| 1 |
|
|---|
| 2 | \documentclass{icrc}
|
|---|
| 3 |
|
|---|
| 4 | \usepackage{times}
|
|---|
| 5 | \usepackage{graphicx} % when using Latex and dvips
|
|---|
| 6 | % % (the latter best with option -Pcmz, if available,
|
|---|
| 7 | % % to invoke Type 1 cm fonts)
|
|---|
| 8 | %\usepackage[pdftex]{graphicx} % when using pdfLatex (preferred)
|
|---|
| 9 |
|
|---|
| 10 | \begin{document}
|
|---|
| 11 |
|
|---|
| 12 | \title{Detailed Monte Carlo studies for the MAGIC telescope}
|
|---|
| 13 | \author[1]{O. Blanch}
|
|---|
| 14 | \affil[1]{IFAE, Barcelona, Spain}
|
|---|
| 15 | \author[2]{J.C. Gonzalez}
|
|---|
| 16 | \affil[2]{Universidad Complutense Madrid, Spain}
|
|---|
| 17 | \author[3]{H. Kornmayer}
|
|---|
| 18 | \affil[3]{Max-Planck-Institut f\"ur Physik, M\"unchen, Germany}
|
|---|
| 19 | \correspondence{H. Kornmayer (h.kornmayer@web.de)}
|
|---|
| 20 |
|
|---|
| 21 | \firstpage{1}
|
|---|
| 22 | \pubyear{2001}
|
|---|
| 23 |
|
|---|
| 24 | % \titleheight{11cm} % uncomment and adjust in case your title block
|
|---|
| 25 | % does not fit into the default and minimum 7.5 cm
|
|---|
| 26 |
|
|---|
| 27 | \maketitle
|
|---|
| 28 |
|
|---|
| 29 | \begin{abstract}
|
|---|
| 30 | For the understanding of a large Cherenkov telescope a detailed
|
|---|
| 31 | simulation of air showers and of the detector response are
|
|---|
| 32 | unavoidable. Such a simulation must take into account the development
|
|---|
| 33 | of air showers in the atmosphere, the reflectivity of the mirrors,
|
|---|
| 34 | the response of photo detectors
|
|---|
| 35 | and the influence of both the light of night sky and the light of
|
|---|
| 36 | bright stars.
|
|---|
| 37 | A detailed study will be presented.
|
|---|
| 38 | \end{abstract}
|
|---|
| 39 |
|
|---|
| 40 | \section{Introduction}
|
|---|
| 41 |
|
|---|
| 42 | In this year the construction of the the $17~\mathrm{m}$ diameter
|
|---|
| 43 | Che\-ren\-kov telescope called MAGIC \cite{mc98}
|
|---|
| 44 | will be finished. The aim of this
|
|---|
| 45 | detector is the observation of $\gamma$-ray sources in the
|
|---|
| 46 | enery region above $\approx 10~\mathrm{TeV}$.
|
|---|
| 47 | The size of the telesope mirros will be around $250~\mathrm{m^2}$.
|
|---|
| 48 | The air showers induced by cosmic ray particles (hadrons and gammas)
|
|---|
| 49 | will be detected with a "classical" camera consisting of 577
|
|---|
| 50 | photomultiplier tubes (PMT). The analog signals of these PMTs will
|
|---|
| 51 | be recorded by a FADC system running with a frequency of
|
|---|
| 52 | $f = 333~\mathrm{MHz}$.
|
|---|
| 53 | The readout of the FADCs by a dedicated trigger system containing
|
|---|
| 54 | different trigger levels.
|
|---|
| 55 |
|
|---|
| 56 | The goal of the trigger system is to reject the hadronic cosmic ray
|
|---|
| 57 | background from the gamma rays, for which a lower threshold is aimed.
|
|---|
| 58 | For a better understanding of the MAGIC telescope and its different
|
|---|
| 59 | systems (trigger, FADC) a detailed Monte Carlo (MC) study is
|
|---|
| 60 | unavoidable. Such an study has to take into account the simulation
|
|---|
| 61 | of air showers, the effect of absorption in the atmosphere, the
|
|---|
| 62 | behaviour of the PMTs and the response of the trigger and FADC
|
|---|
| 63 | system.
|
|---|
| 64 | For a big telescope like MAGIC there is an additional source of
|
|---|
| 65 | noise, which is the light of the night sky. As a rude assumption
|
|---|
| 66 | there will be around 50 stars with magnitude $m \le 9$ in the
|
|---|
| 67 | field of view of the camera. So one other game of this
|
|---|
| 68 | study is to invent methods to become rid of the light from
|
|---|
| 69 | stars.
|
|---|
| 70 |
|
|---|
| 71 | Here we present the first results of such an investigation.
|
|---|
| 72 |
|
|---|
| 73 | \section{Generation of MC data samples}
|
|---|
| 74 |
|
|---|
| 75 | The simulation of the MAGIC telescope is seperated in a
|
|---|
| 76 | subsequent chain of smaller simulation parts. First the
|
|---|
| 77 | air showers are simulated with the
|
|---|
| 78 | CORSIKA program \citep{hk95}.
|
|---|
| 79 | In the next step we simulate the reflection of the
|
|---|
| 80 | Cherenkov photons on the mirror dish.
|
|---|
| 81 | Then the behaviour of the PMTs is simulated and the
|
|---|
| 82 | response of the trigger and FADC system is generated.
|
|---|
| 83 | In the followin subsections you find a more precise
|
|---|
| 84 | description of all the programs.
|
|---|
| 85 |
|
|---|
| 86 | \subsection{Air shower simulation}
|
|---|
| 87 |
|
|---|
| 88 | The simulation of gammas and of hadrons is done with
|
|---|
| 89 | the CORSIKA program, version 5.20.
|
|---|
| 90 | For the simulation of hadronic
|
|---|
| 91 | showers we use the VENUS model. We simulate showers
|
|---|
| 92 | for different zenith angles
|
|---|
| 93 | ($\Theta = 0^\circ, 5^\circ, 10^\circ, 15^\circ,
|
|---|
| 94 | 20^\circ, 25^\circ $).
|
|---|
| 95 | Gammas where simulated like a point source
|
|---|
| 96 | whereas the hadrons are simulated isotropic around
|
|---|
| 97 | the given zenith angle. We found that hadronic showers
|
|---|
| 98 | have also for big impact parameters $I$ a non-zero
|
|---|
| 99 | probability to trigger the telescope. Therefore we
|
|---|
| 100 | simulate hadrons with $I < 400~\mathrm{m}$ and gammas
|
|---|
| 101 | with $I < 200~\mathrm{m}$.
|
|---|
| 102 | The number of generated showers can be found in table
|
|---|
| 103 | \ref{tab_showers}.
|
|---|
| 104 | %
|
|---|
| 105 | %
|
|---|
| 106 | %
|
|---|
| 107 | \begin{table}[b]
|
|---|
| 108 | \begin{center}
|
|---|
| 109 | \begin{tabular}{|c||r|r||}
|
|---|
| 110 | \hline
|
|---|
| 111 | zenith angle & gammas & protons \\
|
|---|
| 112 | \hline \hline
|
|---|
| 113 | $\Theta = 0^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
|
|---|
| 114 | $\Theta = 5^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
|
|---|
| 115 | $\Theta = 10^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
|
|---|
| 116 | $\Theta = 15^\circ$ & $\approx 2 \cdot 10^6$ & $\approx 5 \cdot 10^6$ \\
|
|---|
| 117 | $\Theta = 20^\circ$ & production & production \\
|
|---|
| 118 | $\Theta = 25^\circ$ & production & production \\
|
|---|
| 119 | \hline
|
|---|
| 120 | \end{tabular}
|
|---|
| 121 | \end{center}
|
|---|
| 122 | \caption {Number of generated showers}
|
|---|
| 123 | \label{tab_showers}
|
|---|
| 124 | \end{table}
|
|---|
| 125 | %
|
|---|
| 126 | %
|
|---|
| 127 | %
|
|---|
| 128 | For each simulated shower all
|
|---|
| 129 | Cherenkov photons hitting the groud at observation level
|
|---|
| 130 | close to the telesope position are stored.
|
|---|
| 131 |
|
|---|
| 132 | \subsection{mirror simulation}
|
|---|
| 133 |
|
|---|
| 134 | The output of the air shower simualition is used
|
|---|
| 135 | as the input to the mirror simulation. But before
|
|---|
| 136 | simulating the mirror themself, one has to take the
|
|---|
| 137 | absorption in the atmosphere into account. For each
|
|---|
| 138 | Cherenkov photon the height of production and
|
|---|
| 139 | the wavelength is known. Taking the Rayleigh and
|
|---|
| 140 | Mie scattering into account one is able to calculate
|
|---|
| 141 | the effect of absorption in the atmosphere.
|
|---|
| 142 | The next step in the simulation is the reflection of
|
|---|
| 143 | the Cherenkov photons on the mirrors. Therefore one
|
|---|
| 144 | has to define in that step the pointing of the
|
|---|
| 145 | telescope. Each photon hitting one of the mirrors will
|
|---|
| 146 | be tracked to the camera plane. Here we take an
|
|---|
| 147 | reflectivity of around 90\% into account.
|
|---|
| 148 | All Cherenkov photons reaching the camera plane will be
|
|---|
| 149 | stored.
|
|---|
| 150 |
|
|---|
| 151 | \subsection{camera simulation}
|
|---|
| 152 |
|
|---|
| 153 | The camera simulates the behaviour of the PMTs and the
|
|---|
| 154 | electronics of the trigger and FADC system. After the
|
|---|
| 155 | pixelisation we take the wavelength dependent quantum
|
|---|
| 156 | efficiency (QE) for each PMT into account.
|
|---|
| 157 | In figure \ref{fig_qe}
|
|---|
| 158 | the QE of a typical MAGIC PMT is shown.
|
|---|
| 159 | %
|
|---|
| 160 | %
|
|---|
| 161 | %
|
|---|
| 162 | \begin{figure}[hb]
|
|---|
| 163 | \vspace*{2.0mm} % just in case for shifting the figure slightly down
|
|---|
| 164 | \includegraphics[width=8.3cm]{qe_123.eps} % .eps for Latex,
|
|---|
| 165 | % pdfLatex allows .pdf, .jpg, .png and .tif
|
|---|
| 166 | \caption{quantum efficency of the PMT for pixel 123}
|
|---|
| 167 | \label{fig_qe}
|
|---|
| 168 | \end{figure}
|
|---|
| 169 | %
|
|---|
| 170 | %
|
|---|
| 171 | %
|
|---|
| 172 | For each photo electron (PE) leaving the photo cathod we
|
|---|
| 173 | generate a "standard" response function that we add to
|
|---|
| 174 | the analog signal of that PMT - seperatly for the
|
|---|
| 175 | trigger and the FADC system.
|
|---|
| 176 | At the present these response function are gaussians with
|
|---|
| 177 | a given width.
|
|---|
| 178 | The amplitude of the response function is randomized
|
|---|
| 179 | by using the function of figure \ref{fig_ampl}.
|
|---|
| 180 | By superimpose all photons of one pixel an by taking
|
|---|
| 181 | the arrival time into account we get the response
|
|---|
| 182 | of the trigger and FADC system for that pixel (see
|
|---|
| 183 | also figure \ref{fig_starresp}).
|
|---|
| 184 | This is done for all pixels in the camera.
|
|---|
| 185 |
|
|---|
| 186 | Then the simulation of the trigger electronic is applied.
|
|---|
| 187 | We look in the generated analog signal if the discriminator
|
|---|
| 188 | threshold is achieved. If yes we will create a digital output
|
|---|
| 189 | signal for that pixels. Then we decided if a first level trigger
|
|---|
| 190 | occurs by looking for next neighbour (NN)conditions at a given
|
|---|
| 191 | time. If a given NN condition (Multiplicity, Topology, ...)
|
|---|
| 192 | is fullfilled, a first level trigger is generated and the
|
|---|
| 193 | content of the FADC system is written to disk. An triggered
|
|---|
| 194 | event is generated.
|
|---|
| 195 | %
|
|---|
| 196 | %
|
|---|
| 197 | %
|
|---|
| 198 | \begin{figure}[t]
|
|---|
| 199 | \vspace*{2.0mm} % just in case for shifting the figure slightly down
|
|---|
| 200 | \includegraphics[width=8.3cm]{ampldist.eps} % .eps for Latex,
|
|---|
| 201 | % pdfLatex allows .pdf, .jpg, .png and .tif
|
|---|
| 202 | \caption{The distibution of amplitude of the standard response function.}
|
|---|
| 203 | \label{fig_ampl}
|
|---|
| 204 | \end{figure}
|
|---|
| 205 | %
|
|---|
| 206 | %
|
|---|
| 207 | %
|
|---|
| 208 |
|
|---|
| 209 | \subsection{starlight simulation}
|
|---|
| 210 |
|
|---|
| 211 | Due to the big mirror surface the light from the stars around
|
|---|
| 212 | the position of an expected gamma ray source is contributing to
|
|---|
| 213 | the noise in the camera. We developed a program that allows use
|
|---|
| 214 | to simulate the star light together with the generated shower.
|
|---|
| 215 | This program takes all stars in the field of view of the camera
|
|---|
| 216 | around chosen sky region. The light of these stars is track up to
|
|---|
| 217 | the camera taking the frequency of the light into account.
|
|---|
| 218 | After simulating the response of the photo cathode, we
|
|---|
| 219 | get the number of emitted photo electrons per pixel and
|
|---|
| 220 | time.
|
|---|
| 221 | These number is used to generate a noise signal for all the pixels.
|
|---|
| 222 | In figure \ref{fig_starresp} the response of the trigger and the
|
|---|
| 223 | FADC system can be seen for one pixel with a star of
|
|---|
| 224 | magnitude $m = 7$.
|
|---|
| 225 | These stars are typical, because there will
|
|---|
| 226 | be always one $7^m$ star in the trigger area of the camera.
|
|---|
| 227 | %
|
|---|
| 228 | %
|
|---|
| 229 | %
|
|---|
| 230 | \begin{figure}[h]
|
|---|
| 231 | \vspace*{2.0mm} % just in case for shifting the figure slightly down
|
|---|
| 232 | \includegraphics[width=8.3cm]{signal.eps} % .eps for Latex,
|
|---|
| 233 | % pdfLatex allows .pdf, .jpg, .png and .tif
|
|---|
| 234 | \caption{The response of a pixel due to a star with magnitude
|
|---|
| 235 | $m=7$ in the field of view. On the left plot the response of the
|
|---|
| 236 | trigger system is plotted while on the right plot the content in the
|
|---|
| 237 | FADC system is shown.}
|
|---|
| 238 | \label{fig_starresp}
|
|---|
| 239 | \end{figure}
|
|---|
| 240 | %
|
|---|
| 241 | %
|
|---|
| 242 | %
|
|---|
| 243 |
|
|---|
| 244 | \section{Results}
|
|---|
| 245 |
|
|---|
| 246 |
|
|---|
| 247 |
|
|---|
| 248 | \subsection{Trigger studies}
|
|---|
| 249 |
|
|---|
| 250 | The MC data produced are used to calculate some important
|
|---|
| 251 | parameter of the MAGIC telescope on the level of the
|
|---|
| 252 | trigger system.
|
|---|
| 253 | The trigger system build up will consist of different
|
|---|
| 254 | trigger levels. The discriminator of each channel is called the
|
|---|
| 255 | zero-level-trigger. For a given signal each discriminator will
|
|---|
| 256 | produce a digital output signal of a given length. So the important
|
|---|
| 257 | parameters of such an system are the threshold of each discriminator
|
|---|
| 258 | and the length of the digital output.
|
|---|
| 259 |
|
|---|
| 260 | The first-level-trigger is looking in the digital output of the
|
|---|
| 261 | 271 pixels of the trigger system for next neighbor (NN) conditions.
|
|---|
| 262 | The adjustable settings on the first-level-trigger
|
|---|
| 263 | are the mulitiplicity, the topology and the minimum required
|
|---|
| 264 | overlapping time.
|
|---|
| 265 |
|
|---|
| 266 | The second-level-trigger of the MAGIC telescope will be a
|
|---|
| 267 | pattern-recognition method. This part is still in the design
|
|---|
| 268 | phase. All results presented here are based on studies of the
|
|---|
| 269 | first-level-trigger.
|
|---|
| 270 |
|
|---|
| 271 | \subsubsection{Collection area}
|
|---|
| 272 |
|
|---|
| 273 | The trigger collection area is defined as the integral
|
|---|
| 274 | \begin{equation}
|
|---|
| 275 | A(E,\Theta) = \int_{F}{ T(E,\Theta,F) dF}
|
|---|
| 276 | \end{equation}
|
|---|
| 277 | where T is the trigger probablity. F is perpendicular to
|
|---|
| 278 | the shower axis. The results for different zenith angle $\Theta$ and
|
|---|
| 279 | for different trigger settings are shown in figure
|
|---|
| 280 | \ref{fig_collarea}.
|
|---|
| 281 | %
|
|---|
| 282 | %
|
|---|
| 283 | %
|
|---|
| 284 | \begin{figure}[h]
|
|---|
| 285 | \vspace*{2.0mm} % just in case for shifting the figure slightly down
|
|---|
| 286 | \includegraphics[width=8.3cm]{collarea.eps} % .eps for Latex,
|
|---|
| 287 | % pdfLatex allows .pdf, .jpg, .png and .tif
|
|---|
| 288 | \caption{The trigger collection area for gamma showers as a function
|
|---|
| 289 | of energy $E$.}
|
|---|
| 290 | \label{fig_collarea}
|
|---|
| 291 | \end{figure}
|
|---|
| 292 | %
|
|---|
| 293 | %
|
|---|
| 294 | %
|
|---|
| 295 | As bigger the zenith angle the smaller becomes the collection area
|
|---|
| 296 | for lower energies.
|
|---|
| 297 |
|
|---|
| 298 |
|
|---|
| 299 | \subsubsection{Threshold of MAGIC telescope}
|
|---|
| 300 |
|
|---|
| 301 | The threshold of the MAGIC telesope is defined as the peak
|
|---|
| 302 | in the $dN/dE$ distribution. For all different trigger settings
|
|---|
| 303 | this value is determined.
|
|---|
| 304 |
|
|---|
| 305 | \subsubsection{Expected rates}
|
|---|
| 306 |
|
|---|
| 307 | Using the monte carlo data sample, it is possible to estimate
|
|---|
| 308 | the expected rates from
|
|---|
| 309 |
|
|---|
| 310 |
|
|---|
| 311 | \section{Conclusion}
|
|---|
| 312 |
|
|---|
| 313 | \begin{acknowledgements}
|
|---|
| 314 | The authors thanks all the members of the MAGIC collaboration
|
|---|
| 315 | for their support in production of the big amount of simulated data.
|
|---|
| 316 | \end{acknowledgements}
|
|---|
| 317 |
|
|---|
| 318 | %\appendix
|
|---|
| 319 | %
|
|---|
| 320 | %\section{Appendix section 1}
|
|---|
| 321 | %
|
|---|
| 322 | %Text in appendix.
|
|---|
| 323 | %
|
|---|
| 324 |
|
|---|
| 325 | \begin{thebibliography}{99}
|
|---|
| 326 |
|
|---|
| 327 | \bibitem[(MAGIC Collaboration 1998)]{mc98}
|
|---|
| 328 | MAGIC Collaboration, "The MAGIC Telescope, Design Study for
|
|---|
| 329 | the Construction of a 17m Cherenkov Telescope for Gamma
|
|---|
| 330 | Astronomy Above 10 GeV", Preprint MPI-PhE?18-5, March 1998.
|
|---|
| 331 |
|
|---|
| 332 | \bibitem[Heck and Knapp(1995)]{hk95}
|
|---|
| 333 | Heck, D. and Knapp J., CORSIKA Manual, 1995.
|
|---|
| 334 |
|
|---|
| 335 | \bibitem[Abramovitz and Stegun(1964)]{as64}
|
|---|
| 336 | Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
|
|---|
| 337 | U. S. Govt. Printing Office, Washington D. C., 1964.
|
|---|
| 338 |
|
|---|
| 339 | \bibitem[Aref(1983)]{a83}
|
|---|
| 340 | Aref, H., Integrable, chaotic, and turbulent vortex motion in
|
|---|
| 341 | two-dimensional flows, Ann. Rev. Fluid Mech., 15, 345--389, 1983.
|
|---|
| 342 |
|
|---|
| 343 | \end{thebibliography}
|
|---|
| 344 |
|
|---|
| 345 | \end{document}
|
|---|