/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 05/2005 ! Author(s): Daniela Dorner, 05/2005 ! ! Copyright: MAGIC Software Development, 2000-2006 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // plotdb.C // ======== // // This macro is used to read quality parameters from the DB and plot them. // // The parameters are from the following files: // calib*.root:mean conversion factor, mean arrival time, rms arrival time // (each parameter for inner and outer camera) // signal*.root: mean pedestal rms (for inner and outer camera) // star*.root: PSF, # of Muons, Effective OnTime, Muon rate, // Ratio MC/Data(MuonSize) and mean number of islands // // In the DB these values are stored in the tables Calibration and Star. // // Usage: // .x plotdb.C --> all values in the DB are plotted // You can chose are certain period: // .x plotdb.C(25) --> all values from period 25 are plotted // or a time period from a certain date to a certain date // .x plotdb.C("2004-11-14 00:00:00", "2005-02-28 00:00:00") // --> all values from 14.11.2004 0h to 28.2.2005 0h are plotted // or all data, but with dataset data highlighted // .x plotdb.C("dataset.txt") // --> the sequences defined in dataset.txt aree highlighted (blue:on, red:off) // // Make sure, that database and password are corretly set in a resource // file called sql.rc and the resource file is found. // // To draw sequences belonging to a DataSet in colors for highliting // change the defintition of 'const char *dataset=0;' in the code to something // like 'const char *dataset="dataset.txt";' to load your favourite dataset. // ///////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MTime.h" #include "MAstro.h" #include "MDataSet.h" #include "MSQLServer.h" #include "MStatusDisplay.h" // Replace this line const char *dataset=0; // by // const char *dataset = "/magic/datasets/00000/dataset00000003.txt"; // to mark the sequences of your favourite dataset. class MPlot : public MParContainer { private: MSQLServer &fServer; MDataSet *fDataSet; TString fRequestFrom; TString fRequestTo; Int_t fRequestPeriod; Float_t fPlotMin; Float_t fPlotMax; Float_t fHistMin; Float_t fHistMax; TString fDescription; TString fNameTab; void PlotTable(TSQLResult &res, TString name, Float_t fmin, Float_t fmax, Float_t resolution) { gStyle->SetOptStat(111111); TSQLRow *row; TGraph gt; gt.SetNameTitle(name, Form("%s vs Time", name.Data())); gt.SetMarkerStyle(kFullDotMedium); TGraph gz; gz.SetNameTitle(name, Form("%s vs ", name.Data())); gz.SetMarkerStyle(kFullDotMedium); TGraph gt0, gt1; gt0.SetMarkerColor(kRed); gt1.SetMarkerColor(kBlue); gt0.SetMarkerStyle(kFullDotLarge); gt1.SetMarkerStyle(kFullDotLarge); TGraph gz0, gz1; gz0.SetMarkerColor(kRed); gz1.SetMarkerColor(kBlue); gz0.SetMarkerStyle(kFullDotLarge); gz1.SetMarkerStyle(kFullDotLarge); if (fmax>fmin) { gt.SetMinimum(fmin); gt.SetMaximum(fmax); gz.SetMinimum(fmin); gz.SetMaximum(fmax); } Int_t first = -1; Int_t last = -1; while ((row=res.Next())) { const char *date = (*row)[0]; const char *zd = (*row)[1]; const char *val = (*row)[2]; const char *snum = (*row)[3]; if (!date || !val || !zd || !snum) continue; MTime t(date); if (!t.SetSqlDateTime(date)) continue; if (fRequestPeriod>0 && MAstro::GetMagicPeriod(t.GetMjd())!=fRequestPeriod) continue; if (first<0) first = TMath::Nint(TMath::Floor(t.GetMjd())); last = TMath::Nint(TMath::Ceil(t.GetMjd())); UInt_t seq = atoi(snum); Float_t value = atof(val); Float_t zenith = atof(zd); if (fDataSet) { if (fDataSet->HasOnSequence(seq)) { gt1.SetPoint(gt1.GetN(), t.GetAxisTime(), value); gz1.SetPoint(gz1.GetN(), zenith, value); } if (fDataSet->HasOffSequence(seq)) { gt0.SetPoint(gt0.GetN(), t.GetAxisTime(), value); gz0.SetPoint(gz0.GetN(), zenith, value); } } gt.SetPoint(gt.GetN(), t.GetAxisTime(), value); gz.SetPoint(gz.GetN(), zenith, value); } gROOT->SetSelectedPad(0); TString title = fNameTab.IsNull() ? name(name.First('.')+2, name.Length()) : fNameTab; TCanvas &c = fDisplay ? fDisplay->AddTab(title) : *new TCanvas; c.SetFillColor(kWhite); c.SetBorderMode(0); c.Divide(1,2); cerr << setprecision(4) << setw(10) << title << ": "; cerr << setw(8) << gt.GetMean(2) << "+-" << setw(8) << gt.GetRMS(2) << " "; if (gt0.GetN()>0 || gt1.GetN()>0) { cerr << setw(8) << gt1.GetMean(2) << "+-" << setw(8) << gt1.GetRMS(2) << " "; cerr << setw(8) << gt0.GetMean(2) << "+-" << setw(8) << gt0.GetRMS(2); } cerr << endl; TVirtualPad *pad = gPad; pad->cd(2); gPad->SetBorderMode(0); gPad->SetFrameBorderMode(0); gPad->SetGridy(); gPad->SetLeftMargin(0.06); gPad->SetRightMargin(0.06); gPad->SetBottomMargin(0.08); TH1 *h = gt.GetHistogram(); h->SetXTitle("Time"); h->SetYTitle(name); h->GetXaxis()->SetTimeDisplay(1); h->GetYaxis()->SetTitleOffset(0.8); h->GetXaxis()->SetTitleOffset(1.0); h->GetXaxis()->SetLabelOffset(0.01); gt.DrawClone("AP"); if (gt0.GetN()>0) gt0.DrawClone("P"); if (gt1.GetN()>0) gt1.DrawClone("P"); TLine l; TText t; Int_t num=0; l.SetLineStyle(kDotted); l.SetLineColor(kBlue); t.SetTextColor(kBlue); l.SetLineWidth(1); t.SetTextSize(h->GetXaxis()->GetLabelSize()); t.SetTextAlign(21); Int_t p0 = MAstro::GetMagicPeriod(first); for (Int_t p = first; pGetMinimum(), MTime(p).GetAxisTime(), h->GetMaximum()); t.DrawText(MTime(p+15).GetAxisTime(), h->GetMaximum(), Form("%d", p1)); num++; } p0 = p1; } if (num<4) gPad->SetGridx(); const Double_t min = fHistMin>fHistMax ? h->GetMinimum()-resolution/2 : fHistMin; const Double_t max = fHistMin>fHistMax ? h->GetMaximum()+resolution/2 : fHistMax; // Use this to save the pad with the time development to a file //gPad->SaveAs(Form("plotdb-%s.eps", title.Data())); pad->cd(1); gPad->SetBorderMode(0); gPad->SetFrameBorderMode(0); gPad->Divide(2,1); TVirtualPad *pad2 = gPad; pad2->cd(1); gPad->SetBorderMode(0); gPad->SetFrameBorderMode(0); gPad->SetGridx(); gPad->SetGridy(); const Int_t n = resolution>0 ? TMath::Nint((max-min)/resolution) : 50; TH1F hist("Hist", Form("Distribution of %s", fDescription.IsNull() ? name.Data() : fDescription.Data()), n, min, max); hist.SetDirectory(0); for (int i=0; icd(2); gPad->SetBorderMode(0); gPad->SetFrameBorderMode(0); gPad->SetGridy(); TH1 *h2 = gz.GetHistogram(); h2->SetXTitle("Zd"); h2->SetYTitle(name); gz.DrawClone("AP"); if (gz0.GetN()>0) gz0.DrawClone("P"); if (gz1.GetN()>0) gz1.DrawClone("P"); } public: MPlot(MSQLServer &server) : fServer(server), fDataSet(NULL), fRequestPeriod(-1), fPlotMin(0), fPlotMax(-1), fHistMin(0), fHistMax(-1) { } ~MPlot() { if (fDataSet) delete fDataSet; } void SetDataSet(const TString filename) { if (fDataSet) { delete fDataSet; fDataSet = NULL; } if (!filename.IsNull()) fDataSet = new MDataSet(filename); } void SetPlotRange(Float_t min, Float_t max, Int_t n=5) { fPlotMin = min; fPlotMax = max; } void SetHistRange(Float_t min, Float_t max) { fHistMin = min; fHistMax = max; } void SetRequestRange(const char *from="", const char *to="") { fRequestFrom = from; fRequestTo = to; } void SetRequestPeriod(Int_t n=-1) { fRequestPeriod = n; } void SetDescription(const char *d, const char *t=0) { fDescription = d; fNameTab = t; } Bool_t Plot(const char *value, Float_t min=0, Float_t max=-1, Float_t resolution=0) { TString named = "Sequences.fRunStart"; TString named2 = "(Sequences.fZenithDistanceMin+Sequences.fZenithDistanceMax)/2"; TString namev = value; TString join = "fSequenceFirst"; TString tablev = namev(0, namev.First('.')); TString valuev = namev(namev.First('.')+1, namev.Length()); TString tabled = named(0, named.First('.')); TString valued = named(named.First('.')+1, named.Length()); TString query; query = Form("select %s, %s, %s, Sequences.fSequenceFirst ", valued.Data(), named2.Data(), valuev.Data()); query += Form("from %s left join %s ", tabled.Data(), tablev.Data()); query += Form("on %s.%s=%s.%s ", tabled.Data(), join.Data(), tablev.Data(), join.Data()); const Bool_t interval = !fRequestFrom.IsNull() && !fRequestTo.IsNull(); if (!fDataSet && !interval) { if (!query.Contains("Star.fSequenceFirst")) query += "left join Star on Sequences.fSequenceFirst=Star.fSequenceFirst "; query += "where Star.fEffOnTime>300 "; } if (interval) { query += query.Contains(" where ") ? "and " : "where "; query += Form("fRunStart between '%s' and '%s' ", fRequestFrom.Data(), fRequestTo.Data()); } query += "order by fRunStart"; TSQLResult *res = fServer.Query(query); if (!res) { cout << "ERROR - Query failed: " << query << endl; return kFALSE; } if (max>min) PlotTable(*res, namev, min, max, resolution); else PlotTable(*res, namev, fPlotMin, fPlotMax, resolution); delete res; return kTRUE; } }; void plotall(MPlot &plot) { //inner camera //from calib*.root plot.SetDescription("Conversion Factor inner Camera;C_{I} [phe/fadc cnts]", "ConvI"); plot.Plot("Calibration.fConvFactorInner", 0, 0.5, 0.001); plot.SetDescription("Mean Arrival Time inner Camera;T_{I} [sl]", "ArrTmI"); plot.Plot("Calibration.fArrTimeMeanInner", 0, 9.0, 0.1); plot.SetDescription("RMS Arrival Time inner Camera;\\sigma_{T,I} [sl]", "RmsArrTmI"); plot.Plot("Calibration.fArrTimeRmsInner", 0, 2.5, 0.1); //from signal*.root plot.SetDescription("Mean Pedestal RMS inner Camera;\\sigma_{P,I} [phe]", "PedRmsI"); plot.Plot("Calibration.fMeanPedRmsInner", 0, 3.5, 0.05); plot.SetDescription("Mean Signal inner Camera;S_{I} [phe]", "SignalI"); plot.Plot("Calibration.fMeanSignalInner", 0, 7.0, 0.05); plot.SetDescription("Mean PulsePosCheck (falling edge) inner camera;T [sl]", "ChkPos"); plot.Plot("Calibration.fPulsePosCheckMean", 1, 15.0, 0.1); plot.SetDescription("Rms PulsePosCheck (falling edge) inner camera;T [sl]", "ChkRms"); plot.Plot("Calibration.fPulsePosCheckRms", 0, 5.0, 0.1); plot.SetDescription("Mean calibrated PulsePos;T", "PulPos"); plot.Plot("Calibration.fPulsePosMean", 1, 15.0, 0.1); plot.SetDescription("Rms calibrated PulsePos;T", "PulRms"); plot.Plot("Calibration.fPulsePosRms", 0, 2.0, 0.1); //from star*.root //muon plot.SetDescription("Point Spred Function;PSF [mm]"); plot.Plot("Star.fPSF", 0, 40, 0.5); plot.SetDescription("Muon Calibration Ratio Data/MC;r [1]", "MuonCal"); plot.Plot("Star.fRatio", 0, 200, 0.5); plot.SetDescription("Muon Rate after Muon Cuts;R [Hz]"); plot.Plot("Star.fMuonRate", 0, 2.0, 0.05); //quality plot.SetDescription("Camera Inhomogeneity;\\sigma [%]", "Inhom"); plot.Plot("Star.fInhomogeneity", 0, 100, 1); //imgpar plot.SetDescription("Mean Number of Islands after cleaning;N [#]", "NumIsl"); plot.Plot("Star.fMeanNumberIslands", 0.5, 4.5, 0.01); plot.SetDescription("Measures effective on time;T_{eff} [s]", "EffOn"); plot.Plot("Star.fEffOnTime", 0, 10000, 150); plot.SetDescription("Relative effective on time;T_{eff}/T_{obs} [ratio]", "RelTime"); plot.Plot("Star.fEffOnTime/Sequences.fRunTime", 0, 1.5, 0.01); plot.SetDescription("Datarate [Hz]", "Rate"); plot.Plot("Star.fDataRate", 0, 600, 10); plot.SetDescription("Maximum Humidity [%]", "Hum"); plot.Plot("Star.fMaxHumidity", 0, 100, 1); //muon plot.SetDescription("Number of Muons after Muon Cuts;N [#]"); plot.Plot("Star.fMuonNumber", 0, 10000, 100); //outer camera //from calib*.root plot.SetDescription("Conversion Factor outer Camera;C_{O} [phe/fadc cnts]", "ConvO"); plot.Plot("Calibration.fConvFactorOuter", 0, 2.0, 0.01); plot.SetDescription("Mean Arrival Time outer Camera;T_{O} [sl]", "ArrTmO"); plot.Plot("Calibration.fArrTimeMeanOuter", 0, 8.5, 0.1); plot.SetDescription("RMS Arrival Time outer Camera;\\sigma_{T,O} [sl]", "RmsArrTmO"); plot.Plot("Calibration.fArrTimeRmsOuter", 0, 2.5, 0.1); //from signal*.root plot.SetDescription("Mean Pedestal RMS outer Camera;\\sigma_{P,O} [phe]", "PedRmsO"); plot.Plot("Calibration.fMeanPedRmsOuter", 0, 4.0, 0.05); plot.SetDescription("Mean Signal outer Camera;S_{O} [phe]", "SignalO"); plot.Plot("Calibration.fMeanSignalOuter", 0, 4.0, 0.05); plot.SetDescription("Median No. Stars recognized by the starguider;N_{0}", "StarsMed"); plot.Plot("Star.fNumStarsMed", 0, 70, 1); plot.SetDescription("RMS No. Stars recognized by the starguider;\\sigma_{N_{0}}", "StarsRMS"); plot.Plot("Star.fNumStarsRMS", 0, 25, 1); plot.SetDescription("Median No. Stars correlated by the starguider;N", "CorMed"); plot.Plot("Star.fNumStarsCorMed", 0, 70, 1); plot.SetDescription("RMS No. Stars correlated by the starguider;\\sigma_{N}", "CorRMS"); plot.Plot("Star.fNumStarsCorRMS", 0, 25, 1); plot.SetDescription("Relative number of correlated stars;N/N_{0} [%]", "StarsRel"); plot.Plot("Star.fNumStarsCorMed/Star.fNumStarsMed*100", 0, 100, 10); plot.SetDescription("Median skbrightess measured by the starguider;B [au]", "BrightMed"); plot.Plot("Star.fBrightnessMed", 0, 111, 1); plot.SetDescription("RMS skybrightess measured by the starguider;\\sigma_{B} [au]", "BrightRMS"); plot.Plot("Star.fBrightnessRMS", 0, 64, 1); } int plotdb(TString from, TString to) { TEnv env("sql.rc"); MSQLServer serv(env); if (!serv.IsConnected()) { cout << "ERROR - Connection to database failed." << endl; return 0; } cout << "plotdb" << endl; cout << "------" << endl; cout << endl; cout << "Connected to " << serv.GetName() << endl; cout << endl; MStatusDisplay *d = new MStatusDisplay; d->SetWindowName(serv.GetName()); d->SetTitle(serv.GetName()); MPlot plot(serv); plot.SetDataSet(dataset); plot.SetDisplay(d); plot.SetRequestRange(from, to); plotall(plot); d->SaveAsRoot("plotdb.root"); d->SaveAsPS("plotdb.ps"); return 1; } int plotdb(const char *ds) { TEnv env("sql.rc"); MSQLServer serv(env); if (!serv.IsConnected()) { cout << "ERROR - Connection to database failed." << endl; return 0; } cout << "plotdb" << endl; cout << "------" << endl; cout << endl; cout << "Connected to " << serv.GetName() << endl; cout << endl; MStatusDisplay *d = new MStatusDisplay; d->SetWindowName(serv.GetName()); d->SetTitle(serv.GetName()); MPlot plot(serv); plot.SetDataSet(ds); plot.SetDisplay(d); plot.SetRequestRange("", ""); plotall(plot); d->SaveAsRoot("plotdb.root"); d->SaveAsPS("plotdb.ps"); return 1; } int plotdb(Int_t period) { TEnv env("sql.rc"); MSQLServer serv(env); if (!serv.IsConnected()) { cout << "ERROR - Connection to database failed." << endl; return 0; } cout << "plotdb" << endl; cout << "------" << endl; cout << endl; cout << "Connected to " << serv.GetName() << endl; cout << endl; MStatusDisplay *d = new MStatusDisplay; d->SetWindowName(serv.GetName()); d->SetTitle(serv.GetName()); MPlot plot(serv); plot.SetDataSet(dataset); plot.SetDisplay(d); plot.SetRequestPeriod(period); plotall(plot); d->SaveAsRoot("plotdb.root"); d->SaveAsPS("plotdb.ps"); return 1; } int plotdb() { return plotdb("", ""); }