/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Markus Gaug, 11/2003 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ void calibration() { const MCalibrationCam::PulserColor_t color = MCalibrationCam::kGREEN; const TString inpath = "/home/rootdata/Calib/2004_04_08/"; MRunIter pruns; MRunIter cruns; pruns.AddRun(22254,inpath); cruns.AddRun(22253,inpath); gStyle->SetOptStat(1111); gStyle->SetOptFit(); MCalibrationQECam qecam; MBadPixelsCam badcam; badcam.AsciiRead("badpixels.dat"); for (Int_t i=0;iSetUpdateTime(3000); display->Resize(850,700); /************************************/ /* FIRST LOOP: PEDESTAL COMPUTATION */ /************************************/ MJPedestal pedloop; pedloop.SetInput(&pruns); pedloop.SetDisplay(display); pedloop.SetBadPixels(badcam); if (!pedloop.Process()) return; // // Create a empty Parameter List and an empty Task List // The tasklist is identified in the eventloop by its name // MParList plist0; MTaskList tlist0; plist0.AddToList(&tlist0); // // Now setup the tasks and tasklist for the pedestals: // --------------------------------------------------- // MReadMarsFile read("Events"); read.DisableAutoScheme(); static_cast(read).AddFiles(pruns); MJCalibration calloop; calloop.SetColor(color); // // If you want only the most necessary plots, choose: // calloop.SetDataCheck(); // // For everything, you ever dreamed of, choose: // calloop.SetFullDisplay(); // // If you want to calibrate the times as well, choose: // calloop.SetRelTimeCalibration(); calloop.SetInput(&cruns); calloop.SetDisplay(display); calloop.SetQECam(qecam); calloop.SetBadPixels(pedloop.GetBadPixels()); if (!calloop.Process(pedloop.GetPedestalCam())) return; #if 0 // // The longer version: // // // Create a empty Parameter List and an empty Task List // MParList plist; MTaskList tlist; plist.AddToList(&tlist); plist.AddToList(&pedloop.GetPedestalCam()); plist.AddToList(&pedloop.GetBadPixels()); gLog << endl;; gLog << "Calculate MCalibrationCam from Runs " << cruns.GetRunsAsString() << endl; gLog << endl; MReadMarsFile read("Events"); read.DisableAutoScheme(); static_cast(read).AddFiles(cruns); MGeomCamMagic geomcam; MExtractedSignalCam sigcam; MArrivalTimeCam timecam; MCalibrationRelTimeCam relcam; MCalibrationQECam qecam; MCalibrationChargeCam calcam; MCalibrationChargePINDiode pindiode; MCalibrationChargeBlindPix blindpix; MHCalibrationRelTimeCam histtime; MHCalibrationChargeCam histcharge; MHCalibrationChargePINDiode histpin; MHCalibrationChargeBlindPix histblind; histcharge.SetPulserFrequency(500); histblind.SetSinglePheCut(600); // // Get the previously created MPedestalCam into the new Parameter List // plist.AddToList(&geomcam); plist.AddToList(&sigcam); plist.AddToList(&timecam); plist.AddToList(&relcam); plist.AddToList(&qecam); plist.AddToList(&calcam); plist.AddToList(&histtime); plist.AddToList(&histcharge); // plist.AddToList(&histpin); plist.AddToList(&histblind); // // We saw that the signal jumps between slices, // thus take the sliding window // MExtractSignal2 sigcalc2; MExtractPINDiode pincalc; MExtractBlindPixel blindcalc; sigcalc2.SetRange(2,15,6,5,14,6); blindcalc.SetRange(12,17); MArrivalTimeCalc2 timecalc; MCalibrationChargeCalc calcalc; calcalc.SetPulserColor(color); MGeomApply geomapl; MFillH filltime( "MHCalibrationRelTimeCam" , "MArrivalTimeCam"); // MFillH fillpin ("MHCalibrationChargePINDiode", "MExtractedSignalPINDiode"); MFillH fillblind("MHCalibrationChargeBlindPix", "MExtractedSignalBlindPixel"); MFillH fillcam ("MHCalibrationChargeCam" , "MExtractedSignalCam"); // // Skip the HiGain vs. LoGain calibration // calcalc.SkipHiLoGainCalibration(); // // Apply a filter against cosmics // (was directly in MCalibrationCalc in earlier versions) // MFCosmics cosmics; MContinue cont(&cosmics); tlist.AddToList(&read); tlist.AddToList(&geomapl); tlist.AddToList(&sigcalc2); tlist.AddToList(&blindcalc); // tlist.AddToList(&pincalc); // // In case, you want to skip the cosmics rejection, // uncomment the next line // tlist.AddToList(&cont); // // In case, you want to skip the somewhat lengthy calculation // of the arrival times using a spline, uncomment the next two lines // tlist.AddToList(&timecalc); tlist.AddToList(&filltime); // tlist.AddToList(&fillpin); tlist.AddToList(&fillblind); tlist.AddToList(&fillcam); // tlist.AddToList(&calcalc); // // Create and setup the eventloop // MEvtLoop evtloop; evtloop.SetParList(&plist); evtloop.SetDisplay(display); // // Execute second analysis // if (!evtloop.Eventloop()) return; tlist.PrintStatistics(); MBadPixelsCam *badpixels = (MBadPixelsCam*)plist->FindObject("MBadPixelsCam"); // // print the most important results of all pixels to a file // /* MLog gauglog; gauglog.SetOutputFile(Form("%s%s",calcam.GetName(),".txt"),1); calcam.SetLogStream(&gauglog); badpixels->Print(); calcam.SetLogStream(&gLog); */ // // just one example how to get the plots of individual pixels // // histblind.DrawClone("all"); // histcharge[400].DrawClone("all"); // histcharge(5).DrawClone("all"); // histtime[5].DrawClone("fourierevents"); for (Int_t aidx=0;aidx<2;aidx++) { histcharge.GetAverageHiGainArea(aidx).DrawClone("all"); histcharge.GetAverageLoGainArea(aidx).DrawClone("all"); } for (Int_t sector=1;sector<7;sector++) { histcharge.GetAverageHiGainSector(sector).DrawClone("all"); histcharge.GetAverageLoGainSector(sector).DrawClone("all"); } // Create histograms to display MHCamera disp1 (geomcam, "Cal;Charge", "Fitted Mean Charges"); MHCamera disp2 (geomcam, "Cal;SigmaCharge", "Sigma of Fitted Charges"); MHCamera disp3 (geomcam, "Cal;FitProb", "Probability of Fit"); MHCamera disp4 (geomcam, "Cal;RSigma", "Reduced Sigmas"); MHCamera disp5 (geomcam, "Cal;RSigma/Charge", "Reduced Sigma per Charge"); MHCamera disp6 (geomcam, "Cal;FFactorPhe", "Nr. of Photo-electrons (F-Factor Method)"); MHCamera disp7 (geomcam, "Cal;FFactorConv", "Conversion Factor to photons (F-Factor Method)"); MHCamera disp8 (geomcam, "Cal;FFactorFFactor", "Total F-Factor (F-Factor Method)"); MHCamera disp9 (geomcam, "Cal;CascadesQEFFactor", "Av. Quantum Efficiency (F-Factor Method)"); MHCamera disp10 (geomcam, "Cal;QEFFactor", "Measured QE (F-Factor Method)"); MHCamera disp11 (geomcam, "Cal;PINDiodeConv", "Conversion Factor tp photons (PIN Diode Method)"); MHCamera disp12 (geomcam, "Cal;PINDiodeFFactor", "Total F-Factor (PIN Diode Method)"); MHCamera disp13 (geomcam, "Cal;Excluded", "Pixels previously excluded"); MHCamera disp14 (geomcam, "Cal;Unsuited", "Unsuited Pixels "); MHCamera disp15 (geomcam, "Cal;Unreliable", "Unreliable Pixels"); MHCamera disp16 (geomcam, "Cal;HiGainOscillating", "Oscillating Pixels High Gain"); MHCamera disp17 (geomcam, "Cal;LoGainOscillating", "Oscillating Pixels Low Gain"); MHCamera disp18 (geomcam, "Cal;HiGainPickup", "Number Pickup events Hi Gain"); MHCamera disp19 (geomcam, "Cal;LoGainPickup", "Number Pickup events Lo Gain"); MHCamera disp20 (geomcam, "Cal;Saturation", "Pixels with saturated Hi Gain"); MHCamera disp21 (geomcam, "Cal;FFactorValid", "Pixels with valid F-Factor calibration"); MHCamera disp22 (geomcam, "Cal;BlindPixelValid", "Pixels with valid BlindPixel calibration"); MHCamera disp23 (geomcam, "Cal;PINdiodeFFactorValid", "Pixels with valid PINDiode calibration"); MHCamera disp24 (geomcam, "Cal;Ped", "Pedestals"); MHCamera disp25 (geomcam, "Cal;PedRms", "Pedestal RMS"); MHCamera disp26 (geomcam, "time;Time", "Rel. Arrival Times"); MHCamera disp27 (geomcam, "time;SigmaTime", "Sigma of Rel. Arrival Times"); MHCamera disp28 (geomcam, "time;TimeProb", "Probability of Time Fit"); MHCamera disp29 (geomcam, "time;NotFitValid", "Pixels with not valid fit results"); MHCamera disp30 (geomcam, "time;Oscillating", "Oscillating Pixels"); MHCamera disp31 (geomcam, "Cal;AbsTimeMean", "Abs. Arrival Times"); MHCamera disp32 (geomcam, "Cal;AbsTimeRms", "RMS of Arrival Times"); // Fitted charge means and sigmas disp1.SetCamContent(calcam, 0); disp1.SetCamError( calcam, 1); disp2.SetCamContent(calcam, 2); disp2.SetCamError( calcam, 3); // Fit probabilities disp3.SetCamContent(calcam, 4); // Reduced Sigmas and reduced sigmas per charge disp4.SetCamContent(calcam, 5); disp4.SetCamError( calcam, 6); disp5.SetCamContent(calcam, 7); disp5.SetCamError( calcam, 8); // F-Factor Method disp6.SetCamContent(calcam, 9); disp6.SetCamError( calcam, 10); disp7.SetCamContent(calcam, 11); disp7.SetCamError( calcam, 12); disp8.SetCamContent(calcam, 13); disp8.SetCamError( calcam, 14); // Quantum efficiency disp9.SetCamContent( qecam, 0 ); disp9.SetCamError( qecam, 1 ); disp10.SetCamContent(qecam, 8); disp10.SetCamError( qecam, 9); // PIN Diode Method disp11.SetCamContent(calcam,21); disp11.SetCamError( calcam,22); disp12.SetCamContent(calcam,23); disp12.SetCamError( calcam,24); // Pixels with defects disp13.SetCamContent(calcam,26); disp14.SetCamContent(*badpixels,1); disp15.SetCamContent(*badpixels,3); disp16.SetCamContent(*badpixels,10); disp17.SetCamContent(*badpixels,11); disp18.SetCamContent(calcam,27); disp19.SetCamContent(calcam,28); // Lo Gain calibration disp20.SetCamContent(calcam,29); // Valid flags disp21.SetCamContent(calcam,15); disp22.SetCamContent(calcam,20); disp23.SetCamContent(calcam,25); // Pedestals disp24.SetCamContent(calcam,30); disp24.SetCamError( calcam,31); disp25.SetCamContent(calcam,32); disp25.SetCamError( calcam,33); // Relative Times disp26.SetCamContent(histtime,0); disp26.SetCamError( histtime,1); disp27.SetCamContent(histtime,2); disp27.SetCamError( histtime,3); disp28.SetCamContent(histtime,4); disp29.SetCamContent(histtime,5); disp30.SetCamContent(histtime,6); // Absolute Times disp31.SetCamContent(calcam,34); disp31.SetCamError( calcam,35); disp32.SetCamContent(calcam,35); disp1.SetYTitle("Mean Charge [FADC Counts]"); disp2.SetYTitle("\\sigma_{Charge} [FADC Counts]"); disp3.SetYTitle("P_{Sum} [1]"); disp4.SetYTitle("\\sqrt{\\sigma^{2}_{Charge} - RMS^{2}_{Ped}} [FADC Counts]"); disp5.SetYTitle("Reduced Sigma / Mean Charge [1]"); disp6.SetYTitle("Nr. Photo-electrons [1]"); disp7.SetYTitle("Conversion Factor [Ph/FADC Count]"); disp8.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Charge}/\\mu_{Charge} [1] "); disp9.SetYTitle("Average QE Cascades [1]"); disp10.SetYTitle("Measured QE (F-Factor Method) [1]"); disp11.SetYTitle("Conversion Factor [Phot/FADC Count]"); disp12.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Charge}/\\mu_{Charge} [1]"); disp13.SetYTitle("[1]"); disp14.SetYTitle("[1]"); disp15.SetYTitle("[1]"); disp16.SetYTitle("[1]"); disp17.SetYTitle("[1]"); disp18.SetYTitle("[1]"); disp19.SetYTitle("[1]"); disp20.SetYTitle("[1]"); disp21.SetYTitle("[1]"); disp22.SetYTitle("[1]"); disp23.SetYTitle("[1]"); disp24.SetYTitle("Ped [FADC Counts ]"); disp25.SetYTitle("RMS_{Ped} [FADC Counts ]"); disp26.SetYTitle("Time Offset [ns]"); disp27.SetYTitle("Timing resolution [ns]"); disp28.SetYTitle("P_{Time} [1]"); disp29.SetYTitle("[1]"); disp30.SetYTitle("[1]"); disp31.SetYTitle("Mean Abs. Time [FADC slice]"); disp32.SetYTitle("RMS Abs. Time [FADC slices]"); gStyle->SetOptStat(1111); gStyle->SetOptFit(); // Charges TCanvas &c1 = display->AddTab("Fit.Charge"); c1.Divide(2, 4); CamDraw(c1, disp1,calcam,1, 2 , 2); CamDraw(c1, disp2,calcam,2, 2 , 2); // Fit Probability TCanvas &c2 = display->AddTab("Fit.Prob"); c2.Divide(1,4); CamDraw(c2, disp3,calcam,1,1,4); // Reduced Sigmas TCanvas &c3 = display->AddTab("Red.Sigma"); c3.Divide(2,4); CamDraw(c3, disp4,calcam,1, 2 , 2); CamDraw(c3, disp5,calcam,2, 2 , 2); // F-Factor Method TCanvas &c4 = display->AddTab("F-Factor"); c4.Divide(3,4); CamDraw(c4, disp6,calcam,1, 3 , 2); CamDraw(c4, disp7,calcam,2, 3 , 2); CamDraw(c4, disp8,calcam,3, 3 , 2); // Quantum Efficiencies TCanvas &c5 = display->AddTab("QE"); c5.Divide(2, 4); CamDraw(c5, disp9 ,calcam,1,2, 2); CamDraw(c5, disp10,calcam,2,2, 2); // PIN Diode Method TCanvas &c6 = display->AddTab("PINDiode"); c6.Divide(2,4); CamDraw(c6, disp11,calcam,1,2, 2); CamDraw(c6, disp12,calcam,2,2, 2); // Defects TCanvas &c7 = display->AddTab("Defects"); c7.Divide(4,2); CamDraw(c7, disp13,calcam,1,4, 0); CamDraw(c7, disp14,calcam,2,4, 0); CamDraw(c7, disp18,calcam,3,4, 0); CamDraw(c7, disp19,calcam,4,4, 0); // BadCam TCanvas &c8 = display->AddTab("Defects"); c8.Divide(3,2); CamDraw(c8, disp15,badcam,1,3, 0); CamDraw(c8, disp16,badcam,2,3, 0); CamDraw(c8, disp17,badcam,3,3, 0); // Valid flags TCanvas &c9 = display->AddTab("Validity"); c9.Divide(4,2); CamDraw(c9, disp20,calcam,1,4,0); CamDraw(c9, disp21,calcam,2,4,0); CamDraw(c9, disp22,calcam,3,4,0); CamDraw(c9, disp23,calcam,4,4,0); // Pedestals TCanvas &c10 = display->AddTab("Pedestals"); c10.Divide(2,4); CamDraw(c10,disp24,calcam,1,2,1); CamDraw(c10,disp25,calcam,2,2,2); // Rel. Times TCanvas &c11 = display->AddTab("Fitted Rel. Times"); c11.Divide(3,4); CamDraw(c11,disp26,calcam,1,3,2); CamDraw(c11,disp27,calcam,2,3,2); CamDraw(c11,disp28,calcam,3,3,4); // Time Defects TCanvas &c12 = display->AddTab("Time Def."); c12.Divide(2,2); CamDraw(c12, disp29,calcam,1,2, 0); CamDraw(c12, disp30,calcam,2,2, 0); // Abs. Times TCanvas &c13 = display->AddTab("Abs. Times"); c13.Divide(2,4); CamDraw(c13,disp31,calcam,1,2,2); CamDraw(c13,disp32,calcam,2,2,2); #endif } void CamDraw(TCanvas &c, MHCamera &cam, TObject &evt, Int_t i, Int_t j, Int_t fit) { TArrayI s0(6); s0[0] = 1; s0[1] = 2; s0[2] = 3; s0[3] = 4; s0[4] = 5; s0[5] = 6; TArrayI s1(3); s1[0] = 6; s1[1] = 1; s1[2] = 2; TArrayI s2(3); s2[0] = 3; s2[1] = 4; s2[2] = 5; TArrayI inner(1); inner[0] = 0; TArrayI outer(1); outer[0] = 1; c.cd(i); gPad->SetBorderMode(0); gPad->SetTicks(); cam.GetXaxis()->SetLabelOffset(0.005); cam.GetXaxis()->SetLabelSize(0.06); cam.GetYaxis()->SetLabelOffset(0.005); cam.GetYaxis()->SetLabelSize(0.06); cam.GetXaxis()->SetTitleOffset(0.85); cam.GetXaxis()->SetTitleSize(0.06); cam.GetYaxis()->SetTitleOffset(0.7); cam.GetYaxis()->SetTitleSize(0.06); MHCamera *obj1 = (MHCamera*)cam.DrawCopy("hist"); obj1->SetDirectory(NULL); c.cd(i+j); // obj1->AddNotify(&evt); obj1->SetPrettyPalette(); obj1->Draw(); if (fit != 0) { c.cd(i+2*j); gPad->SetBorderMode(0); gPad->SetTicks(); TProfile *obj2 = obj1->RadialProfile(Form("%s%s",obj1->GetName(),"_rad")); obj2->SetDirectory(NULL); obj2->GetXaxis()->SetLabelOffset(0.005); obj2->GetXaxis()->SetLabelSize(0.06); obj2->GetYaxis()->SetLabelOffset(0.005); obj2->GetYaxis()->SetLabelSize(0.06); obj2->GetXaxis()->SetTitleOffset(0.85); obj2->GetXaxis()->SetTitleSize(0.06); obj2->GetYaxis()->SetTitleOffset(0.7); obj2->GetYaxis()->SetTitleSize(0.06); obj2->Draw(); obj2->SetBit(kCanDelete); TProfile *hprof[2]; hprof[0] = obj1->RadialProfileS(s0, inner,Form("%s%s",obj1->GetName(), "Inner")); hprof[1] = obj1->RadialProfileS(s0, outer,Form("%s%s",obj1->GetName(), "Outer")); for (Int_t k=0; k<2; k++) { Double_t min = cam.GetGeomCam().GetMinRadius(k); Double_t max = cam.GetGeomCam().GetMaxRadius(k); hprof[k]->SetLineColor(kRed+k); hprof[k]->SetDirectory(0); hprof[k]->SetBit(kCanDelete); hprof[k]->Draw("same"); hprof[k]->Fit("pol1","Q","",min,max); hprof[k]->GetFunction("pol1")->SetLineColor(kRed+k); hprof[k]->GetFunction("pol1")->SetLineWidth(1); } gPad->Modified(); gPad->Update(); c.cd(i+3*j); gPad->SetBorderMode(0); gPad->SetTicks(); TH1D *obj3 = (TH1D*)obj1->Projection(Form("%s%s",obj1->GetName(),"_py")); obj3->SetDirectory(NULL); // obj3->Sumw2(); obj3->GetXaxis()->SetLabelOffset(0.005); obj3->GetXaxis()->SetLabelSize(0.06); obj3->GetYaxis()->SetLabelOffset(0.005); obj3->GetYaxis()->SetLabelSize(0.06); obj3->GetXaxis()->SetTitleOffset(0.85); obj3->GetXaxis()->SetTitleSize(0.06); obj3->GetYaxis()->SetTitleOffset(0.7); obj3->GetYaxis()->SetTitleSize(0.06); obj3->Draw(); obj3->SetBit(kCanDelete); gPad->Modified(); gPad->Update(); const Double_t min = obj3->GetBinCenter(obj3->GetXaxis()->GetFirst()); const Double_t max = obj3->GetBinCenter(obj3->GetXaxis()->GetLast()); const Double_t integ = obj3->Integral("width")/2.5066283; const Double_t mean = obj3->GetMean(); const Double_t rms = obj3->GetRMS(); const Double_t width = max-min; if (rms == 0. || width == 0. ) return; switch (fit) { case 1: TF1 *sgaus = new TF1("sgaus","gaus(0)",min,max); sgaus->SetBit(kCanDelete); sgaus->SetParNames("Area","#mu","#sigma"); sgaus->SetParameters(integ/rms,mean,rms); sgaus->SetParLimits(0,0.,integ); sgaus->SetParLimits(1,min,max); sgaus->SetParLimits(2,0,width/1.5); obj3->Fit("sgaus","QLR"); obj3->GetFunction("sgaus")->SetLineColor(kYellow); break; case 2: TString dgausform = "([0]-[3])/[2]*exp(-0.5*(x-[1])*(x-[1])/[2]/[2])"; dgausform += "+[3]/[5]*exp(-0.5*(x-[4])*(x-[4])/[5]/[5])"; TF1 *dgaus = new TF1("dgaus",dgausform.Data(),min,max); dgaus->SetBit(kCanDelete); dgaus->SetParNames("A_{tot}","#mu_{1}","#sigma_{1}","A_{2}","#mu_{2}","#sigma_{2}"); dgaus->SetParameters(integ,(min+mean)/2.,width/4., integ/width/2.,(max+mean)/2.,width/4.); // The left-sided Gauss dgaus->SetParLimits(0,integ-1.5,integ+1.5); dgaus->SetParLimits(1,min+(width/10.),mean); dgaus->SetParLimits(2,0,width/2.); // The right-sided Gauss dgaus->SetParLimits(3,0,integ); dgaus->SetParLimits(4,mean,max-(width/10.)); dgaus->SetParLimits(5,0,width/2.); obj3->Fit("dgaus","QLRM"); obj3->GetFunction("dgaus")->SetLineColor(kYellow); break; case 3: TString tgausform = "([0]-[3]-[6])/[2]*exp(-0.5*(x-[1])*(x-[1])/[2]/[2])"; tgausform += "+[3]/[5]*exp(-0.5*(x-[4])*(x-[4])/[5]/[5])"; tgausform += "+[6]/[8]*exp(-0.5*(x-[7])*(x-[7])/[8]/[8])"; TF1 *tgaus = new TF1("tgaus",tgausform.Data(),min,max); tgaus->SetBit(kCanDelete); tgaus->SetParNames("A_{tot}","#mu_{1}","#sigma_{1}", "A_{2}","#mu_{2}","#sigma_{2}", "A_{3}","#mu_{3}","#sigma_{3}"); tgaus->SetParameters(integ,(min+mean)/2,width/4., integ/width/3.,(max+mean)/2.,width/4., integ/width/3.,mean,width/2.); // The left-sided Gauss tgaus->SetParLimits(0,integ-1.5,integ+1.5); tgaus->SetParLimits(1,min+(width/10.),mean); tgaus->SetParLimits(2,width/15.,width/2.); // The right-sided Gauss tgaus->SetParLimits(3,0.,integ); tgaus->SetParLimits(4,mean,max-(width/10.)); tgaus->SetParLimits(5,width/15.,width/2.); // The Gauss describing the outliers tgaus->SetParLimits(6,0.,integ); tgaus->SetParLimits(7,min,max); tgaus->SetParLimits(8,width/4.,width/1.5); obj3->Fit("tgaus","QLRM"); obj3->GetFunction("tgaus")->SetLineColor(kYellow); break; case 4: obj3->Fit("pol0","Q"); obj3->GetFunction("pol0")->SetLineColor(kYellow); break; case 9: break; default: obj3->Fit("gaus","Q"); obj3->GetFunction("gaus")->SetLineColor(kYellow); break; } // Just to get the right (maximum) binning TH1D *half[4]; half[0] = (TH1D*)obj1->ProjectionS(s1, inner, "Sector 6-1-2 Inner"); half[1] = (TH1D*)obj1->ProjectionS(s2, inner, "Sector 3-4-5 Inner"); half[2] = (TH1D*)obj1->ProjectionS(s1, outer, "Sector 6-1-2 Outer"); half[3] = (TH1D*)obj1->ProjectionS(s2, outer, "Sector 3-4-5 Outer"); for (Int_t k=0; k<4; k++) { half[k]->SetLineColor(kRed+k); half[k]->SetDirectory(0); half[k]->SetBit(kCanDelete); half[k]->Draw("same"); } gPad->Modified(); gPad->Update(); } }