uint64_t *reg = evt.Ptr(); if (!fFTM.SetClockRegister(reg)) T::Warn("SetClockRegister - Value out of range."); return T::GetCurrentState(); } int SetClockFrequency(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "SetClockFrequency", 2)) return T::kSM_FatalError; const map>::const_iterator it = fClockCondSetup.find(evt.GetUShort()); if (it==fClockCondSetup.end()) { T::Warn("SetClockFrequency - Frequency not supported."); return T::GetCurrentState(); } if (!fFTM.SetClockRegister(it->second.data())) T::Warn("SetClockFrequency - Register values out of range."); return T::GetCurrentState(); } int EnableLP(const EventImp &evt, FTM::StaticData::GeneralSettings lp, FTM::StaticData::LightPulserEnable group) { if (!CheckEventSize(evt.GetSize(), "EnableLP", 1)) return T::kSM_FatalError; if (!fFTM.EnableLP(lp, group, evt.GetBool())) T::Warn("EnableLP - Invalid light pulser id."); return T::GetCurrentState(); } int SetIntensity(const EventImp &evt, FTM::StaticData::GeneralSettings lp) { if (!CheckEventSize(evt.GetSize(), "SetIntensity", 2)) return T::kSM_FatalError; if (!fFTM.SetIntensity(lp, evt.GetShort())) T::Warn("SetIntensity - Value out of range."); return T::GetCurrentState(); } int Enable(const EventImp &evt, FTM::StaticData::GeneralSettings type) { if (!CheckEventSize(evt.GetSize(), "Enable", 1)) return T::kSM_FatalError; fFTM.Enable(type, evt.GetBool()); return T::GetCurrentState(); } int EnablePixel(const EventImp &evt, bool b) { if (!CheckEventSize(evt.GetSize(), "EnablePixel", 2)) return T::kSM_FatalError; if (!fFTM.EnablePixel(evt.GetUShort(), b)) T::Warn("EnablePixel - Value out of range."); return T::GetCurrentState(); } int DisableAllPixelsExcept(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "DisableAllPixelsExcept", 2)) return T::kSM_FatalError; if (!fFTM.DisableAllPixelsExcept(evt.GetUShort())) T::Warn("DisableAllPixelsExcept - Value out of range."); return T::GetCurrentState(); } int DisableAllPatchesExcept(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "DisableAllPatchesExcept", 2)) return T::kSM_FatalError; if (!fFTM.DisableAllPatchesExcept(evt.GetUShort())) T::Warn("DisableAllPatchesExcept - Value out of range."); return T::GetCurrentState(); } int TogglePixel(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "TogglePixel", 2)) return T::kSM_FatalError; if (!fFTM.TogglePixel(evt.GetUShort())) T::Warn("TogglePixel - Value out of range."); return T::GetCurrentState(); } int ResetCrate(const EventImp &evt) { if (!CheckEventSize(evt.GetSize(), "ResetCrate", 2)) return T::kSM_FatalError; fFTM.CmdResetCrate(evt.GetUShort()); return T::GetCurrentState(); } int Disconnect() { // Close all connections fFTM.PostClose(false); /* // Now wait until all connection have been closed and // all pending handlers have been processed poll(); */ return T::GetCurrentState(); } int Reconnect(const EventImp &evt) { // Close all connections to supress the warning in SetEndpoint fFTM.PostClose(false); // Now wait until all connection have been closed and // all pending handlers have been processed poll(); if (evt.GetBool()) fFTM.SetEndpoint(evt.GetString()); // Now we can reopen the connection fFTM.PostClose(true); return T::GetCurrentState(); } /* int Transition(const Event &evt) { switch (evt.GetTargetState()) { case kDisconnected: case kConnected: } return T::kSM_FatalError; }*/ int64_t fCounterReg; int64_t fCounterStat; typedef map Configs; Configs fConfigs; Configs::const_iterator fTargetConfig; int ConfigureFTM(const EventImp &evt) { const string name = evt.GetText(); fTargetConfig = fConfigs.find(name); if (fTargetConfig==fConfigs.end()) { T::Error("ConfigureFTM - Run-type '"+name+"' not found."); return T::GetCurrentState(); } T::Message("Starting configuration for '"+name+"'"); fCounterReg = fFTM.GetCounter(FTM::kRegister); fFTM.CmdStopRun(); return FTM::kConfiguring1; } int ResetConfig() { return fFTM.GetState(); } int Execute() { // Dispatch (execute) at most one handler from the queue. In contrary // to run_one(), it doesn't wait until a handler is available // which can be dispatched, so poll_one() might return with 0 // handlers dispatched. The handlers are always dispatched/executed // synchronously, i.e. within the call to poll_one() poll_one(); // If FTM is neither in data taking nor idle, // leave configuration state switch (fFTM.GetState()) { case ConnectionFTM::kDisconnected: return FTM::kDisconnected; case ConnectionFTM::kConnected: return FTM::kConnected; default: break; } switch (T::GetCurrentState()) { case FTM::kConfiguring1: // If FTM has received an anwer to the stop_run command // the counter for the registers has been increased if (fFTM.GetCounter(FTM::kRegister)<=fCounterReg) break; // If now the state is not idle as expected this means we had // an error (maybe old events waiting in the queue) if (fFTM.GetState()!=ConnectionFTM::kIdle && fFTM.GetState()!=ConnectionFTM::kConfigured) return FTM::kConfigError1; fCounterStat = fFTM.GetCounter(FTM::kStaticData); T::Message("Trigger successfully disabled... sending new configuration."); fFTM.CmdSendStatDat(fTargetConfig->second); // Next state is: wait for the answer to our configuration return FTM::kConfiguring2; case FTM::kConfiguring2: case FTM::kConfigured: // If FTM has received an anwer to the stop_run command // the counter for the registers has been increased if (fFTM.GetCounter(FTM::kStaticData)<=fCounterStat) break; // If now the configuration is not what we expected // we had an error (maybe old events waiting in the queue?) // ====================== if (fFTM.GetState()!=ConnectionFTM::kConfigured) return FTM::kConfigError2; // ====================== // Check configuration again when a new static data block // will be received fCounterStat = fFTM.GetCounter(FTM::kStaticData); T::Info(" ==> TODO: Update run in database!"); T::Message("Sending new configuration was successfull."); // Next state is: wait for the answer to our configuration return FTM::kConfigured; default: switch (fFTM.GetState()) { case ConnectionFTM::kIdle: return FTM::kIdle; case ConnectionFTM::kConfigured: return FTM::kIdle; case ConnectionFTM::kTakingData: return FTM::kTakingData; default: throw runtime_error("StateMachienFTM - Execute() - Inavlid state."); } } if (T::GetCurrentState()==FTM::kConfigured && fFTM.GetState()==ConnectionFTM::kTakingData) return FTM::kTakingData; return T::GetCurrentState(); } public: StateMachineFTM(ostream &out=cout) : T(out, "FTM_CONTROL"), ba::io_service::work(static_cast(*this)), fFTM(*this, *this) { // ba::io_service::work is a kind of keep_alive for the loop. // It prevents the io_service to go to stopped state, which // would prevent any consecutive calls to run() // or poll() to do nothing. reset() could also revoke to the // previous state but this might introduce some overhead of // deletion and creation of threads and more. // State names T::AddStateName(FTM::kDisconnected, "Disconnected", "FTM board not connected via ethernet."); T::AddStateName(FTM::kConnected, "Connected", "Ethernet connection to FTM established (no state received yet)."); T::AddStateName(FTM::kIdle, "Idle", "Ethernet connection to FTM established, FTM in idle state."); T::AddStateName(FTM::kConfiguring1, "Configuring1", "Command to diable run sent... waiting for response."); T::AddStateName(FTM::kConfiguring2, "Configuring2", "New configuration sent... waiting for response."); T::AddStateName(FTM::kConfigured, "Configured", "Received answer identical with target configuration."); T::AddStateName(FTM::kTakingData, "TakingData", "Ethernet connection to FTM established, FTM is in taking data state."); T::AddStateName(FTM::kConfigError1, "ErrorInConfig1", ""); T::AddStateName(FTM::kConfigError2, "ErrorInConfig2", ""); // FTM Commands T::AddEvent("TOGGLE_LED", FTM::kIdle) (Wrapper(bind(&ConnectionFTM::CmdToggleLed, &fFTM))) ("toggle led"); T::AddEvent("PING", FTM::kIdle) (Wrapper(bind(&ConnectionFTM::CmdPing, &fFTM))) ("send ping"); T::AddEvent("REQUEST_DYNAMIC_DATA", FTM::kIdle) (Wrapper(bind(&ConnectionFTM::CmdReqDynDat, &fFTM))) ("request transmission of dynamic data block"); T::AddEvent("REQUEST_STATIC_DATA", FTM::kIdle) (Wrapper(bind(&ConnectionFTM::CmdReqStatDat, &fFTM))) ("request transmission of static data from FTM to memory"); T::AddEvent("GET_REGISTER", "I", FTM::kIdle) (bind(&StateMachineFTM::GetRegister, this, placeholders::_1)) ("read register from address addr" "|addr[short]:Address of register"); T::AddEvent("SET_REGISTER", "I:2", FTM::kIdle) (bind(&StateMachineFTM::SetRegister, this, placeholders::_1)) ("set register to value" "|addr[short]:Address of register" "|val[short]:Value to be set"); T::AddEvent("START_RUN", FTM::kIdle, FTM::kConfigured) (Wrapper(bind(&ConnectionFTM::CmdStartRun, &fFTM))) ("start a run (start distributing triggers)"); T::AddEvent("STOP_RUN", FTM::kTakingData) (Wrapper(bind(&ConnectionFTM::CmdStopRun, &fFTM))) ("stop a run (stop distributing triggers)"); T::AddEvent("TAKE_N_EVENTS", "I", FTM::kIdle) (bind(&StateMachineFTM::TakeNevents, this, placeholders::_1)) ("take n events (distribute n triggers)|number[int]:Number of events to be taken"); T::AddEvent("DISABLE_REPORTS", "B", FTM::kIdle) (bind(&StateMachineFTM::DisableReports, this, placeholders::_1)) ("disable sending rate reports" "|status[bool]:disable or enable that the FTM sends rate reports (yes/no)"); T::AddEvent("SET_THRESHOLD", "I:2", FTM::kIdle, FTM::kTakingData) (bind(&StateMachineFTM::SetThreshold, this, placeholders::_1)) ("Set the comparator threshold" "|Patch[idx]:Index of the patch (0-159), -1 for all" "|Threshold[counts]:Threshold to be set in binary counts"); T::AddEvent("SET_PRESCALING", "I:1", FTM::kIdle) (bind(&StateMachineFTM::SetPrescaling, this, placeholders::_1)) ("" "|[]:"); T::AddEvent("ENABLE_FTU", "I:1;B:1", FTM::kIdle) (bind(&StateMachineFTM::EnableFTU, this, placeholders::_1)) ("Enable or disable FTU" "|Board[idx]:Index of the board (0-39), -1 for all" "|Enable[bool]:Whether FTU should be enabled or disabled (yes/no)"); T::AddEvent("DISABLE_PIXEL", "S:1", FTM::kIdle, FTM::kTakingData) (bind(&StateMachineFTM::EnablePixel, this, placeholders::_1, false)) ("(-1 or all)"); T::AddEvent("ENABLE_PIXEL", "S:1", FTM::kIdle, FTM::kTakingData) (bind(&StateMachineFTM::EnablePixel, this, placeholders::_1, true)) ("(-1 or all)"); T::AddEvent("DISABLE_ALL_PIXELS_EXCEPT", "S:1", FTM::kIdle) (bind(&StateMachineFTM::DisableAllPixelsExcept, this, placeholders::_1)) (""); T::AddEvent("DISABLE_ALL_PATCHES_EXCEPT", "S:1", FTM::kIdle) (bind(&StateMachineFTM::DisableAllPatchesExcept, this, placeholders::_1)) (""); T::AddEvent("TOGGLE_PIXEL", "S:1", FTM::kIdle) (bind(&StateMachineFTM::TogglePixel, this, placeholders::_1)) (""); T::AddEvent("TOGGLE_FTU", "I:1", FTM::kIdle) (bind(&StateMachineFTM::ToggleFTU, this, placeholders::_1)) ("Toggle status of FTU (this is mainly meant to be used in the GUI)" "|Board[idx]:Index of the board (0-39)"); T::AddEvent("SET_TRIGGER_INTERVAL", "I:1", FTM::kIdle) (bind(&StateMachineFTM::SetTriggerInterval, this, placeholders::_1)) ("Sets the trigger interval which is the distance between two consecutive artificial triggers." "|interval[int]:The applied trigger interval is: interval*4ns+8ns"); T::AddEvent("SET_TRIGGER_DELAY", "I:1", FTM::kIdle) (bind(&StateMachineFTM::SetTriggerDelay, this, placeholders::_1)) ("" "|delay[int]:The applied trigger delay is: delay*4ns+8ns"); T::AddEvent("SET_TIME_MARKER_DELAY", "I:1", FTM::kIdle) (bind(&StateMachineFTM::SetTimeMarkerDelay, this, placeholders::_1)) ("" "|delay[int]:The applied time marker delay is: delay*4ns+8ns"); T::AddEvent("SET_DEAD_TIME", "I:1", FTM::kIdle) (bind(&StateMachineFTM::SetDeadTime, this, placeholders::_1)) ("" "|dead_time[int]:The applied dead time is: dead_time*4ns+8ns"); T::AddEvent("ENABLE_TRIGGER", "B:1", FTM::kIdle) (bind(&StateMachineFTM::Enable, this, placeholders::_1, FTM::StaticData::kTrigger)) ("Switch on the physics trigger" "|Enable[bool]:Enable physics trigger (yes/no)"); // FIXME: Switch on/off depending on sequence T::AddEvent("ENABLE_EXT1", "B:1", FTM::kIdle) (bind(&StateMachineFTM::Enable, this, placeholders::_1, FTM::StaticData::kExt1)) ("Switch on the triggers through the first external line" "|Enable[bool]:Enable ext1 trigger (yes/no)"); // FIXME: Switch on/off depending on sequence T::AddEvent("ENABLE_EXT2", "B:1", FTM::kIdle) (bind(&StateMachineFTM::Enable, this, placeholders::_1, FTM::StaticData::kExt2)) ("Switch on the triggers through the second external line" "|Enable[bool]:Enable ext2 trigger (yes/no)"); T::AddEvent("ENABLE_VETO", "B:1", FTM::kIdle) (bind(&StateMachineFTM::Enable, this, placeholders::_1, FTM::StaticData::kVeto)) ("Enable veto line" "|Enable[bool]:Enable veto (yes/no)"); T::AddEvent("ENABLE_CLOCK_CONDITIONER", "B:1", FTM::kIdle) (bind(&StateMachineFTM::Enable, this, placeholders::_1, FTM::StaticData::kClockConditioner)) ("Enable clock conidtioner output in favor of time marker output" "|Enable[bool]:Enable clock conditioner (yes/no)"); T::AddEvent("ENABLE_GROUP1_LPINT", "B:1", FTM::kIdle) (bind(&StateMachineFTM::EnableLP, this, placeholders::_1, FTM::StaticData::kLPint, FTM::StaticData::kGroup1)) (""); T::AddEvent("ENABLE_GROUP1_LPEXT", "B:1", FTM::kIdle) (bind(&StateMachineFTM::EnableLP, this, placeholders::_1, FTM::StaticData::kLPext, FTM::StaticData::kGroup1)) (""); T::AddEvent("ENABLE_GROUP2_LPINT", "B:1", FTM::kIdle) (bind(&StateMachineFTM::EnableLP, this, placeholders::_1, FTM::StaticData::kLPint, FTM::StaticData::kGroup2)) (""); T::AddEvent("ENABLE_GROUP2_LPEXT", "B:1", FTM::kIdle) (bind(&StateMachineFTM::EnableLP, this, placeholders::_1, FTM::StaticData::kLPext, FTM::StaticData::kGroup2)) (""); T::AddEvent("SET_INTENSITY_LPINT", "S:1", FTM::kIdle) (bind(&StateMachineFTM::SetIntensity, this, placeholders::_1, FTM::StaticData::kLPint)) (""); T::AddEvent("SET_INTENSITY_LPEXT", "S:1", FTM::kIdle) (bind(&StateMachineFTM::SetIntensity, this, placeholders::_1, FTM::StaticData::kLPext)) (""); T::AddEvent("SET_TRIGGER_SEQUENCE", "S:3", FTM::kIdle) (bind(&StateMachineFTM::SetTriggerSeq, this, placeholders::_1)) ("Setup the sequence of artificial triggers produced by the FTM" "|Ped[short]:number of pedestal triggers in a row" "|LPext[short]:number of triggers of the external light pulser" "|LPint[short]:number of triggers of the internal light pulser"); T::AddEvent("SET_TRIGGER_MULTIPLICITY", "S:1", FTM::kIdle) (bind(&StateMachineFTM::SetTriggerMultiplicity, this, placeholders::_1)) ("Setup the Multiplicity condition for physcis triggers" "|N[int]:Number of requirered coincident triggers from sum-patches (1-40)"); T::AddEvent("SET_TRIGGER_WINDOW", "S:1", FTM::kIdle) (bind(&StateMachineFTM::SetTriggerWindow, this, placeholders::_1)) (""); T::AddEvent("SET_CALIBRATION_MULTIPLICITY", "S:1", FTM::kIdle) (bind(&StateMachineFTM::SetCalibMultiplicity, this, placeholders::_1)) ("Setup the Multiplicity condition for artificial (calibration) triggers" "|N[int]:Number of requirered coincident triggers from sum-patches (1-40)"); T::AddEvent("SET_CALIBRATION_WINDOW", "S:1", FTM::kIdle) (bind(&StateMachineFTM::SetCalibWindow, this, placeholders::_1)) (""); T::AddEvent("SET_CLOCK_FREQUENCY", "S:1", FTM::kIdle) (bind(&StateMachineFTM::SetClockFrequency, this, placeholders::_1)) (""); T::AddEvent("SET_CLOCK_REGISTER", "X:8", FTM::kIdle) (bind(&StateMachineFTM::SetClockRegister, this, placeholders::_1)) (""); // A new configure will first stop the FTM this means // we can allow it in idle _and_ taking data T::AddEvent("CONFIGURE", "C", FTM::kIdle, FTM::kTakingData) (bind(&StateMachineFTM::ConfigureFTM, this, placeholders::_1)) (""); T::AddEvent("RESET_CONFIGURE", FTM::kConfiguring1, FTM::kConfiguring2, FTM::kConfigured, FTM::kConfigError1, FTM::kConfigError2) (bind(&StateMachineFTM::ResetConfig, this)) (""); T::AddEvent("RESET_CRATE", "S:1", FTM::kIdle) (bind(&StateMachineFTM::ResetCrate, this, placeholders::_1)) ("Reset one of the crates 0-3" "|crate[short]:Crate number to be reseted (0-3)"); T::AddEvent("RESET_CAMERA", FTM::kIdle) (Wrapper(bind(&ConnectionFTM::CmdResetCamera, &fFTM))) ("Reset all crates. The commands are sent in the order 0,1,2,3"); // Load/save static data block T::AddEvent("SAVE", "C", FTM::kIdle) (bind(&StateMachineFTM::SaveStaticData, this, placeholders::_1)) ("Saves the static data (FTM configuration) from memory to a file" "|filename[string]:Filename (can include a path), .bin is automatically added"); T::AddEvent("LOAD", "C", FTM::kIdle) (bind(&StateMachineFTM::LoadStaticData, this, placeholders::_1)) ("Loads the static data (FTM configuration) from a file into memory and sends it to the FTM" "|filename[string]:Filename (can include a path), .bin is automatically added"); // Verbosity commands T::AddEvent("SET_VERBOSE", "B") (bind(&StateMachineFTM::SetVerbosity, this, placeholders::_1)) ("set verbosity state" "|verbosity[bool]:disable or enable verbosity for received data (yes/no), except dynamic data"); T::AddEvent("SET_HEX_OUTPUT", "B") (bind(&StateMachineFTM::SetHexOutput, this, placeholders::_1)) ("enable or disable hex output for received data" "|hexout[bool]:disable or enable hex output for received data (yes/no)"); T::AddEvent("SET_DYNAMIC_OUTPUT", "B") (bind(&StateMachineFTM::SetDynamicOut, this, placeholders::_1)) ("enable or disable output for received dynamic data (data is still broadcasted via Dim)" "|dynout[bool]:disable or enable output for dynamic data (yes/no)"); // Conenction commands T::AddEvent("DISCONNECT", FTM::kConnected, FTM::kIdle) (bind(&StateMachineFTM::Disconnect, this)) ("disconnect from ethernet"); T::AddEvent("RECONNECT", "O", FTM::kDisconnected, FTM::kConnected, FTM::kIdle, FTM::kConfigured) (bind(&StateMachineFTM::Reconnect, this, placeholders::_1)) ("(Re)connect ethernet connection to FTM, a new address can be given" "|[host][string]:new ethernet address in the form "); fFTM.StartConnect(); } void SetEndpoint(const string &url) { fFTM.SetEndpoint(url); } map> fClockCondSetup; template bool CheckConfigVal(Configuration &conf, V max, const string &name, const string &sub) { if (!conf.HasDef(name, sub)) { T::Error("Neither "+name+"default nor "+name+sub+" found."); return false; } const V val = conf.GetDef(name, sub); if (val<=max) return true; ostringstream str; str << name << sub << "=" << val << " exceeds allowed maximum of " << max << "!"; T::Error(str); return false; } int EvalOptions(Configuration &conf) { // ---------- General setup ---------- fFTM.SetVerbose(!conf.Get("quiet")); fFTM.SetHexOutput(conf.Get("hex-out")); fFTM.SetDynamicOut(conf.Get("dynamic-out")); // ---------- Setup clock conditioner frequencies ---------- const vector freq = conf.Vec("clock-conditioner.frequency"); if (freq.size()==0) T::Warn("No frequencies for the clock-conditioner defined."); else T::Message("Defining clock conditioner frequencies"); for (vector::const_iterator it=freq.begin(); it!=freq.end(); it++) { if (fClockCondSetup.count(*it)>0) { T::Error("clock-conditioner frequency defined twice."); return 1; } if (!conf.HasDef("clock-conditioner.R0.", *it) || !conf.HasDef("clock-conditioner.R1.", *it) || !conf.HasDef("clock-conditioner.R8.", *it) || !conf.HasDef("clock-conditioner.R9.", *it) || !conf.HasDef("clock-conditioner.R11.", *it) || !conf.HasDef("clock-conditioner.R13.", *it) || !conf.HasDef("clock-conditioner.R14.", *it) || !conf.HasDef("clock-conditioner.R15.", *it)) { T::Error("clock-conditioner values incomplete."); return 1; } array &arr = fClockCondSetup[*it]; arr[0] = conf.GetDef>("clock-conditioner.R0.", *it); arr[1] = conf.GetDef>("clock-conditioner.R1.", *it); arr[2] = conf.GetDef>("clock-conditioner.R8.", *it); arr[3] = conf.GetDef>("clock-conditioner.R9.", *it); arr[4] = conf.GetDef>("clock-conditioner.R11.", *it); arr[5] = conf.GetDef>("clock-conditioner.R13.", *it); arr[6] = conf.GetDef>("clock-conditioner.R14.", *it); arr[7] = conf.GetDef>("clock-conditioner.R15.", *it); ostringstream out; out << " -> " << setw(4) << *it << "MHz:" << hex << setfill('0'); for (int i=0; i<8; i++) out << " " << setw(8) << arr[i]; T::Message(out.str()); } // ---------- Setup run types --------- const vector types = conf.Vec("run-type"); if (types.size()==0) T::Warn("No run-types defined."); else T::Message("Defining run-types"); for (vector::const_iterator it=types.begin(); it!=types.end(); it++) { T::Message(" -> "+ *it); if (fConfigs.count(*it)>0) { T::Error("Run-type "+*it+" defined twice."); return 2; } FTM::StaticData data; const uint16_t frq = conf.GetDef("sampling-frequency.", *it); if (fClockCondSetup.count(frq)==0) { T::Error("sampling-frequency."+*it+" - frequency not available."); return 2; } data.SetClockRegister(fClockCondSetup[frq].data()); // Trigger sequence ped:lp1:lp2 // (data. is used here as an abbreviation for FTM::StaticData:: if (!CheckConfigVal (conf, true, "trigger.enable-trigger.", *it) || !CheckConfigVal (conf, true, "trigger.enable-external-1.", *it) || !CheckConfigVal (conf, true, "trigger.enable-external-2.", *it) || !CheckConfigVal (conf, true, "trigger.enable-veto.", *it) || !CheckConfigVal (conf, true, "trigger.enable-clock-conditioner.", *it) || !CheckConfigVal (conf, true, "light-pulser.external.enable-group1.", *it) || !CheckConfigVal (conf, true, "light-pulser.external.enable-group2.", *it) || !CheckConfigVal (conf, true, "light-pulser.internal.enable-group1.", *it) || !CheckConfigVal (conf, true, "light-pulser.internal.enable-group2.", *it) || !CheckConfigVal(conf, data.kMaxSequence, "trigger.sequence.pedestal.", *it) || !CheckConfigVal(conf, data.kMaxSequence, "trigger.sequence.lp-ext.", *it) || !CheckConfigVal(conf, data.kMaxSequence, "trigger.sequence.lp-int.", *it) || !CheckConfigVal(conf, data.kMaxTriggerInterval, "trigger.sequence.interval.", *it) || !CheckConfigVal(conf, data.kMaxMultiplicity, "trigger.multiplicity-physics.", *it) || !CheckConfigVal(conf, data.kMaxMultiplicity, "trigger.multiplicity-calib.", *it) || !CheckConfigVal(conf, data.kMaxWindow, "trigger.coincidence-window-physics.", *it) || !CheckConfigVal(conf, data.kMaxWindow, "trigger.coincidence-window-calib.", *it) || !CheckConfigVal(conf, data.kMaxDeadTime, "trigger.dead-time.", *it) || !CheckConfigVal(conf, data.kMaxDelayTrigger, "trigger.delay.", *it) || !CheckConfigVal(conf, data.kMaxDelayTimeMarker, "trigger.time-marker-delay.", *it) || !CheckConfigVal(conf, 0xffff, "ftu-report-interval.", *it) || !CheckConfigVal(conf, data.kMaxIntensity, "light-pulser.external.intensity.", *it) || !CheckConfigVal(conf, data.kMaxIntensity, "light-pulser.internal.intensity.", *it) || !CheckConfigVal(conf, data.kMaxDAC, "trigger.threshold.pixel.", *it) || !CheckConfigVal(conf, data.kMaxDAC, "trigger.threshold.patch.", *it) || 0) return 2; data.Enable(data.kTrigger, conf.GetDef("trigger.enable-trigger.", *it)); data.Enable(data.kExt1, conf.GetDef("trigger.enable-external-1.", *it)); data.Enable(data.kExt2, conf.GetDef("trigger.enable-external-2.", *it)); data.Enable(data.kVeto, conf.GetDef("trigger.enable-veto.", *it)); data.Enable(data.kClockConditioner, conf.GetDef("trigger.enable-clock-conditioner.", *it)); data.EnableLPint(data.kGroup1, conf.GetDef("light-pulser.internal.enable-group1.", *it)); data.EnableLPint(data.kGroup2, conf.GetDef("light-pulser.internal.enable-group2.", *it)); data.EnableLPext(data.kGroup1, conf.GetDef("light-pulser.external.enable-group1.", *it)); data.EnableLPext(data.kGroup2, conf.GetDef("light-pulser.external.enable-group2.", *it)); // [ms] Interval between two artificial triggers (no matter which type) minimum 1ms, 10 bit data.fIntensityLPint = conf.GetDef("light-pulser.internal.intensity.", *it); data.fIntensityLPext = conf.GetDef("light-pulser.external.intensity.", *it); data.fTriggerInterval = conf.GetDef("trigger.sequence.interval.", *it); data.fMultiplicityPhysics = conf.GetDef("trigger.multiplicity-physics.", *it); data.fMultiplicityCalib = conf.GetDef("trigger.multiplicity-calib.", *it); data.fWindowPhysics = conf.GetDef("trigger.coincidence-window-physics.", *it); /// (4ns * x + 8ns) data.fWindowCalib = conf.GetDef("trigger.coincidence-window-calib.", *it); /// (4ns * x + 8ns) data.fDelayTrigger = conf.GetDef("trigger.delay.", *it); /// (4ns * x + 8ns) data.fDelayTimeMarker = conf.GetDef("trigger.time-marker-delay.", *it); /// (4ns * x + 8ns) data.fDeadTime = conf.GetDef("trigger.dead-time.", *it); /// (4ns * x + 8ns) data.SetPrescaling(conf.GetDef("ftu-report-interval.", *it)); const uint16_t seqped = conf.GetDef("trigger.sequence.pedestal.", *it); const uint16_t seqint = conf.GetDef("trigger.sequence.lp-int.", *it); const uint16_t seqext = conf.GetDef("trigger.sequence.lp-ext.", *it); data.SetSequence(seqped, seqint, seqext); data.EnableAllFTU(); data.EnableAllPixel(); const vector pat1 = conf.Vec("trigger.disable-patch.default"); const vector pat2 = conf.Vec("trigger.disable-patch."+*it); const vector pix1 = conf.Vec("trigger.disable-pixel.default"); const vector pix2 = conf.Vec("trigger.disable-pixel."+*it); vector pat, pix; pat.insert(pat.end(), pat1.begin(), pat1.end()); pat.insert(pat.end(), pat2.begin(), pat2.end()); pix.insert(pix.end(), pix1.begin(), pix1.end()); pix.insert(pix.end(), pix2.begin(), pix2.end()); for (vector::const_iterator ip=pat.begin(); ip!=pat.end(); ip++) { if (*ip>FTM::StaticData::kMaxPatchIdx) { ostringstream str; str << "trigger.disable-patch.*=" << *ip << " exceeds allowed maximum of " << FTM::StaticData::kMaxPatchIdx << "!"; T::Error(str); return 2; } data.DisableFTU(*ip); } for (vector::const_iterator ip=pix.begin(); ip!=pix.end(); ip++) { if (*ip>FTM::StaticData::kMaxPixelIdx) { ostringstream str; str << "trigger.disable-pixel.*=" << *ip << " exceeds allowed maximum of " << FTM::StaticData::kMaxPixelIdx << "!"; T::Error(str); return 2; } data.EnablePixel(*ip, false); } const uint16_t th0 = conf.GetDef("trigger.threshold.pixel.", *it); const uint16_t th1 = conf.GetDef("trigger.threshold.patch.", *it); for (int i=0; i<40; i++) { data[i].fDAC[0] = th0; data[i].fDAC[1] = th0; data[i].fDAC[2] = th0; data[i].fDAC[3] = th0; data[i].fDAC[4] = th1; } fConfigs[*it] = data; // trigger.threshold.dac-0: /* threshold-A data[n].fDAC[0] = val threshold-B data[n].fDAC[1] = val threshold-C data[n].fDAC[2] = val threshold-D data[n].fDAC[3] = val threshold-H data[n].fDAC[4] = val */ // kMaxDAC = 0xfff, } // FIXME: Add a check about unsused configurations // ---------- FOR TESTING PURPOSE --------- // fFTM.SetDefaultSetup(conf.Get("default-setup")); fConfigs["test"] = FTM::StaticData(); // ---------- Setup connection endpoint --------- SetEndpoint(conf.Get("addr")); return -1; } }; // ------------------------------------------------------------------------ #include "Main.h" template int RunShell(Configuration &conf) { return Main::execute>(conf); } void SetupConfiguration(Configuration &conf) { po::options_description control("Control options"); control.add_options() ("no-dim", po_bool(), "Disable dim services") ("addr,a", var("localhost:5000"), "Network address of FTM") ("quiet,q", po_bool(), "Disable printing contents of all received messages (except dynamic data) in clear text.") ("hex-out", po_bool(), "Enable printing contents of all printed messages also as hex data.") ("dynamic-out", po_bool(), "Enable printing received dynamic data.") // ("default-setup", var(), "Binary file with static data loaded whenever a connection to the FTM was established.") ; po::options_description freq("Sampling frequency setup"); freq.add_options() ("clock-conditioner.frequency", vars(), "Frequencies for which to setup the clock-conditioner (replace the * in the following options by this definition)") ("clock-conditioner.R0.*", var>(), "Clock-conditioner R0") ("clock-conditioner.R1.*", var>(), "Clock-conditioner R1") ("clock-conditioner.R8.*", var>(), "Clock-conditioner R8") ("clock-conditioner.R9.*", var>(), "Clock-conditioner R9") ("clock-conditioner.R11.*", var>(), "Clock-conditioner R11") ("clock-conditioner.R13.*", var>(), "Clock-conditioner R13") ("clock-conditioner.R14.*", var>(), "Clock-conditioner R14") ("clock-conditioner.R15.*", var>(), "Clock-conditioner R15"); po::options_description runtype("Run type configuration"); runtype.add_options() ("run-type", vars(), "Name of run-types (replace the * in the following configuration by the case-sensitive names defined here)") ("sampling-frequency.*", var(), "Sampling frequency as defined in the clock-conditioner.frequency") ("trigger.enable-trigger.*", var(), "Enable trigger output of physics trigger") ("trigger.enable-external-1.*", var(), "Enable external trigger line 1") ("trigger.enable-external-2.*", var(), "Enable external trigger line 2") ("trigger.enable-veto.*", var(), "Enable veto line") ("trigger.enable-clock-conditioner.*", var(), "") ("trigger.sequence.interval.*", var(), "Interval between two artifical triggers in units of n*4ns+8ns") ("trigger.sequence.pedestal.*", var(), "Number of pedestal events in the sequence of artificial triggers") ("trigger.sequence.lp-int.*", var(), "Number of LPint events in the sequence of artificial triggers") ("trigger.sequence.lp-ext.*", var(), "Number of LPext events in the sequence of artificial triggers") ("trigger.multiplicity-physics.*", var(), "Multiplicity for physics events (n out of 40)") ("trigger.multiplicity-calib.*", var(), "Multiplicity for LPext events (n out of 40)") ("trigger.coincidence-window-physics.*", var(), "Coincidence window for physics triggers in units of n*4ns+8ns") ("trigger.coincidence-window-calib.*", var(), "Coincidence window for LPext triggers in units of n*4ns+8ns") ("trigger.dead-time.*", var(), "Dead time after trigger in units of n*4ns+8ns") ("trigger.delay.*", var(), "Delay of the trigger send to the FAD boards after a trigger in units of n*4ns+8ns") ("trigger.time-marker-delay.*", var(), "Delay of the time-marker after a trigger in units of n*4ns+8ns") ("trigger.disable-pixel.*", vars(), "") ("trigger.disable-patch.*", vars(), "") ("trigger.threshold.pixel.*", var(), "") ("trigger.threshold.patch.*", var(), "") ("ftu-report-interval.*", var(), "") ("light-pulser.external.enable-group1.*", var(), "Enable LED group 1 of external light pulser") ("light-pulser.external.enable-group2.*", var(), "Enable LED group 2 of external light pulser") ("light-pulser.internal.enable-group1.*", var(), "Enable LED group 1 of internal light pulser") ("light-pulser.internal.enable-group2.*", var(), "Enable LED group 2 of internal light pulser") ("light-pulser.external.intensity.*", var(), "Intensity of external light pulser") ("light-pulser.internal.intensity.*", var(), "Intensity of internal light pulser") ; conf.AddOptions(control); conf.AddOptions(freq); conf.AddOptions(runtype); } /* Extract usage clause(s) [if any] for SYNOPSIS. Translators: "Usage" and "or" here are patterns (regular expressions) which are used to match the usage synopsis in program output. An example from cp (GNU coreutils) which contains both strings: Usage: cp [OPTION]... [-T] SOURCE DEST or: cp [OPTION]... SOURCE... DIRECTORY or: cp [OPTION]... -t DIRECTORY SOURCE... */ void PrintUsage() { cout << "The ftmctrl controls the FTM (FACT Trigger Master) board.\n" "\n" "The default is that the program is started without user intercation. " "All actions are supposed to arrive as DimCommands. Using the -c " "option, a local shell can be initialized. With h or help a short " "help message about the usuage can be brought to the screen.\n" "\n" "Usage: ftmctrl [-c type] [OPTIONS]\n" " or: ftmctrl [OPTIONS]\n"; cout << endl; } void PrintHelp() { /* Additional help text which is printed after the configuration options goes here */ /* cout << "bla bla bla" << endl << endl; cout << endl; cout << "Environment:" << endl; cout << "environment" << endl; cout << endl; cout << "Examples:" << endl; cout << "test exam" << endl; cout << endl; cout << "Files:" << endl; cout << "files" << endl; cout << endl; */ } int main(int argc, const char* argv[]) { Configuration conf(argv[0]); conf.SetPrintUsage(PrintUsage); Main::SetupConfiguration(conf); SetupConfiguration(conf); if (!conf.DoParse(argc, argv, PrintHelp)) return -1; //try { // No console access at all if (!conf.Has("console")) { if (conf.Get("no-dim")) return RunShell(conf); else return RunShell(conf); } // Cosole access w/ and w/o Dim if (conf.Get("no-dim")) { if (conf.Get("console")==0) return RunShell(conf); else return RunShell(conf); } else { if (conf.Get("console")==0) return RunShell(conf); else return RunShell(conf); } } /*catch (std::exception& e) { cerr << "Exception: " << e.what() << endl; return -1; }*/ return 0; }