/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Markus Gaug, 11/2003 ! ! Copyright: MAGIC Software Development, 2000-2003 ! ! \* ======================================================================== */ #include "MAGIC.h" void calibration() { // const char *inpath = "/remote/home/pc2/operator/NewCalBoxTest/"; // const char *inpath = "/remote/home/pc2/operator/Crab20040214/"; // const char *inpath = "./"; //const TString inpath = "/mnt/Data/rootdata/CrabNebula/2004_02_10/"; //const TString inpath = "/mnt/Data/rootdata/CrabNebula/2004_01_26/"; const TString inpath = "/mnt/Data/rootdata/CrabNebula/2004_01_27/"; //const TString inpath = "/mnt/Data/rootdata/Miscellaneous/2003_12_19/"; MRunIter pruns; MRunIter cruns; pruns.AddRun(12386,inpath); cruns.AddRun(12525,inpath); // pruns.AddRun(14400,inpath); // cruns.AddRuns(14401,14409,inpath); // pruns.AddRuns(15487,15494,inpath); // cruns.AddRuns(15495,15508,inpath); // pruns.AddRun(19816,inpath); // CalboxTest // cruns.AddRun(19820,inpath); // 3blue // cruns.AddRun(19820,inpath); // 1blue gStyle->SetOptStat(1111); gStyle->SetOptFit(); MStatusDisplay *display = new MStatusDisplay; display->SetUpdateTime(3000); display->Resize(850,700); MJPedestal pedloop; pedloop.SetInput(&pruns); pedloop.SetDisplay(display); if (!pedloop.Process()) return; // // Now the short version: // /* MJCalibration calloop; calloop.SetInput(&cruns); calloop.SetDisplay(display); if (!calloop.Process(pedloop.GetPedestalCam())) return; #if 0 */ // // The longer version: // // // Create a empty Parameter List and an empty Task List // MParList plist; MTaskList tlist; plist.AddToList(&tlist); plist.AddToList(&pedloop.GetPedestalCam()); gLog << endl;; gLog << "Calculate MCalibrationCam from Runs " << cruns.GetRunsAsString() << endl; gLog << endl; MReadMarsFile read("Events"); read.DisableAutoScheme(); static_cast(read).AddFiles(cruns); MGeomCamMagic geomcam; MExtractedSignalCam sigcam; MArrivalTimeCam timecam; MCalibrationChargeCam calcam; MCalibrationChargePINDiode pindiode; MCalibrationChargeBlindPix blindpix; MHCalibrationRelTimeCam histtime; MHCalibrationChargeCam histcharge; MHCalibrationChargePINDiode histpin; MHCalibrationChargeBlindPix histblind; // histblind.SetSinglePheCut(80); // // As long, as we don't have digital modules, // we have to set the color of the pulser LED by hand // blindpix.SetColor(kCT1); // pindiode.SetColor(kCT1); // // Get the previously created MPedestalCam into the new Parameter List // plist.AddToList(&geomcam); plist.AddToList(&sigcam); plist.AddToList(&timecam); plist.AddToList(&calcam); plist.AddToList(&histtime); plist.AddToList(&histcharge); // plist.AddToList(&histpin); plist.AddToList(&histblind); plist.AddToList(&pedloop.GetBadPixels()); // // We saw that the signal jumps between slices, // thus take the sliding window // MExtractSignal2 sigcalc2; MExtractPINDiode pincalc; MExtractBlindPixel blindcalc; // blindcalc.SetRange(11,16); MArrivalTimeCalc2 timecalc; MCalibrationChargeCalc calcalc; MGeomApply geomapl; MFillH filltime( "MHCalibrationRelTimeCam" , "MArrivalTimeCam"); // MFillH fillpin ("MHCalibrationChargePINDiode", "MExtractedSignalPINDiode"); MFillH fillblind("MHCalibrationChargeBlindPix", "MExtractedSignalBlindPixel"); MFillH fillcam ("MHCalibrationChargeCam" , "MExtractedSignalCam"); // // Skip the HiGain vs. LoGain calibration // calcalc.SkipHiLoGainCalibration(); // // Apply a filter against cosmics // (was directly in MCalibrationCalc in earlier versions) // MFCosmics cosmics; MContinue cont(&cosmics); tlist.AddToList(&read); tlist.AddToList(&geomapl); tlist.AddToList(&sigcalc2); tlist.AddToList(&blindcalc); // tlist.AddToList(&pincalc); // // In case, you want to skip the cosmics rejection, // uncomment the next line // tlist.AddToList(&cont); // // In case, you want to skip the somewhat lengthy calculation // of the arrival times using a spline, uncomment the next two lines // tlist.AddToList(&timecalc); tlist.AddToList(&filltime); // tlist.AddToList(&fillpin); tlist.AddToList(&fillblind); tlist.AddToList(&fillcam); // tlist.AddToList(&calcalc); // // Create and setup the eventloop // MEvtLoop evtloop; evtloop.SetParList(&plist); evtloop.SetDisplay(display); // // Execute second analysis // if (!evtloop.Eventloop()) return; tlist.PrintStatistics(); // // print the most important results of all pixels to a file // MLog gauglog; gauglog.SetOutputFile(Form("%s%s",calcam.GetName(),".txt"),1); calcam.SetLogStream(&gauglog); calcam.Print(); calcam.SetLogStream(&gLog); // // just one example how to get the plots of individual pixels // // histblind.DrawClone("all"); // histcharge[5].DrawClone("all"); // histcharge(5).DrawClone("all"); // histtime[5].DrawClone("fourierevents"); // Create histograms to display MHCamera disp1 (geomcam, "Cal;Charge", "Fitted Mean Charges"); MHCamera disp2 (geomcam, "Cal;SigmaCharge", "Sigma of Fitted Charges"); MHCamera disp3 (geomcam, "Cal;FitProb", "Probability of Fit"); MHCamera disp4 (geomcam, "Cal;RSigma", "Reduced Sigmas"); MHCamera disp5 (geomcam, "Cal;RSigma/Charge", "Reduced Sigma per Charge"); MHCamera disp6 (geomcam, "Cal;FFactorPh", "Nr. of Photo-electrons (F-Factor Method)"); MHCamera disp7 (geomcam, "Cal;FFactorConv", "Conversion Factor to photons (F-Factor Method)"); MHCamera disp8 (geomcam, "Cal;FFactorFFactor", "Total F-Factor (F-Factor Method)"); MHCamera disp9 (geomcam, "Cal;BlindPixPh", "Photon flux inside plexiglass (Blind Pixel Method)"); MHCamera disp10 (geomcam, "Cal;BlindPixConv", "Conversion Factor to photons (Blind Pixel Method)"); MHCamera disp11 (geomcam, "Cal;BlindPixFFactor","Total F-Factor (Blind Pixel Method)"); MHCamera disp12 (geomcam, "Cal;PINDiodePh", "Photon flux outside plexiglass (PIN Diode Method)"); MHCamera disp13 (geomcam, "Cal;PINDiodeConv", "Conversion Factor tp photons (PIN Diode Method)"); MHCamera disp14 (geomcam, "Cal;PINDiodeFFactor","Total F-Factor (PIN Diode Method)"); MHCamera disp15 (geomcam, "Cal;Excluded", "Pixels previously excluded"); MHCamera disp16 (geomcam, "Cal;NotFitted", "Pixels that could not be fitted"); MHCamera disp17 (geomcam, "Cal;NotFitValid", "Pixels with not valid fit results"); MHCamera disp18 (geomcam, "Cal;HiGainOscillating", "Oscillating Pixels HI Gain"); MHCamera disp19 (geomcam, "Cal;LoGainOscillating", "Oscillating Pixels LO Gain"); MHCamera disp20 (geomcam, "Cal;HiGainPickup", "Number Pickup events Hi Gain"); MHCamera disp21 (geomcam, "Cal;LoGainPickup", "Number Pickup events Lo Gain"); MHCamera disp22 (geomcam, "Cal;Saturation", "Pixels with saturated Hi Gain"); MHCamera disp23 (geomcam, "Cal;FFactorValid", "Pixels with valid F-Factor calibration"); MHCamera disp24 (geomcam, "Cal;BlindPixelValid", "Pixels with valid BlindPixel calibration"); MHCamera disp25 (geomcam, "Cal;PINdiodeFFactorValid", "Pixels with valid PINDiode calibration"); MHCamera disp26 (geomcam, "Cal;Ped", "Pedestals"); MHCamera disp27 (geomcam, "Cal;PedRms", "Pedestal RMS"); MHCamera disp28 (geomcam, "time;Time", "Rel. Arrival Times"); MHCamera disp29 (geomcam, "time;SigmaTime", "Sigma of Rel. Arrival Times"); MHCamera disp30 (geomcam, "time;TimeProb", "Probability of Time Fit"); MHCamera disp31 (geomcam, "time;NotFitValid", "Pixels with not valid fit results"); MHCamera disp32 (geomcam, "time;Oscillating", "Oscillating Pixels"); MHCamera disp33 (geomcam, "Cal;AbsTimeMean", "Abs. Arrival Times"); MHCamera disp34 (geomcam, "Cal;AbsTimeRms", "RMS of Arrival Times"); // Fitted charge means and sigmas disp1.SetCamContent(calcam, 0); disp1.SetCamError( calcam, 1); disp2.SetCamContent(calcam, 2); disp2.SetCamError( calcam, 3); // Fit probabilities disp3.SetCamContent(calcam, 4); // Reduced Sigmas and reduced sigmas per charge disp4.SetCamContent(calcam, 5); disp4.SetCamError( calcam, 6); disp5.SetCamContent(calcam, 7); disp5.SetCamError( calcam, 8); // F-Factor Method disp6.SetCamContent(calcam, 9); disp6.SetCamError( calcam, 10); disp7.SetCamContent(calcam, 11); disp7.SetCamError( calcam, 12); disp8.SetCamContent(calcam, 13); disp8.SetCamError( calcam, 14); /// Blind Pixel Method disp9.SetCamContent(calcam, 15); disp9.SetCamError( calcam, 16); disp10.SetCamContent(calcam,17); disp10.SetCamError( calcam,18); disp11.SetCamContent(calcam,19); disp11.SetCamError( calcam,20); // PIN Diode Method disp12.SetCamContent(calcam,21); disp12.SetCamError( calcam,22); disp13.SetCamContent(calcam,23); disp13.SetCamError( calcam,24); disp14.SetCamContent(calcam,25); disp14.SetCamError( calcam,26); // Pixels with defects disp15.SetCamContent(calcam,27); disp16.SetCamContent(calcam,28); disp17.SetCamContent(calcam,29); disp18.SetCamContent(calcam,30); disp19.SetCamContent(calcam,31); disp20.SetCamContent(calcam,32); disp21.SetCamContent(calcam,33); // Lo Gain calibration disp22.SetCamContent(calcam,34); // Valid flags disp23.SetCamContent(calcam,35); disp24.SetCamContent(calcam,36); disp25.SetCamContent(calcam,37); // Pedestals disp26.SetCamContent(calcam,38); disp26.SetCamError( calcam,39); disp27.SetCamContent(calcam,40); disp27.SetCamError( calcam,41); // Relative Times disp28.SetCamContent(timecam,0); disp28.SetCamError( timecam,1); disp29.SetCamContent(timecam,2); disp29.SetCamError( timecam,3); disp30.SetCamContent(timecam,4); disp31.SetCamContent(timecam,5); disp32.SetCamContent(timecam,6); // Absolute Times disp33.SetCamContent(calcam,42); disp33.SetCamError( calcam,43); disp34.SetCamContent(calcam,43); disp1.SetYTitle("Charge [FADC units]"); disp2.SetYTitle("\\sigma_{Charge} [FADC units]"); disp3.SetYTitle("P_{Charge} [1]"); disp4.SetYTitle("\\sqrt{\\sigma^{2}_{Charge} - RMS^{2}_{Ped}} [FADC Counts]"); disp5.SetYTitle("Reduced Sigma / Mean Charge [1]"); disp6.SetYTitle("Nr. Photo-electrons [1]"); disp7.SetYTitle("Conversion Factor [Ph/FADC Count]"); disp8.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Charge}/\\mu_{Charge} [1] "); disp9.SetYTitle("Photon flux [ph/mm^2]"); disp10.SetYTitle("Conversion Factor [Phot/FADC Count]"); disp11.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Charge}/\\mu_{Charge} [1]"); disp12.SetYTitle("Photon flux [ph/mm^2]"); disp13.SetYTitle("Conversion Factor [Phot/FADC Count]"); disp14.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Charge}/\\mu_{Charge} [1]"); disp15.SetYTitle("[1]"); disp16.SetYTitle("[1]"); disp17.SetYTitle("[1]"); disp18.SetYTitle("[1]"); disp19.SetYTitle("[1]"); disp20.SetYTitle("[1]"); disp21.SetYTitle("[1]"); disp22.SetYTitle("[1]"); disp23.SetYTitle("[1]"); disp24.SetYTitle("[1]"); disp25.SetYTitle("[1]"); disp26.SetYTitle("Ped [FADC Counts ]"); disp27.SetYTitle("RMS_{Ped} [FADC Counts ]"); disp28.SetYTitle("Time Offset [ns]"); disp29.SetYTitle("Timing resolution [ns]"); disp30.SetYTitle("P_{Time} [1]"); disp31.SetYTitle("[1]"); disp32.SetYTitle("[1]"); disp33.SetYTitle("Mean Abs. Time [FADC slice]"); disp34.SetYTitle("RMS Abs. Time [FADC slices]"); gStyle->SetOptStat(1111); gStyle->SetOptFit(); // Charges TCanvas &c1 = display->AddTab("Fit.Charge"); c1.Divide(2, 3); CamDraw(c1, disp1,calcam,1, 2 , 2); CamDraw(c1, disp2,calcam,2, 2 , 2); // Fit Probability TCanvas &c2 = display->AddTab("Fit.Prob"); c2.Divide(1,3); CamDraw(c2, disp3,calcam,1, 1 , 4); // Reduced Sigmas TCanvas &c3 = display->AddTab("Red.Sigma"); c3.Divide(2,3); CamDraw(c3, disp4,calcam,1, 2 , 2); CamDraw(c3, disp5,calcam,2, 2 , 2); // F-Factor Method TCanvas &c4 = display->AddTab("F-Factor"); c4.Divide(3,3); CamDraw(c4, disp6,calcam,1, 3 , 2); CamDraw(c4, disp7,calcam,2, 3 , 2); CamDraw(c4, disp8,calcam,3, 3 , 2); // Blind Pixel Method TCanvas &c5 = display->AddTab("BlindPix"); c5.Divide(3, 3); CamDraw(c5, disp9,calcam,1, 3 , 9); CamDraw(c5, disp10,calcam,2, 3 , 2); CamDraw(c5, disp11,calcam,3, 3 , 2); // PIN Diode Method TCanvas &c6 = display->AddTab("PINDiode"); c6.Divide(3,3); CamDraw(c6, disp12,calcam,1, 3 , 9); CamDraw(c6, disp13,calcam,2, 3 , 2); CamDraw(c6, disp14,calcam,3, 3 , 2); // Defects TCanvas &c7 = display->AddTab("Defects"); c7.Divide(7,2); CamDraw(c7, disp15,calcam,1,7, 0); CamDraw(c7, disp16,calcam,2,7, 0); CamDraw(c7, disp17,calcam,3,7, 0); CamDraw(c7, disp18,calcam,4,7, 0); CamDraw(c7, disp19,calcam,5,7, 0); CamDraw(c7, disp20,calcam,6,7, 0); CamDraw(c7, disp21,calcam,7,7, 0); // Valid flags TCanvas &c8 = display->AddTab("Validity"); c8.Divide(4,2); CamDraw(c8, disp22,calcam,1,4,0); CamDraw(c8, disp23,calcam,2,4,0); CamDraw(c8, disp24,calcam,3,4,0); CamDraw(c8, disp25,calcam,4,4,0); // Pedestals TCanvas &c9 = display->AddTab("Pedestals"); c9.Divide(2,3); CamDraw(c9,disp26,calcam,1,2,1); CamDraw(c9,disp27,calcam,2,2,2); // Rel. Times TCanvas &c10 = display->AddTab("Fitted Rel. Times"); c10.Divide(3,3); CamDraw(c10,disp28,calcam,1,3,2); CamDraw(c10,disp29,calcam,2,3,2); CamDraw(c10,disp30,calcam,3,3,4); // Time Defects TCanvas &c11 = display->AddTab("Time Def."); c11.Divide(2,2); CamDraw(c11, disp31,calcam,1,2, 0); CamDraw(c11, disp32,calcam,2,2, 0); // Abs. Times TCanvas &c12 = display->AddTab("Abs. Times"); c12.Divide(2,3); CamDraw(c12,disp33,calcam,1,2,2); CamDraw(c12,disp34,calcam,2,2,2); #endif } void CamDraw(TCanvas &c, MHCamera &cam, MCamEvent &evt, Int_t i, Int_t j, Int_t fit) { c.cd(i); gPad->SetBorderMode(0); MHCamera *obj1=(MHCamera*)cam.DrawCopy("hist"); // obj1->AddNotify(evt); c.cd(i+j); gPad->SetBorderMode(0); obj1->Draw(); ((MHCamera*)obj1)->SetPrettyPalette(); if (fit != 0) { c.cd(i+2*j); gPad->SetBorderMode(0); TH1D *obj2 = (TH1D*)obj1->Projection(obj1.GetName()); // obj2->Sumw2(); obj2->Draw(); obj2->SetBit(kCanDelete); const Double_t min = obj2->GetBinCenter(obj2->GetXaxis()->GetFirst()); const Double_t max = obj2->GetBinCenter(obj2->GetXaxis()->GetLast()); const Double_t integ = obj2->Integral("width")/2.5066283; const Double_t mean = obj2->GetMean(); const Double_t rms = obj2->GetRMS(); const Double_t width = max-min; if (rms == 0. || width == 0. ) return; switch (fit) { case 1: TF1 *sgaus = new TF1("sgaus","gaus(0)",min,max); sgaus->SetBit(kCanDelete); sgaus->SetParNames("Area","#mu","#sigma"); sgaus->SetParameters(integ/rms,mean,rms); sgaus->SetParLimits(0,0.,integ); sgaus->SetParLimits(1,min,max); sgaus->SetParLimits(2,0,width/1.5); obj2->Fit("sgaus","QLR"); obj2->GetFunction("sgaus")->SetLineColor(kYellow); break; case 2: TString dgausform = "([0]-[3])/[2]*exp(-0.5*(x-[1])*(x-[1])/[2]/[2])"; dgausform += "+[3]/[5]*exp(-0.5*(x-[4])*(x-[4])/[5]/[5])"; TF1 *dgaus = new TF1("dgaus",dgausform.Data(),min,max); dgaus->SetBit(kCanDelete); dgaus->SetParNames("A_{tot}","#mu_{1}","#sigma_{1}","A_{2}","#mu_{2}","#sigma_{2}"); dgaus->SetParameters(integ,(min+mean)/2.,width/4., integ/width/2.,(max+mean)/2.,width/4.); // The left-sided Gauss dgaus->SetParLimits(0,integ-1.5,integ+1.5); dgaus->SetParLimits(1,min+(width/10.),mean); dgaus->SetParLimits(2,0,width/2.); // The right-sided Gauss dgaus->SetParLimits(3,0,integ); dgaus->SetParLimits(4,mean,max-(width/10.)); dgaus->SetParLimits(5,0,width/2.); obj2->Fit("dgaus","QLRM"); obj2->GetFunction("dgaus")->SetLineColor(kYellow); break; case 3: TString tgausform = "([0]-[3]-[6])/[2]*exp(-0.5*(x-[1])*(x-[1])/[2]/[2])"; tgausform += "+[3]/[5]*exp(-0.5*(x-[4])*(x-[4])/[5]/[5])"; tgausform += "+[6]/[8]*exp(-0.5*(x-[7])*(x-[7])/[8]/[8])"; TF1 *tgaus = new TF1("tgaus",tgausform.Data(),min,max); tgaus->SetBit(kCanDelete); tgaus->SetParNames("A_{tot}","#mu_{1}","#sigma_{1}", "A_{2}","#mu_{2}","#sigma_{2}", "A_{3}","#mu_{3}","#sigma_{3}"); tgaus->SetParameters(integ,(min+mean)/2,width/4., integ/width/3.,(max+mean)/2.,width/4., integ/width/3.,mean,width/2.); // The left-sided Gauss tgaus->SetParLimits(0,integ-1.5,integ+1.5); tgaus->SetParLimits(1,min+(width/10.),mean); tgaus->SetParLimits(2,width/15.,width/2.); // The right-sided Gauss tgaus->SetParLimits(3,0.,integ); tgaus->SetParLimits(4,mean,max-(width/10.)); tgaus->SetParLimits(5,width/15.,width/2.); // The Gauss describing the outliers tgaus->SetParLimits(6,0.,integ); tgaus->SetParLimits(7,min,max); tgaus->SetParLimits(8,width/4.,width/1.5); obj2->Fit("tgaus","QLRM"); obj2->GetFunction("tgaus")->SetLineColor(kYellow); break; case 4: obj2->Fit("pol0","Q"); obj2->GetFunction("pol0")->SetLineColor(kYellow); break; case 9: break; default: obj2->Fit("gaus","Q"); obj2->GetFunction("gaus")->SetLineColor(kYellow); break; } TArrayI s0(3); s0[0] = 6; s0[1] = 1; s0[2] = 2; TArrayI s1(3); s1[0] = 3; s1[1] = 4; s1[2] = 5; TArrayI inner(1); inner[0] = 0; // Just to get the right (maximum) binning TH1D *half[2]; half[0] = obj1->ProjectionS(s0, inner, "Sector 6-1-2"); half[1] = obj1->ProjectionS(s0, inner, "Sector 3-4-5"); for (int i=0; i<2; i++) { half[i]->SetLineColor(kRed+i); half[i]->SetDirectory(0); half[i]->SetBit(kCanDelete); half[i]->Draw("same"); } gPad->Modified(); gPad->Update(); } }