#include "externals/nova.h" #include "Database.h" #include "Time.h" #include "Configuration.h" using namespace std; using namespace Nova; // ======================================================================== // ======================================================================== // ======================================================================== void SetupConfiguration(Configuration &conf) { po::options_description control("Smart FACT"); control.add_options() ("source-name", var(), "Source name") ("date-time", var(), "SQL time (UTC)") ("source-database", var(""), "Database link as in\n\tuser:password@server[:port]/database.") ("max-current", var(75), "Maximum current to display in other plots.") ("max-zd", var(75), "Maximum zenith distance to display in other plots") ("no-limits", po_switch(), "Switch off limits in plots") ; po::positional_options_description p; p.add("source-name", 1); // The 1st positional options p.add("date-time", 2); // The 2nd positional options conf.AddOptions(control); conf.SetArgumentPositions(p); } void PrintUsage() { cout << "makedata - The astronomy data listing\n" "\n" // "Calculates several plots for the sources in the database\n" // "helpful or needed for scheduling. The Plot is always calculated\n" // "for the night which starts at the same so. So no matter if\n" // "you specify '1974-09-09 00:00:00' or '1974-09-09 21:56:00'\n" // "the plots will refer to the night 1974-09-09/1974-09-10.\n" // "The advantage is that specification of the date as in\n" // "1974-09-09 is enough. Time axis starts and ends at nautical\n" // "twilight which is 12deg below horizon.\n" // "\n" "Usage: makedata sql-datetime [--ra={ra} --dec={dec}]\n"; cout << endl; } int main(int argc, const char* argv[]) { Configuration conf(argv[0]); conf.SetPrintUsage(PrintUsage); SetupConfiguration(conf); if (!conf.DoParse(argc, argv)) return 127; /* if (!conf.Has("source-name")) { cout << "ERROR - --source-name missing." << endl; return 1; } */ // ------------------ Eval config --------------------- Time time; if (conf.Has("date-time")) time.SetFromStr(conf.Get("date-time")); const double max_current = conf.Get("max-current"); const double max_zd = conf.Get("max-zd"); const double no_limits = conf.Get("no-limits"); // -12: nautical const RstTime sun_set = GetSolarRst(time.JD()-0.5, -12); // Sun set with the same date than th provided date const RstTime sun_rise = GetSolarRst(time.JD()+0.5, -12); // Sun rise on the following day const double jd = floor(time.Mjd())+2400001; const double mjd = floor(time.Mjd())+49718+0.5; const double jd0 = fmod(sun_set.set, 1); // ~0.3 const double jd1 = fmod(sun_rise.rise, 1); // ~0.8 cout << Time::iso << time << ", " << mjd-49718 << ", "; cout << jd0 << ", "; cout << jd1 << "\n"; if (!conf.Has("source-name")) return 1; const string source_name = conf.Get("source-name"); const string fDatabase = conf.Get("source-database"); // ------------------ Precalc moon coord --------------------- vector> fMoonCoords; vector fSunCoords; for (double h=0; h<1; h+=1./(24*12)) { const EquPosn sun = GetSolarEquCoords(jd+h); const EquPosn moon = GetLunarEquCoords(jd+h, 0.01); const double disk = GetLunarDisk(jd+h); const double edist = GetLunarEarthDist(jd+h)/384400; fMoonCoords.emplace_back(moon, disk, edist); fSunCoords.emplace_back(sun); } // ------------- Get Sources from databasse --------------------- const mysqlpp::StoreQueryResult res = Database(fDatabase).query("SELECT fRightAscension, fDeclination FROM Source WHERE fSourceName='"+source_name+"'").store(); // ------------- Create canvases and frames --------------------- vector::const_iterator row=res.begin(); if (row==res.end()) return 1; EquPosn pos; pos.ra = double((*row)[0])*15; pos.dec = double((*row)[1]); // Loop over 24 hours for (int i=0; i<24*12; i++) { const double h = double(i)/(24*12); // check if it is betwene sun-rise and sun-set if (hjd1) continue; // get local position of source const HrzPosn hrz = GetHrzFromEqu(pos, jd+h); // Get sun and moon properties and const EquPosn sun = fSunCoords[i]; const EquPosn moon = get<0>(fMoonCoords[i]); const double disk = get<1>(fMoonCoords[i]); const double edist = get<2>(fMoonCoords[i]); const HrzPosn hrzm = GetHrzFromEqu(moon, jd+h); const ZdAzPosn hrzs = GetHrzFromEqu(sun, jd+h); // Distance between source and moon const double angle = GetAngularSeparation(moon, pos); // Current prediction const double sin_malt = hrzm.alt<0 ? 0 : sin(hrzm.alt*M_PI/180); const double cos_mdist = cos(angle*M_PI/180); const double sin_szd = sin(hrzs.zd*M_PI/180); const double k0 = pow(disk, 2.63); const double k1 = pow(sin_malt, 0.60); const double k2 = pow(edist, -2.00); const double k3 = exp(0.67*cos_mdist*cos_mdist*cos_mdist*cos_mdist); const double k4 = exp(-97.8+105.8*sin_szd*sin_szd); const double cur = 6.2 + 95.7*k0*k1*k2*k3 + k4; // Relative energy threshold prediction //const double cs = cos((90+hrz.alt)*M_PI/180); //const double ratio = (10.*sqrt(409600.*cs*cs+9009.) + 6400.*cs - 60.)/10.; const double ratio = pow(cos((90-hrz.alt)*M_PI/180), -2.664); // Add points to curve // const double axis = (mjd+h)*24*3600; Time t(mjd-49718); t += boost::posix_time::minutes(i*5); cout << t << ", " << h << ", "; if (no_limits || cur