#include "StarCatalog.h" #include // cout #include // cout #include #include #include "slalib.h" #include "slamac.h" #include "File.h" #include "MStarList.h" #include "MAstroCatalog.h" ClassImp(StarCatalog); using namespace std; StarCatalog::StarCatalog(MObservatory::LocationName_t key) : SlaStars(key), fW(768), fH(576), fAstro(0), /*fSao(NULL), fSrt(NULL), fEntries(0),*/ fSinAngle(0), fCosAngle(1), fBox(768) { fAstro = new MAstroCatalog; fAstro->SetObservatory(*this); fAstro->SetPlainScreen(); } StarCatalog::~StarCatalog() { delete fAstro; } void StarCatalog::SetPixSize(const double pixsize) { // pixsize [arcsec/pixel] fPixSize = D2PI/360.0*pixsize/3600; // [rad / (deg*pixel)] fAstro->SetRadiusFOV(pixsize, 768, 576); } double StarCatalog::GetPixSize() const { return fPixSize*3600*360.0/D2PI; } void StarCatalog::SetLimitMag(const float mag) { fLimitMag = mag; fAstro->SetLimMag(mag); } void StarCatalog::SetMjd(double mjd) { SlaStars::SetMjd(mjd); fAstro->SetTime(MTime(mjd)); } void StarCatalog::SetAltAz(const AltAz &altaz) { fAltAz = altaz * D2PI/360.0; fRaDec = CalcRaDec(fAltAz); fAstro->SetRaDec(fRaDec.Ra(), fRaDec.Dec()); } void StarCatalog::Reload() { fAstro->SetLimMag(99); //fAstro->ReadBSC("bsc5.dat"); //fAstro->ReadHeasarcPPM("heasarc_ppm.tdat"); fAstro->ReadCompressed("ppm9.bin"); fAstro->SetLimMag(fLimitMag); } void StarCatalog::SetRaDec(const RaDec &radec) { const RaDec rd = fRaDec*360.0/D2PI;; const Bool_t same = rd.Ra() >radec.Ra() -1e-5 && rd.Ra() radec.Dec()-1e-5 && rd.Dec()SetRaDec(fRaDec.Ra(), fRaDec.Dec()); if (!same) Reload(); } void StarCatalog::DrawCross(byte *img, const int x, const int y) { for (int dx=-4; dx<5; dx++) if (dx) img[y*768+x+dx] = 0xff; for (int dy=-4; dy<5; dy++) if (dy) img[(y+dy)*768+x] = 0xff; } void StarCatalog::GetImg(byte *img, byte *cimg, MStarList &list) const { memset(cimg, 0, 768*576); DrawStars(list, cimg); DrawCross(img, 768/2, 576/2); } void StarCatalog::DrawCircle(int color, byte *img, int xx, int yy, int size) { for (int x=xx-size; x767) continue; const float p = xx+size-x; const float q = 2*size - p; const int h = (int)sqrt(p*q); const int y1 = yy-h; if (y1>=0 && y1<576) img[y1*768+x] = color; const int y2 = yy+h; if (y2>=0 && y2<576) img[y2*768+x] = color; } } void StarCatalog::PaintImg(unsigned char *buf, int w, int h) { fAstro->PaintImg(buf, w, h); } void StarCatalog::DrawStars(MStarList &list, byte *img) { MStarListIter Next(&list); MStar *star; while ((star=Next())) { const int mag = (10 - (star->GetMag()>1 ? (int)star->GetMag() : 1))/2; Int_t color = 0xf0; //0x0f; // DrawStars flips the picture in X defaultwise now DrawCircle(color, img, 768-(int)star->GetX(), (int)star->GetY(), mag); } } /* void StarCatalog::CalcStars(MStarList &list) { // full FOV fBox=768/2; CalcStars(list, 768/2, 576/2, 0, 0); } */ void StarCatalog::CalcStars(MStarList &list, int xc, int yc, int xo, int yo) const { // For an apropriate unit conversion to pixels [pix/rad] const Double_t scale = TMath::RadToDeg()*TMath::Sqrt(768*768 + 576*576)/(fAstro->GetRadiusFOV()*2); // Offsets to shift [-n/2;n/2] to [0;n] and to // move the stars in the counterdirection of the LEDs const Int_t offx = 768/2 + xo; const Int_t offy = 576/2 + yo; // Allow catalog stars to be a bit outside [0.2deg] of the // monitored window. To get the std behaviour set offset=0 const Int_t offset = TMath::Nint(0.2*TMath::DegToRad()*scale); const Int_t box = fBox+offset; // CalcStars flips the picture in X defaultwise now // This defined the box in which stars are really returned const int x0 = TMath::Max((768-xc)-box, -offset); const int y0 = TMath::Max(yc-box, -offset); const int x1 = TMath::Min((768-xc)+box, fW+offset); const int y1 = TMath::Min(yc+box, fH+offset); // Align stars into telescope system // (Move the telescope to pointing position) TRotation align; align.RotateZ(-fAltAz.Az()); align.RotateY(-(TMath::Pi()/2-fAltAz.Alt())); align.RotateZ(TMath::Pi()/2); // Get List of stars from catalog TIter Next(fAstro->GetList()); TVector3 *star=0; const Double_t limmag = pow(10, -fLimitMag/2.5); while ((star=(TVector3*)Next())) { // Check for limiting magnitude const Double_t mag = star->Mag(); if (mag < limmag) continue; // Get star position and do an apropiate // conversion to local coordinates const RaDec rd(star->Phi(), TMath::Pi()/2-star->Theta()); const ZdAz za(CalcZdAz(rd)); // Virtually move telescope to pointing position TVector3 loc; loc.SetMagThetaPhi(1, za.Zd(), za.Az()); loc *= align; // Sanity check if (loc(2)<0) continue; // Stretch such, that the Z-component is alwas the same. Now // X and Y contains the intersection point between the star-light // and the plain of a virtual plain screen (ccd...) loc *= 1./loc(2); // Do an apropriate unit conversion to pixels loc *= scale; // if (loc.Mod2()>fRadiusFOV*fRadiusFOV) // continue; // Rotate by the rotation angle of the video camera // and add the offsets on both axis Float_t xx = loc.X()*fCosAngle - loc.Y()*fSinAngle + offx; Float_t yy = loc.X()*fSinAngle + loc.Y()*fCosAngle + offy; // Check if the resulting star is in the // search box for the real stars if (xx=x1 || yy=y1) continue; // Store pixel coordinates of star in list list.Add(xx, yy, -2.5*log10(mag)); } } AltAz StarCatalog::CalcAltAzFromPix(Double_t pixx, Double_t pixy) const { double dx = (pixx-576/2)*fCosAngle + (pixy-768/2)*fSinAngle; double dy = -(pixx-576/2)*fSinAngle + (pixy-768/2)*fCosAngle; dx *= fPixSize; dy *= fPixSize; //const double dx = (pixx-768.0)*fPixSize + fWidth+DPI; //const double dy = pixy*fPixSize - fHeight; double ha, dec; slaDh2e(dx, dy, DPI/2-fAltAz.Alt(), &ha, &dec); return AltAz(-dec, ha+fAltAz.Az()); }