/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Hendrik Bartko, 03/2004 ! Markus Gaug, 03/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ #include "MAGIC.h" const TString defpath = "/mnt/Data/rootdata/CrabNebula/2004_01_27/"; const TString defrout = "output_test.root"; const Int_t defpedr [] = {12461}; const Int_t defcalr [] = {12526,12527,12528,12529}; const Int_t defdatar[] = {12517,12518}; void calibrate_data(const TString inpath=defpath, const Int_t psize=1, const Int_t pedruns[]=defpedr, const Int_t csize=4, const Int_t calruns[]=defcalr, const Int_t dsize=2, const Int_t dataruns[]=defdatar, const TString resname=defrout) { MRunIter pruns; MRunIter cruns; MRunIter druns; for (Int_t i=0;iSetUpdateTime(3000); display->Resize(850,700); gStyle->SetOptStat(1111); gStyle->SetOptFit(); /************************************/ /* FIRST LOOP: PEDESTAL COMPUTATION */ /************************************/ MParList plist1; MTaskList tlist1; plist1.AddToList(&tlist1); // containers MPedestalCam pedcam; MBadPixelsCam badcam; // // for excluding pixels from the beginning: // // badcam.AsciiRead("badpixels.dat"); plist1.AddToList(&pedcam); plist1.AddToList(&badcam); //tasks MReadMarsFile read("Events"); read.DisableAutoScheme(); static_cast(read).AddFiles(pruns); MGeomApply geomapl; MPedCalcPedRun pedcalc; MGeomCamMagic geomcam; tlist1.AddToList(&read); tlist1.AddToList(&geomapl); tlist1.AddToList(&pedcalc); // Create and execute the event looper MEvtLoop pedloop; pedloop.SetParList(&plist1); pedloop.SetDisplay(display); cout << "*************************" << endl; cout << "** COMPUTING PEDESTALS **" << endl; cout << "*************************" << endl; if (!pedloop.Eventloop()) return; tlist1.PrintStatistics(); // // Now the short version: // /* MJCalibration calloop; calloop.SetInput(&cruns); calloop.SetDisplay(display); if (!calloop.Process(pedloop.GetPedestalCam())) return; #if 0 */ // // The longer version: // // // Create a empty Parameter List and an empty Task List // MParList plist2; MTaskList tlist2; plist2.AddToList(&tlist2); plist2.AddToList(&pedcam); plist2.AddToList(&badcam); gLog << endl;; gLog << "Calculate MCalibrationCam from Runs " << cruns.GetRunsAsString() << endl; gLog << endl; MReadMarsFile read2("Events"); read2.DisableAutoScheme(); static_cast(read2).AddFiles(cruns); MGeomCamMagic geomcam; MExtractedSignalCam sigcam; MArrivalTimeCam timecam; MCalibrationChargeCam calcam; // MCalibrationChargePINDiode pindiode; // MCalibrationChargeBlindPix blindpix; MHCalibrationRelTimeCam histtime; MHCalibrationChargeCam histcharge; // MHCalibrationChargePINDiode histpin; // MHCalibrationChargeBlindPix histblind; // // // Get the previously created MPedestalCam into the new Parameter List // plist2.AddToList(&geomcam); plist2.AddToList(&sigcam); plist2.AddToList(&timecam); plist2.AddToList(&calcam); plist2.AddToList(&histtime); plist2.AddToList(&histcharge); // plist2.AddToList(&histpin); // plist2.AddToList(&histblind); // // We saw that the signal jumps between slices, // thus take the sliding window // MExtractSignal2 sigcalc; MExtractPINDiode pincalc; MExtractBlindPixel blindcalc; MArrivalTimeCalc2 timecalc; MCalibrationChargeCalc calcalc; MGeomApply geomapl; MFillH filltime( "MHCalibrationRelTimeCam" , "MArrivalTimeCam"); // MFillH fillpin ("MHCalibrationChargePINDiode", "MExtractedSignalPINDiode"); // MFillH fillblind("MHCalibrationChargeBlindPix", "MExtractedSignalBlindPixel"); MFillH fillcam ("MHCalibrationChargeCam" , "MExtractedSignalCam"); // // Skip the HiGain vs. LoGain calibration // calcalc.SkipHiLoGainCalibration(); // // Apply a filter against cosmics // (was directly in MCalibrationCalc in earlier versions) // MFCosmics cosmics; MContinue cont(&cosmics); tlist2.AddToList(&read2); tlist2.AddToList(&geomapl); tlist2.AddToList(&sigcalc); // tlist2.AddToList(&blindcalc); // tlist2.AddToList(&pincalc); // // In case, you want to skip the cosmics rejection, // uncomment the next line // tlist2.AddToList(&cont); // // In case, you want to skip the somewhat lengthy calculation // of the arrival times using a spline, uncomment the next two lines // tlist2.AddToList(&timecalc); tlist2.AddToList(&filltime); // tlist2.AddToList(&fillpin); // tlist2.AddToList(&fillblind); tlist2.AddToList(&fillcam); // tlist2.AddToList(&calcalc); // // Create and setup the eventloop // MEvtLoop evtloop; evtloop.SetParList(&plist2); evtloop.SetDisplay(display); cout << "***************************" << endl; cout << "** COMPUTING CALIBRATION **" << endl; cout << "***************************" << endl; // // Execute second analysis // if (!evtloop.Eventloop()) return; tlist2.PrintStatistics(); // // print the most important results of all pixels to a file // // MLog gauglog; // gauglog.SetOutputFile(Form("%s%s",calcam.GetName(),".txt"),1); // calcam.SetLogStream(&gauglog); // calcam.Print(); // calcam.SetLogStream(&gLog); // // just one example how to get the plots of individual pixels // // histblind.DrawClone("all"); // histcharge[5].DrawClone("all"); // histcharge(5).DrawClone("all"); // histtime[5].DrawClone("fourierevents"); // Create histograms to display MHCamera disp1 (geomcam, "Cal;Charge", "Fitted Mean Charges"); MHCamera disp2 (geomcam, "Cal;SigmaCharge", "Sigma of Fitted Charges"); MHCamera disp3 (geomcam, "Cal;FitProb", "Probability of Fit"); MHCamera disp4 (geomcam, "Cal;RSigma", "Reduced Sigmas"); MHCamera disp5 (geomcam, "Cal;RSigma/Charge", "Reduced Sigma per Charge"); MHCamera disp6 (geomcam, "Cal;FFactorPhe", "Nr. of Photo-electrons (F-Factor Method)"); MHCamera disp7 (geomcam, "Cal;FFactorConv", "Conversion Factor to photons (F-Factor Method)"); MHCamera disp8 (geomcam, "Cal;FFactorFFactor", "Total F-Factor (F-Factor Method)"); MHCamera disp9 (geomcam, "Cal;BlindPixConv", "Conversion Factor to photons (Blind Pixel Method)"); MHCamera disp10 (geomcam, "Cal;BlindPixFFactor","Total F-Factor (Blind Pixel Method)"); MHCamera disp11 (geomcam, "Cal;PINDiodeConv", "Conversion Factor tp photons (PIN Diode Method)"); MHCamera disp12 (geomcam, "Cal;PINDiodeFFactor","Total F-Factor (PIN Diode Method)"); MHCamera disp13 (geomcam, "Cal;Excluded", "Pixels previously excluded"); MHCamera disp14 (geomcam, "Cal;NotFitted", "Pixels that could not be fitted"); MHCamera disp15 (geomcam, "Cal;NotFitValid", "Pixels with not valid fit results"); MHCamera disp16 (geomcam, "Cal;HiGainOscillating", "Oscillating Pixels HI Gain"); MHCamera disp17 (geomcam, "Cal;LoGainOscillating", "Oscillating Pixels LO Gain"); MHCamera disp18 (geomcam, "Cal;HiGainPickup", "Number Pickup events Hi Gain"); MHCamera disp19 (geomcam, "Cal;LoGainPickup", "Number Pickup events Lo Gain"); MHCamera disp20 (geomcam, "Cal;Saturation", "Pixels with saturated Hi Gain"); MHCamera disp21 (geomcam, "Cal;FFactorValid", "Pixels with valid F-Factor calibration"); MHCamera disp22 (geomcam, "Cal;BlindPixelValid", "Pixels with valid BlindPixel calibration"); MHCamera disp23 (geomcam, "Cal;PINdiodeFFactorValid", "Pixels with valid PINDiode calibration"); MHCamera disp24 (geomcam, "Cal;Ped", "Pedestals"); MHCamera disp25 (geomcam, "Cal;PedRms", "Pedestal RMS"); MHCamera disp26 (geomcam, "time;Time", "Rel. Arrival Times"); MHCamera disp27 (geomcam, "time;SigmaTime", "Sigma of Rel. Arrival Times"); MHCamera disp28 (geomcam, "time;TimeProb", "Probability of Time Fit"); MHCamera disp29 (geomcam, "time;NotFitValid", "Pixels with not valid fit results"); MHCamera disp30 (geomcam, "time;Oscillating", "Oscillating Pixels"); MHCamera disp31 (geomcam, "Cal;AbsTimeMean", "Abs. Arrival Times"); MHCamera disp32 (geomcam, "Cal;AbsTimeRms", "RMS of Arrival Times"); // Fitted charge means and sigmas disp1.SetCamContent(calcam, 0); disp1.SetCamError( calcam, 1); disp2.SetCamContent(calcam, 2); disp2.SetCamError( calcam, 3); // Fit probabilities disp3.SetCamContent(calcam, 4); // Reduced Sigmas and reduced sigmas per charge disp4.SetCamContent(calcam, 5); disp4.SetCamError( calcam, 6); disp5.SetCamContent(calcam, 7); disp5.SetCamError( calcam, 8); // F-Factor Method disp6.SetCamContent(calcam, 9); disp6.SetCamError( calcam, 10); disp7.SetCamContent(calcam, 11); disp7.SetCamError( calcam, 12); disp8.SetCamContent(calcam, 13); disp8.SetCamError( calcam, 14); // Blind Pixel Method disp9.SetCamContent(calcam, 16); disp9.SetCamError( calcam, 17); disp10.SetCamContent(calcam,18); disp10.SetCamError( calcam,19); // PIN Diode Method disp11.SetCamContent(calcam,21); disp11.SetCamError( calcam,22); disp12.SetCamContent(calcam,23); disp12.SetCamError( calcam,24); // Pixels with defects disp13.SetCamContent(calcam,26); disp14.SetCamContent(badcam,7); disp15.SetCamContent(badcam,9); disp16.SetCamContent(badcam,16); disp17.SetCamContent(badcam,15); disp18.SetCamContent(calcam,27); disp19.SetCamContent(calcam,28); // Lo Gain calibration disp20.SetCamContent(calcam,29); // Valid flags disp21.SetCamContent(calcam,15); disp22.SetCamContent(calcam,20); disp23.SetCamContent(calcam,25); // Pedestals disp24.SetCamContent(calcam,30); disp24.SetCamError( calcam,31); disp25.SetCamContent(calcam,32); disp25.SetCamError( calcam,33); // Relative Times disp26.SetCamContent(histtime,0); disp26.SetCamError( histtime,1); disp27.SetCamContent(histtime,2); disp27.SetCamError( histtime,3); disp28.SetCamContent(histtime,4); disp29.SetCamContent(histtime,5); disp30.SetCamContent(histtime,6); // Absolute Times disp31.SetCamContent(calcam,34); disp31.SetCamError( calcam,35); disp32.SetCamContent(calcam,35); disp1.SetYTitle("Charge [FADC units]"); disp2.SetYTitle("\\sigma_{Charge} [FADC units]"); disp3.SetYTitle("P_{Charge} [1]"); disp4.SetYTitle("\\sqrt{\\sigma^{2}_{Charge} - RMS^{2}_{Ped}} [FADC Counts]"); disp5.SetYTitle("Reduced Sigma / Mean Charge [1]"); disp6.SetYTitle("Nr. Photo-electrons [1]"); disp7.SetYTitle("Conversion Factor [Ph/FADC Count]"); disp8.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Charge}/\\mu_{Charge} [1] "); disp9.SetYTitle("Conversion Factor [Phot/FADC Count]"); disp10.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Charge}/\\mu_{Charge} [1]"); disp11.SetYTitle("Conversion Factor [Phot/FADC Count]"); disp12.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Charge}/\\mu_{Charge} [1]"); disp13.SetYTitle("[1]"); disp14.SetYTitle("[1]"); disp15.SetYTitle("[1]"); disp16.SetYTitle("[1]"); disp17.SetYTitle("[1]"); disp18.SetYTitle("[1]"); disp19.SetYTitle("[1]"); disp20.SetYTitle("[1]"); disp21.SetYTitle("[1]"); disp22.SetYTitle("[1]"); disp23.SetYTitle("[1]"); disp24.SetYTitle("Ped [FADC Counts ]"); disp25.SetYTitle("RMS_{Ped} [FADC Counts ]"); disp26.SetYTitle("Time Offset [ns]"); disp27.SetYTitle("Timing resolution [ns]"); disp28.SetYTitle("P_{Time} [1]"); disp29.SetYTitle("[1]"); disp30.SetYTitle("[1]"); disp31.SetYTitle("Mean Abs. Time [FADC slice]"); disp32.SetYTitle("RMS Abs. Time [FADC slices]"); gStyle->SetOptStat(1111); gStyle->SetOptFit(); // Charges TCanvas &c1 = display->AddTab("Fit.Charge"); c1.Divide(2, 3); CamDraw(c1, disp1,calcam,1, 2 , 2); CamDraw(c1, disp2,calcam,2, 2 , 2); // Fit Probability TCanvas &c2 = display->AddTab("Fit.Prob"); c2.Divide(1,3); CamDraw(c2, disp3,calcam,1, 1 , 4); // Reduced Sigmas TCanvas &c3 = display->AddTab("Red.Sigma"); c3.Divide(2,3); CamDraw(c3, disp4,calcam,1, 2 , 2); CamDraw(c3, disp5,calcam,2, 2 , 2); // F-Factor Method TCanvas &c4 = display->AddTab("F-Factor"); c4.Divide(3,3); CamDraw(c4, disp6,calcam,1, 3 , 2); CamDraw(c4, disp7,calcam,2, 3 , 2); CamDraw(c4, disp8,calcam,3, 3 , 2); // Blind Pixel Method TCanvas &c5 = display->AddTab("BlindPix"); c5.Divide(2,3); CamDraw(c5, disp9, calcam,1, 2 , 2); CamDraw(c5, disp10,calcam,2, 2 , 2); // PIN Diode Method TCanvas &c6 = display->AddTab("PINDiode"); c6.Divide(2,3); CamDraw(c6, disp11,calcam,1, 2 , 2); CamDraw(c6, disp12,calcam,2, 2 , 2); // Defects TCanvas &c7 = display->AddTab("Defects"); c7.Divide(4,2); CamDraw(c7, disp13,calcam,1,4, 0); CamDraw(c7, disp14,calcam,2,4, 0); CamDraw(c7, disp18,calcam,3,4, 0); CamDraw(c7, disp19,calcam,4,4, 0); // BadCam TCanvas &c8 = display->AddTab("Defects"); c8.Divide(3,2); CamDraw(c8, disp15,badcam,1,3, 0); CamDraw(c8, disp16,badcam,2,3, 0); CamDraw(c8, disp17,badcam,3,3, 0); // Valid flags TCanvas &c9 = display->AddTab("Validity"); c9.Divide(4,2); CamDraw(c9, disp20,calcam,1,4,0); CamDraw(c9, disp21,calcam,2,4,0); CamDraw(c9, disp22,calcam,3,4,0); CamDraw(c9, disp23,calcam,4,4,0); // Pedestals TCanvas &c10 = display->AddTab("Pedestals"); c10.Divide(2,3); CamDraw(c10,disp24,calcam,1,2,1); CamDraw(c10,disp25,calcam,2,2,2); // Rel. Times TCanvas &c11 = display->AddTab("Fitted Rel. Times"); c11.Divide(3,3); CamDraw(c11,disp26,calcam,1,3,2); CamDraw(c11,disp27,calcam,2,3,2); CamDraw(c11,disp38,calcam,3,3,4); // Time Defects TCanvas &c12 = display->AddTab("Time Def."); c12.Divide(2,2); CamDraw(c12, disp29,calcam,1,2, 0); CamDraw(c12, disp30,calcam,2,2, 0); // Abs. Times TCanvas &c13 = display->AddTab("Abs. Times"); c13.Divide(2,3); CamDraw(c13,disp31,calcam,1,2,2); CamDraw(c13,disp32,calcam,2,2,2); /************************************************************************/ /* THIRD LOOP: DATA CALIBRATION INTO PHOTONS */ /************************************************************************/ // Create an empty Parameter List and an empty Task List MParList plist3; MTaskList tlist3; plist3.AddToList(&tlist3); // containers MCerPhotEvt photevt; MPedPhotCam pedphotcam; MSrcPosCam srccam; MRawRunHeader runhead; plist3.AddToList(&geomcam ); plist3.AddToList(&pedcam ); plist3.AddToList(&calcam ); plist3.AddToList(&badcam ); plist3.AddToList(&timecam ); plist3.AddToList(&sigcam ); plist3.AddToList(&histtime); plist3.AddToList(&photevt); plist3.AddToList(&pedphotcam); plist3.AddToList(&srccam); plist3.AddToList(&runhead); //tasks MReadMarsFile read3("Events"); read3.DisableAutoScheme(); static_cast(read3).AddFiles(druns); MCalibrateData photcalc; photcalc.SetCalibrationMode(MCalibrateData::kFfactor); // !!! was only MCalibrate // MPedPhotCalc pedphotcalc; // already done by MCalibrate Data // MCerPhotCalc cerphotcalc; // already done by MCalibrate Data tlist3.AddToList(&read3); tlist3.AddToList(&geomapl); tlist3.AddToList(&sigcalc); tlist3.AddToList(&timecalc); // tlist3.AddToList(&cerphotcalc); // already done by MCalibrate Data tlist3.AddToList(&photcalc); // tlist3.AddToList(&pedphotcalc); // already done by MCalibrate Data MWriteRootFile write(resname); write.AddContainer("MGeomCam" , "RunHeaders"); write.AddContainer("MRawRunHeader" , "RunHeaders"); write.AddContainer("MSrcPosCam" , "RunHeaders"); write.AddContainer("MCalibrationChargeCam" , "RunHeaders"); // write.AddContainer("MPedPhotCam","RunHeaders"); // Attention, was in Events - Tree!! write.AddContainer("MPedestalCam" , "RunHeaders"); write.AddContainer("MHCalibrationRelTimeCam","RunHeaders"); write.AddContainer("MCerPhotEvt" , "Events"); write.AddContainer("MRawEvtHeader" , "Events"); write.AddContainer("MBadPixelsCam" , "Events"); write.AddContainer("MPedPhotCam" , "Events"); tlist3.AddToList(&write); // Create and execute eventloop MEvtLoop evtloop3; evtloop3.SetParList(&plist3); cout << "*************************************************************" << endl; cout << "*** COMPUTING DATA USING EXTRACTED SIGNAL (IN PHOTONS) ***" << endl; cout << "*************************************************************" << endl; if (!evtloop3.Eventloop()) return; tlist3.PrintStatistics(); } void CamDraw(TCanvas &c, MHCamera &cam, MCamEvent &evt, Int_t i, Int_t j, Int_t fit) { c.cd(i); gPad->SetBorderMode(0); MHCamera *obj1=(MHCamera*)cam.DrawCopy("hist"); // obj1->AddNotify(evt); c.cd(i+j); gPad->SetBorderMode(0); obj1->Draw(); ((MHCamera*)obj1)->SetPrettyPalette(); if (fit != 0) { c.cd(i+2*j); gPad->SetBorderMode(0); TH1D *obj2 = (TH1D*)obj1->Projection(obj1.GetName()); // obj2->Sumw2(); obj2->Draw(); obj2->SetBit(kCanDelete); const Double_t min = obj2->GetBinCenter(obj2->GetXaxis()->GetFirst()); const Double_t max = obj2->GetBinCenter(obj2->GetXaxis()->GetLast()); const Double_t integ = obj2->Integral("width")/2.5066283; const Double_t mean = obj2->GetMean(); const Double_t rms = obj2->GetRMS(); const Double_t width = max-min; if (rms == 0. || width == 0. ) return; switch (fit) { case 1: TF1 *sgaus = new TF1("sgaus","gaus(0)",min,max); sgaus->SetBit(kCanDelete); sgaus->SetParNames("Area","#mu","#sigma"); sgaus->SetParameters(integ/rms,mean,rms); sgaus->SetParLimits(0,0.,integ); sgaus->SetParLimits(1,min,max); sgaus->SetParLimits(2,0,width/1.5); obj2->Fit("sgaus","QLR"); obj2->GetFunction("sgaus")->SetLineColor(kYellow); break; case 2: TString dgausform = "([0]-[3])/[2]*exp(-0.5*(x-[1])*(x-[1])/[2]/[2])"; dgausform += "+[3]/[5]*exp(-0.5*(x-[4])*(x-[4])/[5]/[5])"; TF1 *dgaus = new TF1("dgaus",dgausform.Data(),min,max); dgaus->SetBit(kCanDelete); dgaus->SetParNames("A_{tot}","#mu_{1}","#sigma_{1}","A_{2}","#mu_{2}","#sigma_{2}"); dgaus->SetParameters(integ,(min+mean)/2.,width/4., integ/width/2.,(max+mean)/2.,width/4.); // The left-sided Gauss dgaus->SetParLimits(0,integ-1.5,integ+1.5); dgaus->SetParLimits(1,min+(width/10.),mean); dgaus->SetParLimits(2,0,width/2.); // The right-sided Gauss dgaus->SetParLimits(3,0,integ); dgaus->SetParLimits(4,mean,max-(width/10.)); dgaus->SetParLimits(5,0,width/2.); obj2->Fit("dgaus","QLRM"); obj2->GetFunction("dgaus")->SetLineColor(kYellow); break; case 3: TString tgausform = "([0]-[3]-[6])/[2]*exp(-0.5*(x-[1])*(x-[1])/[2]/[2])"; tgausform += "+[3]/[5]*exp(-0.5*(x-[4])*(x-[4])/[5]/[5])"; tgausform += "+[6]/[8]*exp(-0.5*(x-[7])*(x-[7])/[8]/[8])"; TF1 *tgaus = new TF1("tgaus",tgausform.Data(),min,max); tgaus->SetBit(kCanDelete); tgaus->SetParNames("A_{tot}","#mu_{1}","#sigma_{1}", "A_{2}","#mu_{2}","#sigma_{2}", "A_{3}","#mu_{3}","#sigma_{3}"); tgaus->SetParameters(integ,(min+mean)/2,width/4., integ/width/3.,(max+mean)/2.,width/4., integ/width/3.,mean,width/2.); // The left-sided Gauss tgaus->SetParLimits(0,integ-1.5,integ+1.5); tgaus->SetParLimits(1,min+(width/10.),mean); tgaus->SetParLimits(2,width/15.,width/2.); // The right-sided Gauss tgaus->SetParLimits(3,0.,integ); tgaus->SetParLimits(4,mean,max-(width/10.)); tgaus->SetParLimits(5,width/15.,width/2.); // The Gauss describing the outliers tgaus->SetParLimits(6,0.,integ); tgaus->SetParLimits(7,min,max); tgaus->SetParLimits(8,width/4.,width/1.5); obj2->Fit("tgaus","QLRM"); obj2->GetFunction("tgaus")->SetLineColor(kYellow); break; case 4: obj2->Fit("pol0","Q"); obj2->GetFunction("pol0")->SetLineColor(kYellow); break; case 9: break; default: obj2->Fit("gaus","Q"); obj2->GetFunction("gaus")->SetLineColor(kYellow); break; } TArrayI s0(3); s0[0] = 6; s0[1] = 1; s0[2] = 2; TArrayI s1(3); s1[0] = 3; s1[1] = 4; s1[2] = 5; TArrayI inner(1); inner[0] = 0; TArrayI outer(1); outer[0] = 1; // Just to get the right (maximum) binning TH1D *half[4]; half[0] = obj1->ProjectionS(s0, inner, "Sector 6-1-2 Inner"); half[1] = obj1->ProjectionS(s1, inner, "Sector 3-4-5 Inner"); half[2] = obj1->ProjectionS(s0, outer, "Sector 6-1-2 Outer"); half[3] = obj1->ProjectionS(s1, outer, "Sector 3-4-5 Outer"); for (int i=0; i<4; i++) { half[i]->SetLineColor(kRed+i); half[i]->SetDirectory(0); half[i]->SetBit(kCanDelete); half[i]->Draw("same"); } gPad->Modified(); gPad->Update(); } }