source: trunk/ICRC_01/mccontrib.tex@ 809

Last change on this file since 809 was 809, checked in by harald, 23 years ago
added the first version of coll area.
File size: 12.3 KB
Line 
1
2\documentclass{icrc}
3
4\usepackage{times}
5\usepackage{graphicx} % when using Latex and dvips
6% % (the latter best with option -Pcmz, if available,
7% % to invoke Type 1 cm fonts)
8%\usepackage[pdftex]{graphicx} % when using pdfLatex (preferred)
9
10\begin{document}
11
12\title{Detailed Monte Carlo studies for the MAGIC telescope}
13\author[1]{O. Blanch}
14\affil[1]{IFAE, Barcelona, Spain}
15\author[2]{J.C. Gonzalez}
16\affil[2]{Universidad Complutense Madrid, Spain}
17\author[3]{H. Kornmayer}
18\affil[3]{Max-Planck-Institut f\"ur Physik, M\"unchen, Germany}
19\correspondence{H. Kornmayer (h.kornmayer@web.de)}
20
21\firstpage{1}
22\pubyear{2001}
23
24% \titleheight{11cm} % uncomment and adjust in case your title block
25 % does not fit into the default and minimum 7.5 cm
26
27\maketitle
28
29\begin{abstract}
30For the understanding of a large Cherenkov telescope a detailed
31simulation of air showers and of the detector response are
32unavoidable. Such a simulation must take into account the development
33of air showers in the atmosphere, the reflectivity of the mirrors,
34the response of photo detectors
35and the influence of both the light of night sky and the light of
36bright stars.
37A detailed study will be presented.
38\end{abstract}
39
40\section{Introduction}
41
42In this year the construction of the the $17~\mathrm{m}$ diameter
43Che\-ren\-kov telescope called MAGIC \cite{mc98}
44will be finished. The aim of this
45detector is the observation of $\gamma$-ray sources in the
46enery region above $\approx 10~\mathrm{TeV}$.
47The size of the telesope mirros will be around $250~\mathrm{m^2}$.
48The air showers induced by cosmic ray particles (hadrons and gammas)
49will be detected with a "classical" camera consisting of 577
50photomultiplier tubes (PMT). The analog signals of these PMTs will
51be recorded by a FADC system running with a frequency of
52$f = 333~\mathrm{MHz}$.
53The readout of the FADCs by a dedicated trigger system containing
54different trigger levels.
55
56The goal of the trigger system is to reject the hadronic cosmic ray
57background from the gamma rays, for which a lower threshold is aimed.
58For a better understanding of the MAGIC telescope and its different
59systems (trigger, FADC) a detailed Monte Carlo (MC) study is
60unavoidable. Such an study has to take into account the simulation
61of air showers, the effect of absorption in the atmosphere, the
62behaviour of the PMTs and the response of the trigger and FADC
63system.
64For a big telescope like MAGIC there is an additional source of
65noise, which is the light of the night sky. As a rude assumption
66there will be around 50 stars with magnitude $m \le 9$ in the
67field of view of the camera. So one other game of this
68study is to invent methods to become rid of the light from
69stars.
70
71Here we present the first results of such an investigation.
72
73\section{Generation of MC data samples}
74
75The simulation of the MAGIC telescope is seperated in a
76subsequent chain of smaller simulation parts. First the
77air showers are simulated with the
78CORSIKA program \citep{hk95}.
79In the next step we simulate the reflection of the
80Cherenkov photons on the mirror dish.
81Then the behaviour of the PMTs is simulated and the
82response of the trigger and FADC system is generated.
83In the followin subsections you find a more precise
84description of all the programs.
85
86\subsection{Air shower simulation}
87
88The simulation of gammas and of hadrons is done with
89the CORSIKA program, version 5.20.
90For the simulation of hadronic
91showers we use the VENUS model. We simulate showers
92for different zenith angles
93($\Theta = 0^\circ, 5^\circ, 10^\circ, 15^\circ,
9420^\circ, 25^\circ $).
95Gammas where simulated like a point source
96whereas the hadrons are simulated isotropic around
97the given zenith angle. We found that hadronic showers
98have also for big impact parameters $I$ a non-zero
99probability to trigger the telescope. Therefore we
100simulate hadrons with $I < 400~\mathrm{m}$ and gammas
101with $I < 200~\mathrm{m}$.
102The number of generated showers can be found in table
103\ref{tab_showers}.
104%
105%
106%
107\begin{table}[b]
108\begin{center}
109 \begin{tabular}{|c||r|r||}
110 \hline
111 zenith angle & gammas & protons \\
112 \hline \hline
113 $\Theta = 0^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
114 $\Theta = 5^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
115 $\Theta = 10^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
116 $\Theta = 15^\circ$ & $\approx 2 \cdot 10^6$ & $\approx 5 \cdot 10^6$ \\
117 $\Theta = 20^\circ$ & production & production \\
118 $\Theta = 25^\circ$ & production & production \\
119 \hline
120 \end{tabular}
121\end{center}
122\caption {Number of generated showers}
123\label{tab_showers}
124\end{table}
125%
126%
127%
128For each simulated shower all
129Cherenkov photons hitting the groud at observation level
130close to the telesope position are stored.
131
132\subsection{mirror simulation}
133
134The output of the air shower simualition is used
135as the input to the mirror simulation. But before
136simulating the mirror themself, one has to take the
137absorption in the atmosphere into account. For each
138Cherenkov photon the height of production and
139the wavelength is known. Taking the Rayleigh and
140Mie scattering into account one is able to calculate
141the effect of absorption in the atmosphere.
142The next step in the simulation is the reflection of
143the Cherenkov photons on the mirrors. Therefore one
144has to define in that step the pointing of the
145telescope. Each photon hitting one of the mirrors will
146be tracked to the camera plane. Here we take an
147reflectivity of around 90\% into account.
148All Cherenkov photons reaching the camera plane will be
149stored.
150
151\subsection{camera simulation}
152
153The camera simulates the behaviour of the PMTs and the
154electronics of the trigger and FADC system. After the
155pixelisation we take the wavelength dependent quantum
156efficiency (QE) for each PMT into account.
157In figure \ref{fig_qe}
158the QE of a typical MAGIC PMT is shown.
159%
160%
161%
162\begin{figure}[hb]
163 \vspace*{2.0mm} % just in case for shifting the figure slightly down
164 \includegraphics[width=8.3cm]{qe_123.eps} % .eps for Latex,
165 % pdfLatex allows .pdf, .jpg, .png and .tif
166 \caption{quantum efficency of the PMT for pixel 123}
167 \label{fig_qe}
168\end{figure}
169%
170%
171%
172For each photo electron (PE) leaving the photo cathod we
173generate a "standard" response function that we add to
174the analog signal of that PMT - seperatly for the
175trigger and the FADC system.
176At the present these response function are gaussians with
177a given width.
178The amplitude of the response function is randomized
179by using the function of figure \ref{fig_ampl}.
180By superimpose all photons of one pixel an by taking
181the arrival time into account we get the response
182of the trigger and FADC system for that pixel (see
183also figure \ref{fig_starresp}).
184This is done for all pixels in the camera.
185
186Then the simulation of the trigger electronic is applied.
187We look in the generated analog signal if the discriminator
188threshold is achieved. If yes we will create a digital output
189signal for that pixels. Then we decided if a first level trigger
190occurs by looking for next neighbour (NN)conditions at a given
191time. If a given NN condition (Multiplicity, Topology, ...)
192is fullfilled, a first level trigger is generated and the
193content of the FADC system is written to disk. An triggered
194event is generated.
195%
196%
197%
198\begin{figure}[t]
199 \vspace*{2.0mm} % just in case for shifting the figure slightly down
200 \includegraphics[width=8.3cm]{ampldist.eps} % .eps for Latex,
201 % pdfLatex allows .pdf, .jpg, .png and .tif
202 \caption{The distibution of amplitude of the standard response function.}
203 \label{fig_ampl}
204\end{figure}
205%
206%
207%
208
209\subsection{starlight simulation}
210
211Due to the big mirror surface the light from the stars around
212the position of an expected gamma ray source is contributing to
213the noise in the camera. We developed a program that allows use
214to simulate the star light together with the generated shower.
215This program takes all stars in the field of view of the camera
216around chosen sky region. The light of these stars is track up to
217the camera taking the frequency of the light into account.
218After simulating the response of the photo cathode, we
219get the number of emitted photo electrons per pixel and
220time.
221These number is used to generate a noise signal for all the pixels.
222In figure \ref{fig_starresp} the response of the trigger and the
223FADC system can be seen for one pixel with a star of
224magnitude $m = 7$.
225These stars are typical, because there will
226be always one $7^m$ star in the trigger area of the camera.
227%
228%
229%
230\begin{figure}[h]
231 \vspace*{2.0mm} % just in case for shifting the figure slightly down
232 \includegraphics[width=8.3cm]{signal.eps} % .eps for Latex,
233 % pdfLatex allows .pdf, .jpg, .png and .tif
234 \caption{The response of a pixel due to a star with magnitude
235 $m=7$ in the field of view. On the left plot the response of the
236 trigger system is plotted while on the right plot the content in the
237 FADC system is shown.}
238 \label{fig_starresp}
239\end{figure}
240%
241%
242%
243
244\section{Results}
245
246
247
248\subsection{Trigger studies}
249
250The MC data produced are used to calculate some important
251parameter of the MAGIC telescope on the level of the
252trigger system.
253The trigger system build up will consist of different
254trigger levels. The discriminator of each channel is called the
255zero-level-trigger. For a given signal each discriminator will
256produce a digital output signal of a given length. So the important
257parameters of such an system are the threshold of each discriminator
258and the length of the digital output.
259
260The first-level-trigger is looking in the digital output of the
261271 pixels of the trigger system for next neighbor (NN) conditions.
262The adjustable settings on the first-level-trigger
263are the mulitiplicity, the topology and the minimum required
264overlapping time.
265
266The second-level-trigger of the MAGIC telescope will be a
267pattern-recognition method. This part is still in the design
268phase. All results presented here are based on studies of the
269first-level-trigger.
270
271\subsubsection{Collection area}
272
273The trigger collection area is defined as the integral
274\begin{equation}
275 A(E,\Theta) = \int_{F}{ T(E,\Theta,F) dF}
276\end{equation}
277where T is the trigger probablity. F is perpendicular to
278the shower axis. The results for different zenith angle $\Theta$ and
279for different trigger settings are shown in figure
280\ref{fig_collarea}
281%
282%
283%
284\begin{figure}[h]
285 \vspace*{2.0mm} % just in case for shifting the figure slightly down
286 \includegraphics[width=8.3cm]{collarea.eps} % .eps for Latex,
287 % pdfLatex allows .pdf, .jpg, .png and .tif
288 \caption{The trigger collection area for gamma showers as a function
289 of energy $E$.}
290 \label{fig_collarea}
291\end{figure}
292%
293%
294%
295
296\subsubsection{Threshold of MAGIC telescope}
297
298The threshold of the MAGIC telesope is defined as the peak
299in the $dN/dE$ distribution. For all different trigger settings
300this value is determined.
301
302\subsubsection{Expected rates}
303
304Using the monte carlo data sample, it is possible to estimate
305the expected rates from
306
307
308\section{Conclusion}
309
310\begin{acknowledgements}
311The authors thanks all the members of the MAGIC collaboration
312for their support in production of the big amount of simulated data.
313\end{acknowledgements}
314
315%\appendix
316%
317%\section{Appendix section 1}
318%
319%Text in appendix.
320%
321
322\begin{thebibliography}{99}
323
324\bibitem[(MAGIC Collaboration 1998)]{mc98}
325MAGIC Collaboration, "The MAGIC Telescope, Design Study for
326the Construction of a 17m Cherenkov Telescope for Gamma
327Astronomy Above 10 GeV", Preprint MPI-PhE?18-5, March 1998.
328
329\bibitem[Heck and Knapp(1995)]{hk95}
330Heck, D. and Knapp J., CORSIKA Manual, 1995.
331
332\bibitem[Abramovitz and Stegun(1964)]{as64}
333Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
334U. S. Govt. Printing Office, Washington D. C., 1964.
335
336\bibitem[Aref(1983)]{a83}
337Aref, H., Integrable, chaotic, and turbulent vortex motion in
338two-dimensional flows, Ann. Rev. Fluid Mech., 15, 345--389, 1983.
339
340\end{thebibliography}
341
342\end{document}
Note: See TracBrowser for help on using the repository browser.