1 |
|
---|
2 | \documentclass{icrc}
|
---|
3 |
|
---|
4 | \usepackage{times}
|
---|
5 | \usepackage{graphicx} % when using Latex and dvips
|
---|
6 | % % (the latter best with option -Pcmz, if available,
|
---|
7 | % % to invoke Type 1 cm fonts)
|
---|
8 | %\usepackage[pdftex]{graphicx} % when using pdfLatex (preferred)
|
---|
9 |
|
---|
10 | \begin{document}
|
---|
11 |
|
---|
12 | \title{Detailed Monte Carlo studies for the MAGIC telescope}
|
---|
13 | \author[1]{O. Blanch}
|
---|
14 | \affil[1]{IFAE, Barcelona, Spain}
|
---|
15 | \author[2]{J.C. Gonzalez}
|
---|
16 | \affil[2]{Universidad Complutense Madrid, Spain}
|
---|
17 | \author[3]{H. Kornmayer}
|
---|
18 | \affil[3]{Max-Planck-Institut f\"ur Physik, M\"unchen, Germany}
|
---|
19 | \correspondence{H. Kornmayer (h.kornmayer@web.de)}
|
---|
20 |
|
---|
21 | \firstpage{1}
|
---|
22 | \pubyear{2001}
|
---|
23 |
|
---|
24 | % \titleheight{11cm} % uncomment and adjust in case your title block
|
---|
25 | % does not fit into the default and minimum 7.5 cm
|
---|
26 |
|
---|
27 | \maketitle
|
---|
28 |
|
---|
29 | \begin{abstract}
|
---|
30 | For the understanding of a large Cherenkov telescope a detailed
|
---|
31 | simulation of air showers and of the detector response are
|
---|
32 | unavoidable. Such a simulation must take into account the development
|
---|
33 | of air showers in the atmosphere, the reflectivity of the mirrors,
|
---|
34 | the response of photo detectors
|
---|
35 | and the influence of both the light of night sky and the light of
|
---|
36 | bright stars.
|
---|
37 | A detailed study will be presented.
|
---|
38 | \end{abstract}
|
---|
39 |
|
---|
40 | \section{Introduction}
|
---|
41 |
|
---|
42 | In this year the construction of the the $17~\mathrm{m}$ diameter
|
---|
43 | Che\-ren\-kov telescope called MAGIC \cite{mc98}
|
---|
44 | will be finished. The aim of this
|
---|
45 | detector is the observation of $\gamma$-ray sources in the
|
---|
46 | enery region above $\approx 10~\mathrm{TeV}$.
|
---|
47 | The size of the telesope mirros will be around $250~\mathrm{m^2}$.
|
---|
48 | The air showers induced by cosmic ray particles (hadrons and gammas)
|
---|
49 | will be detected with a "classical" camera consisting of 577
|
---|
50 | photomultiplier tubes (PMT). The analog signals of these PMTs will
|
---|
51 | be recorded by a FADC system running with a frequency of
|
---|
52 | $f = 333~\mathrm{MHz}$.
|
---|
53 | The readout of the FADCs by a dedicated trigger system containing
|
---|
54 | different trigger levels.
|
---|
55 |
|
---|
56 | The goal of the trigger system is to reject the hadronic cosmic ray
|
---|
57 | background from the gamma rays, for which a lower threshold is aimed.
|
---|
58 | For a better understanding of the MAGIC telescope and its different
|
---|
59 | systems (trigger, FADC) a detailed Monte Carlo (MC) study is
|
---|
60 | unavoidable. Such an study has to take into account the simulation
|
---|
61 | of air showers, the effect of absorption in the atmosphere, the
|
---|
62 | behaviour of the PMTs and the response of the trigger and FADC
|
---|
63 | system.
|
---|
64 | For a big telescope like MAGIC there is an additional source of
|
---|
65 | noise, which is the light of the night sky. As a rude assumption
|
---|
66 | there will be around 50 stars with magnitude $m \le 9$ in the
|
---|
67 | field of view of the camera. So one other game of this
|
---|
68 | study is to invent methods to become rid of the light from
|
---|
69 | stars.
|
---|
70 |
|
---|
71 | Here we present the first results of such an investigation.
|
---|
72 |
|
---|
73 | \section{Generation of MC data samples}
|
---|
74 |
|
---|
75 | The simulation of the MAGIC telescope is seperated in a
|
---|
76 | subsequent chain of smaller simulation parts. First the
|
---|
77 | air showers are simulated with the
|
---|
78 | CORSIKA program \citep{hk95}.
|
---|
79 | In the next step we simulate the reflection of the
|
---|
80 | Cherenkov photons on the mirror dish.
|
---|
81 | Then the behaviour of the PMTs is simulated and the
|
---|
82 | response of the trigger and FADC system is generated.
|
---|
83 | In the followin subsections you find a more precise
|
---|
84 | description of all the programs.
|
---|
85 |
|
---|
86 | \subsection{Air shower simulation}
|
---|
87 |
|
---|
88 | The simulation of gammas and of hadrons is done with
|
---|
89 | the CORSIKA program, version 5.20.
|
---|
90 | For the simulation of hadronic
|
---|
91 | showers we use the VENUS model. We simulate showers
|
---|
92 | for different zenith angles
|
---|
93 | ($\Theta = 0^\circ, 5^\circ, 10^\circ, 15^\circ,
|
---|
94 | 20^\circ, 25^\circ $).
|
---|
95 | Gammas where simulated like a point source
|
---|
96 | whereas the hadrons are simulated isotropic around
|
---|
97 | the given zenith angle. We found that hadronic showers
|
---|
98 | have also for big impact parameters $I$ a non-zero
|
---|
99 | probability to trigger the telescope. Therefore we
|
---|
100 | simulate hadrons with $I < 400~\mathrm{m}$ and gammas
|
---|
101 | with $I < 200~\mathrm{m}$.
|
---|
102 | The number of generated showers can be found in table
|
---|
103 | \ref{tab_showers}.
|
---|
104 | %
|
---|
105 | %
|
---|
106 | %
|
---|
107 | \begin{table}[b]
|
---|
108 | \begin{center}
|
---|
109 | \begin{tabular}{|c||r|r||}
|
---|
110 | \hline
|
---|
111 | zenith angle & gammas & protons \\
|
---|
112 | \hline \hline
|
---|
113 | $\Theta = 0^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
|
---|
114 | $\Theta = 5^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
|
---|
115 | $\Theta = 10^\circ$ & $\approx 5 \cdot 10^5$ & $\approx 5 \cdot 10^5$ \\
|
---|
116 | $\Theta = 15^\circ$ & $\approx 2 \cdot 10^6$ & $\approx 5 \cdot 10^6$ \\
|
---|
117 | $\Theta = 20^\circ$ & production & production \\
|
---|
118 | $\Theta = 25^\circ$ & production & production \\
|
---|
119 | \hline
|
---|
120 | \end{tabular}
|
---|
121 | \end{center}
|
---|
122 | \caption {Number of generated showers}
|
---|
123 | \label{tab_showers}
|
---|
124 | \end{table}
|
---|
125 | %
|
---|
126 | %
|
---|
127 | %
|
---|
128 | For each simulated shower all
|
---|
129 | Cherenkov photons hitting the groud at observation level
|
---|
130 | close to the telesope position are stored.
|
---|
131 |
|
---|
132 | \subsection{mirror simulation}
|
---|
133 |
|
---|
134 | The output of the air shower simualition is used
|
---|
135 | as the input to the mirror simulation. But before
|
---|
136 | simulating the mirror themself, one has to take the
|
---|
137 | absorption in the atmosphere into account. For each
|
---|
138 | Cherenkov photon the height of production and
|
---|
139 | the wavelength is known. Taking the Rayleigh and
|
---|
140 | Mie scattering into account one is able to calculate
|
---|
141 | the effect of absorption in the atmosphere.
|
---|
142 | The next step in the simulation is the reflection of
|
---|
143 | the Cherenkov photons on the mirrors. Therefore one
|
---|
144 | has to define in that step the pointing of the
|
---|
145 | telescope. Each photon hitting one of the mirrors will
|
---|
146 | be tracked to the camera plane. Here we take an
|
---|
147 | reflectivity of around 90\% into account.
|
---|
148 | All Cherenkov photons reaching the camera plane will be
|
---|
149 | stored.
|
---|
150 |
|
---|
151 | \subsection{camera simulation}
|
---|
152 |
|
---|
153 | The camera simulates the behaviour of the PMTs and the
|
---|
154 | electronics of the trigger and FADC system. After the
|
---|
155 | pixelisation we take the wavelength dependent quantum
|
---|
156 | efficiency (QE) for each PMT into account.
|
---|
157 | In figure \ref{fig_qe}
|
---|
158 | the QE of a typical MAGIC PMT is shown.
|
---|
159 | %
|
---|
160 | %
|
---|
161 | %
|
---|
162 | \begin{figure}[hb]
|
---|
163 | \vspace*{2.0mm} % just in case for shifting the figure slightly down
|
---|
164 | \includegraphics[width=8.3cm]{qe_123.eps} % .eps for Latex,
|
---|
165 | % pdfLatex allows .pdf, .jpg, .png and .tif
|
---|
166 | \caption{quantum efficency of the PMT for pixel 123}
|
---|
167 | \label{fig_qe}
|
---|
168 | \end{figure}
|
---|
169 | %
|
---|
170 | %
|
---|
171 | %
|
---|
172 | For each photo electron (PE) leaving the photo cathod we
|
---|
173 | generate a "standard" response function that we add to
|
---|
174 | the analog signal of that PMT - seperatly for the
|
---|
175 | trigger and the FADC system.
|
---|
176 | At the present these response function are gaussians with
|
---|
177 | a given width.
|
---|
178 | The amplitude of the response function is randomized
|
---|
179 | by using the function of figure \ref{fig_ampl}.
|
---|
180 | By superimpose all photons of one pixel an by taking
|
---|
181 | the arrival time into account we get the response
|
---|
182 | of the trigger and FADC system for that pixel (see
|
---|
183 | also figure \ref{fig_starresp}).
|
---|
184 | This is done for all pixels in the camera.
|
---|
185 |
|
---|
186 | Then the simulation of the trigger electronic is applied.
|
---|
187 | We look in the generated analog signal if the discriminator
|
---|
188 | threshold is achieved. If yes we will create a digital output
|
---|
189 | signal for that pixels. Then we decided if a first level trigger
|
---|
190 | occurs by looking for next neighbour (NN)conditions at a given
|
---|
191 | time. If a given NN condition (Multiplicity, Topology, ...)
|
---|
192 | is fullfilled, a first level trigger is generated and the
|
---|
193 | content of the FADC system is written to disk. An triggered
|
---|
194 | event is generated.
|
---|
195 | %
|
---|
196 | %
|
---|
197 | %
|
---|
198 | \begin{figure}[t]
|
---|
199 | \vspace*{2.0mm} % just in case for shifting the figure slightly down
|
---|
200 | \includegraphics[width=8.3cm]{ampldist.eps} % .eps for Latex,
|
---|
201 | % pdfLatex allows .pdf, .jpg, .png and .tif
|
---|
202 | \caption{The distibution of amplitude of the standard response function.}
|
---|
203 | \label{fig_ampl}
|
---|
204 | \end{figure}
|
---|
205 | %
|
---|
206 | %
|
---|
207 | %
|
---|
208 |
|
---|
209 | \subsection{starlight simulation}
|
---|
210 |
|
---|
211 | Due to the big mirror surface the light from the stars around
|
---|
212 | the position of an expected gamma ray source is contributing to
|
---|
213 | the noise in the camera. We developed a program that allows use
|
---|
214 | to simulate the star light together with the generated shower.
|
---|
215 | This program takes all stars in the field of view of the camera
|
---|
216 | around chosen sky region. The light of these stars is track up to
|
---|
217 | the camera taking the frequency of the light into account.
|
---|
218 | After simulating the response of the photo cathode, we
|
---|
219 | get the number of emitted photo electrons per pixel and
|
---|
220 | time.
|
---|
221 | These number is used to generate a noise signal for all the pixels.
|
---|
222 | In figure \ref{fig_starresp} the response of the trigger and the
|
---|
223 | FADC system can be seen for one pixel with a star of
|
---|
224 | magnitude $m = 7$.
|
---|
225 | These stars are typical, because there will
|
---|
226 | be always one $7^m$ star in the trigger area of the camera.
|
---|
227 | %
|
---|
228 | %
|
---|
229 | %
|
---|
230 | \begin{figure}[h]
|
---|
231 | \vspace*{2.0mm} % just in case for shifting the figure slightly down
|
---|
232 | \includegraphics[width=8.3cm]{signal.eps} % .eps for Latex,
|
---|
233 | % pdfLatex allows .pdf, .jpg, .png and .tif
|
---|
234 | \caption{The response of a pixel due to a star with magnitude
|
---|
235 | $m=7$ in the field of view. On the left plot the response of the
|
---|
236 | trigger system is plotted while on the right plot the content in the
|
---|
237 | FADC system is shown.}
|
---|
238 | \label{fig_starresp}
|
---|
239 | \end{figure}
|
---|
240 | %
|
---|
241 | %
|
---|
242 | %
|
---|
243 |
|
---|
244 | \section{Results}
|
---|
245 |
|
---|
246 |
|
---|
247 |
|
---|
248 | \subsection{Trigger studies}
|
---|
249 |
|
---|
250 | The MC data produced are used to calculate some important
|
---|
251 | parameter of the MAGIC telescope on the level of the
|
---|
252 | trigger system.
|
---|
253 | The trigger system build up will consist of different
|
---|
254 | trigger levels. The discriminator of each channel is called the
|
---|
255 | zero-level-trigger. For a given signal each discriminator will
|
---|
256 | produce a digital output signal of a given length. So the important
|
---|
257 | parameters of such an system are the threshold of each discriminator
|
---|
258 | and the length of the digital output.
|
---|
259 |
|
---|
260 | The first-level-trigger is looking in the digital output of the
|
---|
261 | 271 pixels of the trigger system for next neighbor (NN) conditions.
|
---|
262 | The adjustable settings on the first-level-trigger
|
---|
263 | are the mulitiplicity, the topology and the minimum required
|
---|
264 | overlapping time.
|
---|
265 |
|
---|
266 | The second-level-trigger of the MAGIC telescope will be a
|
---|
267 | pattern-recognition method. This part is still in the design
|
---|
268 | phase. All results presented here are based on studies of the
|
---|
269 | first-level-trigger.
|
---|
270 |
|
---|
271 | \subsubsection{Collection area}
|
---|
272 |
|
---|
273 | The trigger collection area is defined as the integral
|
---|
274 | \begin{equation}
|
---|
275 | A(E,\Theta) = \int_{F}{ T(E,\Theta,F) dF}
|
---|
276 | \end{equation}
|
---|
277 | where T is the trigger probablity. F is perpendicular to
|
---|
278 | the shower axis. The results for different zenith angle $\Theta$ and
|
---|
279 | for different trigger settings are shown in figure
|
---|
280 | \ref{fig_collarea}
|
---|
281 | %
|
---|
282 | %
|
---|
283 | %
|
---|
284 | \begin{figure}[h]
|
---|
285 | \vspace*{2.0mm} % just in case for shifting the figure slightly down
|
---|
286 | \includegraphics[width=8.3cm]{collarea.eps} % .eps for Latex,
|
---|
287 | % pdfLatex allows .pdf, .jpg, .png and .tif
|
---|
288 | \caption{The trigger collection area for gamma showers as a function
|
---|
289 | of energy $E$.}
|
---|
290 | \label{fig_collarea}
|
---|
291 | \end{figure}
|
---|
292 | %
|
---|
293 | %
|
---|
294 | %
|
---|
295 |
|
---|
296 | \subsubsection{Threshold of MAGIC telescope}
|
---|
297 |
|
---|
298 | The threshold of the MAGIC telesope is defined as the peak
|
---|
299 | in the $dN/dE$ distribution. For all different trigger settings
|
---|
300 | this value is determined.
|
---|
301 |
|
---|
302 | \subsubsection{Expected rates}
|
---|
303 |
|
---|
304 | Using the monte carlo data sample, it is possible to estimate
|
---|
305 | the expected rates from
|
---|
306 |
|
---|
307 |
|
---|
308 | \section{Conclusion}
|
---|
309 |
|
---|
310 | \begin{acknowledgements}
|
---|
311 | The authors thanks all the members of the MAGIC collaboration
|
---|
312 | for their support in production of the big amount of simulated data.
|
---|
313 | \end{acknowledgements}
|
---|
314 |
|
---|
315 | %\appendix
|
---|
316 | %
|
---|
317 | %\section{Appendix section 1}
|
---|
318 | %
|
---|
319 | %Text in appendix.
|
---|
320 | %
|
---|
321 |
|
---|
322 | \begin{thebibliography}{99}
|
---|
323 |
|
---|
324 | \bibitem[(MAGIC Collaboration 1998)]{mc98}
|
---|
325 | MAGIC Collaboration, "The MAGIC Telescope, Design Study for
|
---|
326 | the Construction of a 17m Cherenkov Telescope for Gamma
|
---|
327 | Astronomy Above 10 GeV", Preprint MPI-PhE?18-5, March 1998.
|
---|
328 |
|
---|
329 | \bibitem[Heck and Knapp(1995)]{hk95}
|
---|
330 | Heck, D. and Knapp J., CORSIKA Manual, 1995.
|
---|
331 |
|
---|
332 | \bibitem[Abramovitz and Stegun(1964)]{as64}
|
---|
333 | Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
|
---|
334 | U. S. Govt. Printing Office, Washington D. C., 1964.
|
---|
335 |
|
---|
336 | \bibitem[Aref(1983)]{a83}
|
---|
337 | Aref, H., Integrable, chaotic, and turbulent vortex motion in
|
---|
338 | two-dimensional flows, Ann. Rev. Fluid Mech., 15, 345--389, 1983.
|
---|
339 |
|
---|
340 | \end{thebibliography}
|
---|
341 |
|
---|
342 | \end{document}
|
---|