1 | \documentclass[12pt]{article} |
---|
2 | |
---|
3 | \usepackage{magic-tdas} |
---|
4 | |
---|
5 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
6 | %% BEGIN DOCUMENT |
---|
7 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
8 | \begin{document} |
---|
9 | |
---|
10 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
11 | %% Please, for the formatting just include here the standard |
---|
12 | %% elements: title, author, date, plus TDAScode |
---|
13 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
14 | \title{Outline of a standard analysis for MAGIC \\ |
---|
15 | (including Monte Carlo work)} |
---|
16 | \author{H. Kornmayer, W. Wittek\\ |
---|
17 | \texttt{h.kornmayer@web.de, wittek@mppmu.mpg.de}} |
---|
18 | |
---|
19 | \date{ \today} |
---|
20 | \TDAScode{MAGIC-TDAS 01-??\\ ??????/W.Wittek} |
---|
21 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
22 | |
---|
23 | %% title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
24 | \maketitle |
---|
25 | |
---|
26 | %% abstract %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
27 | \begin{abstract} |
---|
28 | |
---|
29 | \end{abstract} |
---|
30 | |
---|
31 | %% contents %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
32 | \thetableofcontents |
---|
33 | |
---|
34 | \newpage |
---|
35 | |
---|
36 | %% body %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
37 | |
---|
38 | %------------------------------------------------------------ |
---|
39 | \section{Aim of this paper} |
---|
40 | The aim of this paper is to describe the procedure to obtain the |
---|
41 | absolute energy spectrum of a point source from the data taken with |
---|
42 | MAGIC. This includes work on Mont Carlo (MC) data and the analysis of |
---|
43 | the real data. |
---|
44 | |
---|
45 | Various steps in the procedure will depend on details of the MC |
---|
46 | generation, on the way the real data are taken, etc.. These details |
---|
47 | have therefore to be specified, which is done in Section 2. |
---|
48 | |
---|
49 | In Section 3 some basic definitions and formulas are collected in |
---|
50 | order to avoid any misunderstanding of the meaning of frequently |
---|
51 | used terms. |
---|
52 | |
---|
53 | Section 4 describes the MC work and Section 5 the actual analysis of |
---|
54 | the real data. |
---|
55 | |
---|
56 | One aim of this paper is also to define jobs for those who want to |
---|
57 | join the activities in the software developments. As will be seen, the |
---|
58 | main ingredients both for the MC work and the real data analysis are |
---|
59 | available. However, certain parts have yet to be implemented, others |
---|
60 | have to be changed, modified, improved or extended. Last not least |
---|
61 | extensive tests have to be performed. |
---|
62 | |
---|
63 | |
---|
64 | |
---|
65 | \section{Assumptions} |
---|
66 | The assumptions for a 'standard analysis' listed below are the result of |
---|
67 | discussions in the software group. Some of them are rather arbitrary. |
---|
68 | They should by no means be |
---|
69 | understood as final or optimal choices. They should be considered as a |
---|
70 | starting point. As our experience with the analysis grows we may |
---|
71 | have to revise some of the assumptions. |
---|
72 | |
---|
73 | The aim in all what follows is to define a strategy that is as simple |
---|
74 | and robust as possible. Tests that have yet to be performed will tell |
---|
75 | us whether the assumptions are reasonable and realistic. |
---|
76 | |
---|
77 | The assumptions are : |
---|
78 | |
---|
79 | \begin{itemize} |
---|
80 | \item Mode of observation :\\ |
---|
81 | Data are taken in the wobble mode (\cite{konopelko99}). |
---|
82 | This means that the telescope is |
---|
83 | directed not to the position of the selected source but rather to a |
---|
84 | position which has a certain offset ($\Delta\beta$) from the source |
---|
85 | position. Every 20 minutes of observation the sign of $\Delta\beta$ is |
---|
86 | changed. The two wobble positions are called wobble position 1 and 2. |
---|
87 | |
---|
88 | $\Delta \beta$ may be chosen to be a direction difference |
---|
89 | in celestial coordinates |
---|
90 | (declination $\delta$, right ascension $\Phi$) or in local coordinates |
---|
91 | (zenith angle $\Theta$, azimuthal angle $\phi$). |
---|
92 | However the direction $\Delta \beta$ is defined, |
---|
93 | the sky region projected onto the camera is different for |
---|
94 | wobble positions 1 and 2. |
---|
95 | |
---|
96 | If $\Delta \beta$ is defined to be a direction difference |
---|
97 | in celestial coordinates, |
---|
98 | the sky region projected onto the camera for a fixed wobble position |
---|
99 | remains the same during tracking of a source, although the sky image |
---|
100 | is rotating in the camera. |
---|
101 | |
---|
102 | If $\Delta \beta$ is defined to be a direction difference |
---|
103 | in local coordinates, |
---|
104 | the sky region projected onto the camera is changing continuously |
---|
105 | during tracking of a source. The centers of the projected sky regions |
---|
106 | lie on a circle, which is centered at the source position. |
---|
107 | |
---|
108 | If $\Delta \beta$ is defined to be a direction difference |
---|
109 | in the local azimuthal |
---|
110 | angle $\phi$, the center of the camera and the source position |
---|
111 | would always have the same zenith angle $\Theta$. Since the reconstruction |
---|
112 | efficiency of showers mainly depends on $\Theta$, this may be an |
---|
113 | advantage of defining $\Delta \beta$ in this way. |
---|
114 | |
---|
115 | The wobble mode has to be understood as an alternative to taking on- |
---|
116 | and off-data in separate runs. Choosing the wobble mode thus implies |
---|
117 | that one is taking on-data only, from which also the 'off-data' have to be |
---|
118 | obtained by some procedure. |
---|
119 | |
---|
120 | Open questions : - how should $\Delta \beta$ be defined |
---|
121 | - how big should $\Delta \beta$ be chosen |
---|
122 | |
---|
123 | \item Pedestals :\\ |
---|
124 | Pedestals and their fluctuations are not determined from triggered |
---|
125 | showers but rather from pedestal events. The pedestal events are taken |
---|
126 | 'continuously' at a constant rate of 5 Hz. In this way the pedestals |
---|
127 | and their fluctuations are always up to date, and the presence of |
---|
128 | stars and their position in the camera can be monitored continuously. |
---|
129 | |
---|
130 | \item Gamma/hadron separation :\\ |
---|
131 | It is assumed that it is possible to define a gamma/hadron separation |
---|
132 | which is independent |
---|
133 | \begin{itemize} |
---|
134 | \item[-] of the level of the light of the night sky (LONS) |
---|
135 | \item[-] of the presence of stars in the field of view (FOV) of the camera |
---|
136 | \item[-] of the orientation of the sky image in the camera |
---|
137 | \item[-] of the source being observed |
---|
138 | \end{itemize} |
---|
139 | |
---|
140 | It has yet to be proven that this is possible. The corresponding |
---|
141 | procedures have to be developed, which includes a proper treatment of the |
---|
142 | pedestal fluctuations in the image analysis. |
---|
143 | |
---|
144 | The gamma/hadron separation will be given in terms of a set of cuts |
---|
145 | on quantities which are derived from the measurable quantities, which are : |
---|
146 | \begin{itemize} |
---|
147 | \item[-] the direction $\Theta$ and $\phi$ the telescope is pointing to |
---|
148 | \item[-] the image parameters |
---|
149 | \item[-] the pedestal fluctuations |
---|
150 | \end{itemize} |
---|
151 | |
---|
152 | Under the above assumption the only dependence to be considered for |
---|
153 | the collection areas (see Section 3) is the dependence on the type of |
---|
154 | the cosmic ray particle (gamma, proton, ...), on its energy and on the |
---|
155 | zenith angle $\Theta$. |
---|
156 | |
---|
157 | It has to be investigated whether also the azimuthal angle $\phi$ has to be |
---|
158 | taken into account, for example because of influences from the earth |
---|
159 | magnetic field. |
---|
160 | |
---|
161 | \item Trigger condition :\\ |
---|
162 | |
---|
163 | \item Standard analysis cuts :\\ |
---|
164 | |
---|
165 | \end{itemize} |
---|
166 | |
---|
167 | |
---|
168 | \section{Definitions and formulas} |
---|
169 | \subsection{Definitions} |
---|
170 | |
---|
171 | \begin{itemize} |
---|
172 | \item Image parameters :\\ |
---|
173 | The standard definition of the image parameters is assumed. See for |
---|
174 | example \cite{hillas85,fegan96,reynolds93}. |
---|
175 | |
---|
176 | \item Impact parameter :\\ |
---|
177 | The impact parameter $p$ is defined as the vertical distance |
---|
178 | of the telescope from the shower axis. It is not directly |
---|
179 | measurable. It may be estimated from the image parameters. |
---|
180 | |
---|
181 | \item Energy :\\ |
---|
182 | The energy of the shower is not directly measurable either, but may be |
---|
183 | estimated from the image parameters too. |
---|
184 | |
---|
185 | \item The direction $(\Theta,\phi)$ :\\ |
---|
186 | $(\Theta,\phi)$ denotes the direction the telescope is pointing to, |
---|
187 | not the position of the source being observed. |
---|
188 | \end{itemize} |
---|
189 | |
---|
190 | |
---|
191 | \subsection{Formulas} |
---|
192 | \subsubsection{Differential gamma flux and collection area for a point source} |
---|
193 | |
---|
194 | The differential gamma flux from a point sourse $s$ is given by |
---|
195 | |
---|
196 | \begin{eqnarray} |
---|
197 | \Phi^{\gamma}_s(E)\;=\;\dfrac{dN^{\gamma}_s}{dE \cdot dF \cdot dt} |
---|
198 | \end{eqnarray} |
---|
199 | |
---|
200 | where $dN^{\gamma}_s$ is the number of gammas from the source $s$ in |
---|
201 | the bin $dE,\;dF,\;dt$ of energy, area and time respectively. We |
---|
202 | denote the probability for reconstructing a gamma shower with energy |
---|
203 | $E$, zenith angle $\Theta$ and position $F$ in a plane perpendicular |
---|
204 | to the source direction by |
---|
205 | $R^{\gamma}(E,\Theta,F)$. The effective collection area is defined as |
---|
206 | |
---|
207 | \begin{eqnarray} |
---|
208 | F^{\gamma}_{eff}(E,\Theta)\; &= &\int R^{\gamma}(E,\Theta,F)\cdot dF |
---|
209 | \label{eq:form-1} |
---|
210 | \end{eqnarray} |
---|
211 | |
---|
212 | |
---|
213 | The number of $\gamma$ showers observed in the bin $\Delta \Theta$ of |
---|
214 | the zenith angle and in the bin $\Delta E$ of the energy is |
---|
215 | then : |
---|
216 | |
---|
217 | \begin{eqnarray} |
---|
218 | \Delta N^{\gamma,obs}_s(E,\Theta) &= &\int R^{\gamma}(E,\Theta,F) \cdot |
---|
219 | \Phi^{\gamma}_s(E) \cdot dE \cdot dF \cdot dt \\ |
---|
220 | &= &\Delta T_{on}(\Theta) \cdot |
---|
221 | \int_{\Delta E}{} \Phi^{\gamma}_s(E)\cdot |
---|
222 | F^{\gamma}_{eff}(E,\Theta)\cdot dE \\ |
---|
223 | &\approx &\Delta T_{on}(\Theta) \cdot |
---|
224 | F^{\gamma}_{eff}(E,\Theta) \cdot \int_{\Delta E}{} |
---|
225 | \Phi^{\gamma}_s(E)\cdot dE \label{eq:form0}\\ |
---|
226 | &\approx &\Delta T_{on}(\Theta) \cdot |
---|
227 | F^{\gamma}_{eff}(E,\Theta) \cdot \Delta E \cdot |
---|
228 | \overline{\Phi^{\gamma}_s}(E) \label{eq:form1} |
---|
229 | \end{eqnarray} |
---|
230 | |
---|
231 | Here $\Delta T_{on}(\Theta)$ is the effective on-time for the data |
---|
232 | taken in the zenith angle bin $\Delta \Theta$ and $\overline{\Phi^{\gamma}_s}(E)$ |
---|
233 | is the average differential gamma flux in the energy bin $\Delta E$ : |
---|
234 | |
---|
235 | \begin{eqnarray} |
---|
236 | \overline{\Phi^{\gamma}_s}(E) &= |
---|
237 | &\dfrac{1}{\Delta E}\;\int_{\Delta E}{} |
---|
238 | \Phi^{\gamma}_s(E)\cdot dE |
---|
239 | \end{eqnarray} |
---|
240 | |
---|
241 | By inverting equation (\ref{eq:form1}) and setting |
---|
242 | $\Delta E\;=\;(E^{up}-E^{low})\;\;\;\;\overline{\Phi^{\gamma}_s}(E)$ can |
---|
243 | be written as |
---|
244 | |
---|
245 | \begin{eqnarray} |
---|
246 | \overline{\Phi^{\gamma}_s}(E) &= |
---|
247 | &\dfrac{\Delta N^{\gamma,obs}_s(E,\Theta)} |
---|
248 | {\Delta T_{on}(\Theta) \cdot F^{\gamma}_{eff}(E,\Theta) \cdot |
---|
249 | (E^{up}-E^{low}) } |
---|
250 | \label{eq:form2} |
---|
251 | \end{eqnarray} |
---|
252 | |
---|
253 | By means of equation (\ref{eq:form2}) $\overline{\Phi^{\gamma}_s}(E)$ |
---|
254 | can be determined |
---|
255 | from the measured $\Delta N^{\gamma,obs}_s(E,\Theta)$ and |
---|
256 | $\Delta T_{on}(\Theta)$, using the collection area |
---|
257 | $F^{\gamma}_{eff}(E,\Theta)$, which is obtained from MC data. |
---|
258 | |
---|
259 | Equation (\ref{eq:form2}) is for a limited and fixed region of |
---|
260 | the zenith angle. One may calculate $\overline{\Phi^{\gamma}_s}(E)$ from the |
---|
261 | data taken at all $\Theta$, in which case |
---|
262 | |
---|
263 | \begin{eqnarray} |
---|
264 | \overline{\Phi^{\gamma}_s}(E) &= |
---|
265 | &\dfrac{\sum_i\Delta N^{\gamma,obs}_s(E,\Theta_i)} |
---|
266 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) |
---|
267 | \cdot (E^{up}_i-E^{low}_i) } |
---|
268 | \label{eq:form3} |
---|
269 | \end{eqnarray} |
---|
270 | |
---|
271 | If a fixed spectral index $\alpha$ is assumed for the differential |
---|
272 | source spectrum |
---|
273 | |
---|
274 | \begin{eqnarray} |
---|
275 | \Phi^{\gamma}_s(E) &= &\Phi^{\gamma}_0 \cdot |
---|
276 | \left(\dfrac{E}{GeV}\right)^{-\alpha} |
---|
277 | \end{eqnarray} |
---|
278 | |
---|
279 | one gets |
---|
280 | |
---|
281 | \begin{eqnarray} |
---|
282 | \int_{\Delta E}{} \Phi^{\gamma}_s(E) \cdot dE &= |
---|
283 | &\dfrac{\Phi^{\gamma}_0}{1-\alpha} |
---|
284 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - |
---|
285 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]\cdot GeV |
---|
286 | \label{eq:form4} |
---|
287 | \end{eqnarray} |
---|
288 | |
---|
289 | Inserting (\ref{eq:form4}) into (\ref{eq:form0}) yields |
---|
290 | |
---|
291 | \begin{eqnarray} |
---|
292 | \Phi^{\gamma}_0 &= |
---|
293 | &\dfrac{\Delta N^{\gamma,obs}_s(E,\Theta)} |
---|
294 | {\Delta T_{on}(\Theta) \cdot F^{\gamma}_{eff}(E,\Theta) |
---|
295 | \cdot |
---|
296 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - |
---|
297 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]} |
---|
298 | \cdot \dfrac{1-\alpha}{GeV} |
---|
299 | \label{eq:form5} |
---|
300 | \end{eqnarray} |
---|
301 | |
---|
302 | which by summing over all $\Theta$ bins gives |
---|
303 | |
---|
304 | \begin{eqnarray} |
---|
305 | \Phi^{\gamma}_0 &= |
---|
306 | &\dfrac{\sum_i\Delta N^{\gamma,obs}_s(E,\Theta_i)} |
---|
307 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) |
---|
308 | \cdot |
---|
309 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\alpha} - |
---|
310 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\alpha} \right]} |
---|
311 | \cdot \dfrac{1-\alpha}{GeV} |
---|
312 | \label{eq:form6} |
---|
313 | \end{eqnarray} |
---|
314 | |
---|
315 | If applied to MC data, for which $\overline{\Phi^{\gamma}_s}(E)$ is known, |
---|
316 | equation (\ref{eq:form1}) can also be used to |
---|
317 | determine the collection area $F^{\gamma}_{eff}(E,\Theta)$ : |
---|
318 | |
---|
319 | \begin{eqnarray} |
---|
320 | F^{\gamma}_{eff}(E,\Theta) &= |
---|
321 | &\dfrac{\Delta N^{\gamma,MC,reconstructed}_s(E,\Theta)} |
---|
322 | {\Delta T_{on}(\Theta) \cdot \overline{\Phi^{\gamma}_s}(E) \cdot |
---|
323 | (E^{up}-E^{low})} |
---|
324 | \end{eqnarray} |
---|
325 | |
---|
326 | This procedure of determining $F^{\gamma}_{eff}(E,\Theta)$ amounts to |
---|
327 | performing the integration in equation (\ref{eq:form-1}) by MC. An |
---|
328 | important precondition is that in the MC simulation all gamma showers for |
---|
329 | which $R^{\gamma}(E,\Theta,F)$ is greater than zero were |
---|
330 | simulated. This means in particular that the MC simulation of gammas |
---|
331 | extends to sufficiently large impact parameters. |
---|
332 | |
---|
333 | Knowing $F^{\gamma}_{eff}(E,\Theta)$, the gamma fluxes can be obtained |
---|
334 | from the experimental data using equation (\ref{eq:form2}), |
---|
335 | (\ref{eq:form3}), (\ref{eq:form5}) or (\ref{eq:form6}). |
---|
336 | |
---|
337 | Of course, the MC data sample used for calculating |
---|
338 | $F^{\gamma}_{eff}(E,\Theta)$ and the experimental data sample used for |
---|
339 | determining the gamma flux by means of $F^{\gamma}_{eff}(E,\Theta)$ |
---|
340 | have to be defined identically in many respects : in particular |
---|
341 | the set of cuts |
---|
342 | and the offset between source position and telescope orientation have |
---|
343 | to be the same in the MC data and the experimental data sample. |
---|
344 | |
---|
345 | |
---|
346 | |
---|
347 | \subsubsection{Differential flux and collection area for |
---|
348 | hadronic cosmic rays} |
---|
349 | |
---|
350 | In the case of hadronic cosmic rays, which arrive from all directions |
---|
351 | $\Omega$, the differential hadron flux is given by |
---|
352 | |
---|
353 | \begin{eqnarray} |
---|
354 | \Phi^{h}(E)\;=\;\dfrac{dN^{h}}{dE \cdot dF \cdot dt \cdot d\Omega} |
---|
355 | \label{eq:form-12} |
---|
356 | \end{eqnarray} |
---|
357 | |
---|
358 | |
---|
359 | In contrast to (\ref{eq:form-1}) the effective collection area for hadrons |
---|
360 | is defined as |
---|
361 | |
---|
362 | \begin{eqnarray} |
---|
363 | F^{h}_{eff}(E,\Theta)\; &= &\int R^{h}(E,\Theta,F,\Omega)\cdot dF |
---|
364 | \cdot d\Omega |
---|
365 | \label{eq:form-11} |
---|
366 | \end{eqnarray} |
---|
367 | |
---|
368 | Note that for a fixed orientation of the telescope $(\Theta,\phi)$ the |
---|
369 | hadrons are coming from all directions $\Omega$. The reconstruction |
---|
370 | efficiency $R^h(E,\Theta,F,\Omega)$ of hadrons therefore depends also |
---|
371 | on $\Omega$. |
---|
372 | |
---|
373 | With the definitions (\ref{eq:form-12}) and (\ref{eq:form-11}) |
---|
374 | very similar formulas are obtained for hadrons as |
---|
375 | were derived for photons in the previous section. For clarity they |
---|
376 | are written down explicitely : |
---|
377 | |
---|
378 | \begin{eqnarray} |
---|
379 | \Delta N^{h,obs}(E,\Theta) &= &\int R^{h}(E,\Theta,F) \cdot |
---|
380 | \Phi^{h}(E) \cdot dE \cdot dF \cdot dt \\ |
---|
381 | &= &\Delta T_{on}(\Theta) \cdot |
---|
382 | \int_{\Delta E}{} \Phi^{h}(E)\cdot |
---|
383 | F^{h}_{eff}(E,\Theta)\cdot dE \\ |
---|
384 | &\approx &\Delta T_{on}(\Theta) \cdot |
---|
385 | F^{h}_{eff}(E,\Theta) \cdot \int_{\Delta E}{} |
---|
386 | \Phi^{h}(E)\cdot dE \label{eq:form10}\\ |
---|
387 | &\approx &\Delta T_{on}(\Theta) \cdot |
---|
388 | F^{h}_{eff}(E,\Theta) \cdot \Delta E \cdot |
---|
389 | \overline{\Phi^{h}}(E) \label{eq:form11} |
---|
390 | \end{eqnarray} |
---|
391 | |
---|
392 | |
---|
393 | \begin{eqnarray} |
---|
394 | \overline{\Phi^{h}}(E) &= |
---|
395 | &\dfrac{1}{\Delta E}\;\int_{\Delta E}{} |
---|
396 | \Phi^{h}(E)\cdot dE |
---|
397 | \end{eqnarray} |
---|
398 | |
---|
399 | |
---|
400 | \begin{eqnarray} |
---|
401 | \overline{\Phi^{h}}(E) &= |
---|
402 | &\dfrac{\Delta N^{h,obs}(E,\Theta)} |
---|
403 | {\Delta T_{on}(\Theta) \cdot F^{h}_{eff}(E,\Theta) \cdot |
---|
404 | (E^{up}-E^{low}) } |
---|
405 | \label{eq:form12} |
---|
406 | \end{eqnarray} |
---|
407 | |
---|
408 | |
---|
409 | |
---|
410 | \begin{eqnarray} |
---|
411 | \overline{\Phi^{h}}(E) &= |
---|
412 | &\dfrac{\sum_i\Delta N^{h,obs}(E,\Theta_i)} |
---|
413 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) |
---|
414 | \cdot (E^{up}_i-E^{low}_i) } |
---|
415 | \label{eq:form13} |
---|
416 | \end{eqnarray} |
---|
417 | |
---|
418 | |
---|
419 | \begin{eqnarray} |
---|
420 | \Phi^{h}(E) &= &\Phi^{h}_0 \cdot |
---|
421 | \left(\dfrac{E}{GeV}\right)^{-\beta} |
---|
422 | \end{eqnarray} |
---|
423 | |
---|
424 | |
---|
425 | \begin{eqnarray} |
---|
426 | \int_{\Delta E}{} \Phi^{h}(E) \cdot dE &= |
---|
427 | &\dfrac{\Phi^{h}_0}{1-\beta} |
---|
428 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - |
---|
429 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]\cdot GeV |
---|
430 | \label{eq:form14} |
---|
431 | \end{eqnarray} |
---|
432 | |
---|
433 | |
---|
434 | \begin{eqnarray} |
---|
435 | \Phi^{h}_0 &= |
---|
436 | &\dfrac{\Delta N^{h,obs}(E,\Theta)} |
---|
437 | {\Delta T_{on}(\Theta) \cdot F^{h}_{eff}(E,\Theta) |
---|
438 | \cdot |
---|
439 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - |
---|
440 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]} |
---|
441 | \cdot \dfrac{1-\beta}{GeV} |
---|
442 | \label{eq:form15} |
---|
443 | \end{eqnarray} |
---|
444 | |
---|
445 | |
---|
446 | \begin{eqnarray} |
---|
447 | \Phi^{h}_0 &= |
---|
448 | &\dfrac{\sum_i\Delta N^{h,obs}(E,\Theta_i)} |
---|
449 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) |
---|
450 | \cdot |
---|
451 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\beta} - |
---|
452 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\beta} \right]} |
---|
453 | \cdot \dfrac{1-\beta}{GeV} |
---|
454 | \label{eq:form16} |
---|
455 | \end{eqnarray} |
---|
456 | |
---|
457 | |
---|
458 | Note that $\Phi^{h}(E)$, $\Phi^h_0$ and $F^{h}_{eff}(E,\Theta)$ differ |
---|
459 | from $\Phi^{\gamma}(E)$, $\Phi^{\gamma}_0$ and |
---|
460 | $F^{\gamma}_{eff}(E,\Theta)$ by the dimension of the |
---|
461 | solid angle, due to the additional factor $d\Omega$ in |
---|
462 | (\ref{eq:form-12}) and (\ref{eq:form-11}). |
---|
463 | |
---|
464 | Like in the case of gammas from point sources, the effective area |
---|
465 | $F^h_{eff}(E,\Theta)$ for |
---|
466 | hadrons can be calculated by applying equation (\ref{eq:form11}) to MC |
---|
467 | data, for which $\overline{\Phi^h}(E)$ is known : |
---|
468 | |
---|
469 | \begin{eqnarray} |
---|
470 | F^{h}_{eff}(E,\Theta) &= |
---|
471 | &\dfrac{\Delta N^{h,MC,reconstructed}(E,\Theta)} |
---|
472 | {\Delta T_{on}(\Theta) \cdot \overline{\Phi^{h}}(E) \cdot |
---|
473 | (E^{up}-E^{low})} |
---|
474 | \end{eqnarray} |
---|
475 | |
---|
476 | Similar to the case of gammas from point sources, |
---|
477 | this procedure of determining $F^h_{eff}(E,\Theta)$ amounts to |
---|
478 | performing the integrations in equation (\ref{eq:form-11}) by MC. The |
---|
479 | precondition in the case of hadrons is that in the |
---|
480 | MC simulation all hadron showers for |
---|
481 | which $R^{h}(E,\Theta,F,\Omega)$ is greater than zero were |
---|
482 | simulated. So the simulation should not only include large enough |
---|
483 | impact parameters but also a sufficiently large range of $\Omega$ at |
---|
484 | fixed orientation $(\Theta,\phi)$ of the telescope. |
---|
485 | |
---|
486 | Knowing $F^{h}_{eff}(E,\Theta)$, the hadron fluxes can be obtained |
---|
487 | from the experimental data using equation (\ref{eq:form12}), |
---|
488 | (\ref{eq:form13}), (\ref{eq:form15}) or (\ref{eq:form16}). |
---|
489 | |
---|
490 | |
---|
491 | \subsubsection{Measurement of the absolute differential flux of gammas |
---|
492 | from a point source by normalizing to the flux of hadronic cosmic rays} |
---|
493 | |
---|
494 | In section 3.2.1 a procedure was described for measuring the absolute |
---|
495 | differential flux of gammas from a point source. The result for |
---|
496 | $\overline{\Phi^{\gamma}_s}(E)$ depends on a reliable determination of |
---|
497 | the collection area $F^{\gamma}_{eff}(E,\Theta)$ by MC and the |
---|
498 | measurement of the on-time $\Delta T_{on}(\Theta)$. |
---|
499 | |
---|
500 | The dependence on the MC simulation may be reduced by normalizing to |
---|
501 | the known differential flux of hadronic cosmic rays. Combining |
---|
502 | equations (\ref{eq:form2}) and (\ref{eq:form12}), and assuming that |
---|
503 | $\Delta T_{on}(\Theta)$ is the same for the gamma and the hadron |
---|
504 | sample, yields |
---|
505 | |
---|
506 | \begin{eqnarray} |
---|
507 | \dfrac{\overline{\Phi^{\gamma}_s}(E)} |
---|
508 | {\overline{\Phi^{h}}(E)} &= & |
---|
509 | \dfrac{\Delta N^{\gamma,obs}(E,\Theta)} |
---|
510 | {\Delta N^{h,obs}(E,\Theta)} \cdot |
---|
511 | \dfrac{F^{h}_{eff}(E,\Theta)} |
---|
512 | {F^{\gamma}_{eff}(E,\Theta)} |
---|
513 | \label{eq:form20} |
---|
514 | \end{eqnarray} |
---|
515 | |
---|
516 | If $\overline{\Phi^{h}}(E)$ is assumed to be known from other |
---|
517 | experiments, equation (\ref{eq:form20}) allows to determine |
---|
518 | $\overline{\Phi^{\gamma}_s}(E)$ from |
---|
519 | the experimental number of gamma and hadron showers using the |
---|
520 | collection areas for gammas and hadrons from the MC. Since only the |
---|
521 | ratio of the collection areas enters the dependence on the |
---|
522 | MC simulation is reduced. |
---|
523 | |
---|
524 | If data from all zenith angles are to be used the corresponding |
---|
525 | expression for $\overline{\Phi^{\gamma}_s}(E)$ is (see equations |
---|
526 | (\ref{eq:form3}) and (\ref{eq:form13})) |
---|
527 | |
---|
528 | \begin{eqnarray} |
---|
529 | \dfrac{\overline{\Phi^{\gamma}_s}(E)} |
---|
530 | {\overline{\Phi^{h}}(E)} &= & |
---|
531 | \dfrac{\sum_i \Delta N^{\gamma,obs}(E,\Theta_i)} |
---|
532 | {\sum_i \Delta N^{h,obs}(E,\Theta_i)} \cdot |
---|
533 | \dfrac{\sum_i \Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) |
---|
534 | \cdot (E^{up}_i-E^{low}_i)} |
---|
535 | {\sum_i \Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) |
---|
536 | \cdot (E^{up}_i-E^{low}_i)} |
---|
537 | \label{eq:form21} |
---|
538 | \end{eqnarray} |
---|
539 | |
---|
540 | Clearly, the set of cuts defining the gamma sample is different from |
---|
541 | the set of cuts defining the hadron sample. However, |
---|
542 | $\Delta N^{\gamma,obs}$ and $\Delta N^{h,obs}$ can still be measured |
---|
543 | simultaneously, in which case $\Delta T_{on}(\Theta_i)$ is the same for |
---|
544 | the gamma and the hadron sample. Measuring gammas and hadrons |
---|
545 | simultaneously has the advantage that variations of the detector |
---|
546 | properties or of the atmospheric conditions during the observation |
---|
547 | partly cancel in (\ref{eq:form20}) and (\ref{eq:form21}). |
---|
548 | |
---|
549 | If fixed spectral indices $\alpha$ and $\beta$ are assumed for the |
---|
550 | differential |
---|
551 | gamma and the hadron fluxes respectively one obtains for the ratio |
---|
552 | $\Phi^{\gamma}_0\;/\;\Phi^h_0$ |
---|
553 | (see (\ref{eq:form5}) and (\ref{eq:form15})) |
---|
554 | |
---|
555 | \begin{eqnarray} |
---|
556 | \dfrac{\Phi^{\gamma}_0} |
---|
557 | {\Phi^{h}_0} &= & |
---|
558 | \dfrac{\Delta N^{\gamma,obs}(E,\Theta)} |
---|
559 | {\Delta N^{h,obs}(E,\Theta)} \cdot |
---|
560 | \dfrac{F^{h}_{eff}(E,\Theta) \cdot |
---|
561 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - |
---|
562 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]} |
---|
563 | {F^{\gamma}_{eff}(E,\Theta) |
---|
564 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - |
---|
565 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]} \cdot |
---|
566 | \dfrac{1-\beta}{1-\alpha} |
---|
567 | \label{eq:form22} |
---|
568 | \end{eqnarray} |
---|
569 | |
---|
570 | or, when using the data from all zenith angles, |
---|
571 | (see (\ref{eq:form6}) and (\ref{eq:form16})) |
---|
572 | |
---|
573 | \begin{eqnarray} |
---|
574 | \dfrac{\Phi^{\gamma}_0} |
---|
575 | {\Phi^{h}_0} &= & |
---|
576 | \dfrac{\sum_i\Delta N^{\gamma,obs}(E,\Theta_i)} |
---|
577 | {\sum_i\Delta N^{h,obs}(E,\Theta_i)} \cdot |
---|
578 | \dfrac{\sum_i F^{h}_{eff}(E,\Theta_i) \cdot |
---|
579 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\alpha} - |
---|
580 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\alpha} \right]} |
---|
581 | {\sum_i F^{\gamma}_{eff}(E,\Theta_i) |
---|
582 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\beta} - |
---|
583 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\beta} \right]} \cdot |
---|
584 | \dfrac{1-\beta}{1-\alpha} |
---|
585 | \label{eq:form23} |
---|
586 | \end{eqnarray} |
---|
587 | |
---|
588 | |
---|
589 | |
---|
590 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& |
---|
591 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& |
---|
592 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& |
---|
593 | |
---|
594 | |
---|
595 | \section{MC work} |
---|
596 | |
---|
597 | \subsection{Overview of the MC and analysis chain} |
---|
598 | |
---|
599 | After a few iterations to improve the programs in speed, |
---|
600 | reliability, ... there is a sample of available programs |
---|
601 | to simulate the behaviour of the MAGIC telescope. |
---|
602 | Due to the big amount of diskspace needed for this simulation |
---|
603 | it was decided, that not only one program will generate |
---|
604 | the MAGIC telescope, but a subsequent chain of different |
---|
605 | programs. In figure \ref{MC_progs} you can see a overview of |
---|
606 | the existing programs and their connections. |
---|
607 | \begin{figure}[h] |
---|
608 | \setlength{\unitlength}{1.cm} |
---|
609 | \begin{picture}(18.,12.) |
---|
610 | \put (0., 0.){\framebox(18.,12.){}} |
---|
611 | |
---|
612 | \put (1, 11.5){{\sl Air shower programs}} |
---|
613 | \put (1., 10.){\framebox(3.,1.){MMCS}} |
---|
614 | \put (2., 10.){\vector(0,-1){.9} } |
---|
615 | \put (1., 8.){\framebox(3.,1.){reflector}} |
---|
616 | \put (2., 8.){\vector(0,-1){.9}} |
---|
617 | |
---|
618 | \put (6, 10.){{\sl star background programs}} |
---|
619 | \put (6.,8.){\framebox(3.,1.){starresponse}} |
---|
620 | \put (6., 8.){\line(0, -1){1.5}} |
---|
621 | \put (10.,8.){\framebox(3,1){starfieldadder}} |
---|
622 | \put (10., 8.){\line(0, -1){1.5}} |
---|
623 | \put (10., 6.5){\vector(-1,0){6.} } |
---|
624 | |
---|
625 | \put (1., 6.){\framebox(3.,1.){camera}} |
---|
626 | \put (2., 6.){\vector(3,-1){5.} } |
---|
627 | |
---|
628 | |
---|
629 | |
---|
630 | \put (14, 11.5){{\sl real data programs}} |
---|
631 | \put (14, 8.){\framebox(3,1){MAGIC DAQ}} |
---|
632 | \put (15, 8.){\vector(0,-1){.9} } |
---|
633 | \put (14, 6.){\framebox(3.,1.){MERPP}} |
---|
634 | \put (15., 6.){\vector(-3,-1){5.} } |
---|
635 | |
---|
636 | \put (8.75, 3.7){\oval(4.,1.)} |
---|
637 | \put (7., 3.5){MAGIC root file} |
---|
638 | \put (8., 3.2){\vector(0, -1){1.0}} |
---|
639 | |
---|
640 | \put (7, 1.){\framebox(3.,1.){MARS}} |
---|
641 | |
---|
642 | \thicklines |
---|
643 | \put (5., 11.){\line(0, -1){6.5}} |
---|
644 | \put (13., 12.){\line(0, -1){7.5}} |
---|
645 | |
---|
646 | \end{picture} |
---|
647 | \caption{Overview of the existing programs in the MC of |
---|
648 | MAGIC.} |
---|
649 | \label{MC_progs} |
---|
650 | \end{figure} |
---|
651 | A detailed description of the properties of the different programs can be found |
---|
652 | in section \ref{sec_exist_progs}. |
---|
653 | From that diagram you can see the following features of the simulation and |
---|
654 | analysis chain of MAGIC. |
---|
655 | \begin{enumerate} |
---|
656 | \item The simulation of Air showers and the simulation of the night sky |
---|
657 | background (NSB) is seperated. |
---|
658 | |
---|
659 | \item The NSB is seperated in two parts, the contribution from the starfield |
---|
660 | and from a diffuse part. |
---|
661 | |
---|
662 | \item To speed up the production the starresponse program creates a databases |
---|
663 | for stars of different magnitude. |
---|
664 | |
---|
665 | \item The join of air showers and NSB is done in the camera program. |
---|
666 | |
---|
667 | \item The analysis of MC \underline{and} real data will be done with only one program. |
---|
668 | This program is called MARS (Magic Analysis and Reconstruction Software). |
---|
669 | The output of the camera program from Monte Carlo data and the output of |
---|
670 | the MERPP (MERging and PreProcessing) program for the real data are the same. |
---|
671 | So there is no need to use different programs for the analysis. The file |
---|
672 | generated by this program used the root package from CERN for data storage. |
---|
673 | \end{enumerate} |
---|
674 | In this section we will only describe the usage of the Monte Carlo programs. The |
---|
675 | descriptions of the MERPP and MARS can be found somewhere else\footnote{Look on the |
---|
676 | MAGIC home page for more information.}. |
---|
677 | |
---|
678 | \subsection{Existing programs} |
---|
679 | \label{sec_exist_progs} |
---|
680 | \subsubsection{MMCS - Magic Monte Carlo Simulation} |
---|
681 | |
---|
682 | This program is based on a CORSIKA simulation. It is used to generate |
---|
683 | air showers for the MAGIC telecope. At the start one run of the |
---|
684 | program, one has to define the details of the simulation. |
---|
685 | One can specify the following parameters of an shower |
---|
686 | (see also figure \ref{pic_shower}): |
---|
687 | % |
---|
688 | \begin{enumerate} |
---|
689 | \item the type of the particles in one run ($PartID$) |
---|
690 | \item the energy range of the particles ($E_1, E_2$) |
---|
691 | \item the slope of the Energy spectra |
---|
692 | \item the range of the shower core on the ground $r_{core}$. |
---|
693 | \item the direction of the shower by setting the range of |
---|
694 | zenith angle ($\Theta_1, \Theta_2$) and |
---|
695 | azimuth angle ($\phi_1, \phi_2$) |
---|
696 | \end{enumerate} |
---|
697 | % |
---|
698 | \begin{figure}[h] |
---|
699 | \setlength{\unitlength}{1.5cm} |
---|
700 | \begin{center} |
---|
701 | \begin{picture}(9.,6.) |
---|
702 | \put (0., 0.){\framebox(9.,6.){}} |
---|
703 | |
---|
704 | \thicklines |
---|
705 | % telescope |
---|
706 | \put (5., .5){\oval(.75, .75)[t]} |
---|
707 | \put (3., 1.){{\sl Telesope position}} |
---|
708 | \put (4.5, 1.){\vector(1, -1){0.5}} |
---|
709 | % observation level |
---|
710 | \put (.5, .5){\line(1, 0){8}} |
---|
711 | \put (.5, .6){{\sl Observation level}} |
---|
712 | |
---|
713 | % air shower |
---|
714 | \put (4. , 5.5 ){\line(2, -3){3.3}} |
---|
715 | \put (4.5, 5.5 ){{\sl Particle Type ($PartId$)}} |
---|
716 | \put (4.5, 5.25){{\sl Energy ($E_1 < E < E_2$)}} |
---|
717 | \put (4.5, 5. ) {$\Theta_1 < \Theta < \Theta_2$} |
---|
718 | \put (4.5, 4.75) {$\phi_1 < \phi < \phi_2$} |
---|
719 | \put (7.5, .75){{\sl shower core}} |
---|
720 | |
---|
721 | \thinlines |
---|
722 | \put (5., .25){\line(1,0){2.3}} |
---|
723 | \put (6.1, .25){{\sl $r_{Core}$}} |
---|
724 | |
---|
725 | \put (5., .5){\line(4,3){1.571}} |
---|
726 | \put (6., 1.35){{\sl $p$}} |
---|
727 | |
---|
728 | \end{picture} |
---|
729 | \end{center} |
---|
730 | \caption {The parameter of an shower that are possible to define |
---|
731 | at the begin of an MMCS run.} |
---|
732 | \label{pic_shower} |
---|
733 | \end{figure} |
---|
734 | Other parameters, that will be important in the analysis later, |
---|
735 | can be calculated. I.e. the impact parameter $p$ is defined by |
---|
736 | the direction |
---|
737 | of the shower ($\Theta, \phi$) and the core position |
---|
738 | ($x_{core}, y_{core}$). |
---|
739 | |
---|
740 | The program MMCS will track the whole shower development |
---|
741 | through the atmosphere. All the cerenkov particles that hit a |
---|
742 | sphere around the telesope (in the figure \ref{pic_shower} |
---|
743 | drawn as the circle around the telecope position) are stored |
---|
744 | on disk. It is important to recognize, that up to now no |
---|
745 | information of the pointing of the telescope was taking into |
---|
746 | account. |
---|
747 | This cerenkov photons are the input for the next program, |
---|
748 | called reflector. |
---|
749 | |
---|
750 | |
---|
751 | \subsubsection{reflector} |
---|
752 | |
---|
753 | The aim of the reflector program is the |
---|
754 | tracking of the cerenkov photons to the camera |
---|
755 | of the MAGIC telescope. So this |
---|
756 | is the point where we introduce a specific pointing of |
---|
757 | the telescope ($\Theta_{MAGIC}, \phi_{MAGIC}$). |
---|
758 | For all cerenkov photons the program |
---|
759 | tests if the mirrors are hitten, calculates the |
---|
760 | probability for the reflection and tracks them to the |
---|
761 | mirror plane. All the photons that are hitting the |
---|
762 | camera are written to disk (*.rfl) |
---|
763 | with their important parameters |
---|
764 | ($x_{camera}, y_{camera}, \lambda, t_{arrival}$). |
---|
765 | These parameters are the input from the shower simulation |
---|
766 | for the next program in the |
---|
767 | MC simulation chain, the camera program. |
---|
768 | |
---|
769 | \subsubsection{camera} |
---|
770 | |
---|
771 | The camera program simulates the behaviour of the |
---|
772 | PMTs and the electronic of the trigger and FAC system. |
---|
773 | For each photon out of the reflector file (*.rfl) the |
---|
774 | camera program calculates the probability to generate |
---|
775 | an photo electron out of the photo cathode. If a photo |
---|
776 | electrons was ejected, this will create a signal in the |
---|
777 | trigger and FADC system of the hitted pixel. |
---|
778 | You have to specify the |
---|
779 | parameter of the signal shaping |
---|
780 | (shape, Amplitude, FWHM of signal) |
---|
781 | at the beginning of the |
---|
782 | camera, seperatly for the trigger and the FADC system. |
---|
783 | All signal from all photoelectrons are superimposed for |
---|
784 | each pixel. As an example you can see the output of |
---|
785 | the trigger and FADC system in figure \ref{fig_trigger_fadc}. |
---|
786 | \begin{figure}[h] |
---|
787 | |
---|
788 | \caption{The response of one shower from the trigger (left) and |
---|
789 | fadc system (right).} |
---|
790 | \label{fig_trigger_fadc} |
---|
791 | \end{figure} |
---|
792 | |
---|
793 | All these analog signals going into the trigger system are used |
---|
794 | to check if for a given event a trigger signal was generated or |
---|
795 | not. But before the start of the camera program on also has to |
---|
796 | set a few parameters of the trigger system like: |
---|
797 | \begin{itemize} |
---|
798 | \item diskriminator threshold |
---|
799 | \item mulitplicity |
---|
800 | \item topology |
---|
801 | \end{itemize} |
---|
802 | With this set of parameter the camera program will analyse |
---|
803 | if one event has triggered. For the triggered event all the FADC |
---|
804 | content will be writen on the file (*.root). In addition all the |
---|
805 | information about the event ($PartID, E, \Theta$,...) and |
---|
806 | information of trigger (FirstLevel, SecondLevel, ..) are also |
---|
807 | be written to the file. |
---|
808 | |
---|
809 | One of the nice features of the camera program is the possiblity |
---|
810 | so simulate the NSB, the diffuse and the star light part of it. |
---|
811 | But before doing this, on has to start other programs |
---|
812 | (called starresponse and starfieldadder) that are describe |
---|
813 | below. |
---|
814 | |
---|
815 | \subsubsection{starresponse} |
---|
816 | |
---|
817 | This program will simulate the analog response for stars of |
---|
818 | a given brightness $B$. |
---|
819 | |
---|
820 | |
---|
821 | \subsubsection{starfieldadder} |
---|
822 | |
---|
823 | |
---|
824 | |
---|
825 | |
---|
826 | |
---|
827 | |
---|
828 | |
---|
829 | \subsection{What to do} |
---|
830 | |
---|
831 | \begin{itemize} |
---|
832 | \item pedestal fluctuations |
---|
833 | \item trigger |
---|
834 | \item rates (1st level, 2nd level, .... ) |
---|
835 | \item discriminator thresholds |
---|
836 | \item Xmax |
---|
837 | \item collection area |
---|
838 | \item $\gamma$/h-Seperation |
---|
839 | \item magnetic field studies ($\phi$-dependence) |
---|
840 | \item rotating star field |
---|
841 | \end{itemize} |
---|
842 | |
---|
843 | \section{Analysis of the real data} |
---|
844 | |
---|
845 | \begin{thebibliography}{xxxxxxxxxxxxxxx} |
---|
846 | \bibitem{fegan96}D.J.Fegan, Space Sci.Rev. 75 (1996)137 |
---|
847 | \bibitem{hillas85}A.M.Hillas, Proc. 19th ICRC, La Jolla 3 (1985) 445 |
---|
848 | \bibitem{konopelko99}A.Konopelko et al., Astropart. Phys. 10 (1999) |
---|
849 | 275 |
---|
850 | \bibitem{reynolds93}P.T.Reynolds et al., ApJ 404 (1993) 206 |
---|
851 | \end{thebibliography} |
---|
852 | |
---|
853 | |
---|
854 | \end{document} |
---|
855 | % |
---|
856 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
857 | %%% Upper-case A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
---|
858 | %%% Lower-case a b c d e f g h i j k l m n o p q r s t u v w x y z |
---|
859 | %%% Digits 0 1 2 3 4 5 6 7 8 9 |
---|
860 | %%% Exclamation ! Double quote " Hash (number) # |
---|
861 | %%% Dollar $ Percent % Ampersand & |
---|
862 | %%% Acute accent ' Left paren ( Right paren ) |
---|
863 | %%% Asterisk * Plus + Comma , |
---|
864 | %%% Minus - Point . Solidus / |
---|
865 | %%% Colon : Semicolon ; Less than < |
---|
866 | %%% Equals = Greater than > Question mark ? |
---|
867 | %%% At @ Left bracket [ Backslash \ |
---|
868 | %%% Right bracket ] Circumflex ^ Underscore _ |
---|
869 | %%% Grave accent ` Left brace { Vertical bar | |
---|
870 | %%% Right brace } Tilde ~ |
---|
871 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
872 | %% Local Variables: |
---|
873 | %% mode:latex |
---|
874 | %% mode:font-lock |
---|
875 | %% mode:auto-fill |
---|
876 | %% time-stamp-line-limit:100 |
---|
877 | %% End: |
---|
878 | %% EOF |
---|
879 | |
---|
880 | |
---|
881 | |
---|
882 | |
---|
883 | |
---|
884 | |
---|
885 | |
---|
886 | |
---|
887 | |
---|