/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Abelardo Moralejo 1/2004 ! Thomas Bretz 5/2002 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // STARMC - STandard Analysis and Reconstruction (MC example) // // This macro is a version of the standard converter to convert raw data // into image parameters, made to show how to run analysis on MC files. // ///////////////////////////////////////////////////////////////////////////// #include "MImgCleanStd.h" void starmc() { // // This is a demonstration program which calculates the image // parameters from Magic Monte Carlo files (output of camera). TString* CalibrationFilename; TString* OutFilename1; TString* OutFilename2; // ------------- user change ----------------- // // Comment line starting "CalibrationFileName" to disable calibration. In that // case the units of the MHillas.fSize parameter will be ADC counts (rather, // equivalent ADC counts in inner pixels, since we correct for the possible // differences in gain of outer pixels) // CalibrationFilename = new TString("/data1/MAGIC/Period016/mcdata/fullmirror_spot_default/standard/gammas_nonoise/Gamma_zbin0_90_*.root"); // File to be used in the calibration (must be a camera file without added noise) Char_t* AnalysisFilename = "Gamma_zbin*.root"; // File to be analyzed // ------------- user change ----------------- // // Change output file names as desired. If you want only one output, comment // the initialization of OutFilename2. OutFilename1 = new TString("star_train.root"); // Output file name 1 (test) // OutFilename2 = new TString("star_test.root"); // Output file name 2 (train) // // Fraction of events (taken at random) which one wants to process from the // file to be analyzed (useful to make smaller files if starting sample is // too large). // Float_t accepted_fraction = 1.; Float_t CleanLev[2] = {4., 3.}; // Tail cuts for image analysis Int_t BinsHigh[2] = {5, 10}; // First and last FADC bin of the range to be integrated, Int_t BinsLow[2] = {5, 10}; // for high and low gain respectively. // ------------------------------------------- // // Create a empty Parameter List and an empty Task List // The tasklist is identified in the eventloop by its name // MParList plist; MTaskList tlist; plist.AddToList(&tlist); MSrcPosCam src; src.SetReadyToSave(); plist.AddToList(&src); MBadPixelsCam badpix; plist.AddToList(&badpix); // // Now setup the tasks and tasklist: // --------------------------------- // MReadMarsFile read("Events"); if (CalibrationFilename) read.AddFile(CalibrationFilename->Data()); read.DisableAutoScheme(); MGeomApply geom; // Reads in geometry from MC file and sets the right sizes for // several parameter containers. MMcPedestalCopy pcopy; // Copies pedestal data from the MC file run fadc header to the MPedestalCam container. MExtractSignal sigextract; sigextract.SetSaturationLimit(240); // Define ADC slices to be integrated in high and low gain: sigextract.SetRange(BinsHigh[0], BinsHigh[1], BinsLow[0], BinsLow[1]); MMcCalibrationUpdate mccalibupdate; MCalibrateData calib; // Transforms signals from ADC counts into photons. calib.SetCalibrationMode(MCalibrateData::kFfactor); // MBlindPixelCalc blind; // blind.SetUseInterpolation(); MImgCleanStd clean(CleanLev[0], CleanLev[1]); // Applies tail cuts to image. MHillasCalc hcalc; // Calculates Hillas parameters not dependent on source position. hcalc.Disable(MHillasCalc::kCalcHillasSrc); MMcCalibrationCalc mccalibcalc; tlist.AddToList(&read); tlist.AddToList(&geom); tlist.AddToList(&pcopy); tlist.AddToList(&sigextract); tlist.AddToList(&mccalibupdate); tlist.AddToList(&calib); tlist.AddToList(&clean); // tlist.AddToList(&blind); tlist.AddToList(&hcalc); tlist.AddToList(&mccalibcalc); // // Open output files: // MWriteRootFile write1(OutFilename1.Data()); // Writes output1 write1.AddContainer("MRawRunHeader", "RunHeaders"); write1.AddContainer("MMcRunHeader", "RunHeaders"); write1.AddContainer("MSrcPosCam", "RunHeaders"); write1.AddContainer("MGeomCam", "RunHeaders"); write1.AddContainer("MMcConfigRunHeader", "RunHeaders"); write1.AddContainer("MMcCorsikaRunHeader", "RunHeaders"); write1.AddContainer("MMcFadcHeader", "RunHeaders"); write1.AddContainer("MMcTrigHeader", "RunHeaders"); write1.AddContainer("MMcEvt", "Events"); write1.AddContainer("MHillas", "Events"); write1.AddContainer("MHillasExt", "Events"); write1.AddContainer("MHillasSrc", "Events"); write1.AddContainer("MImagePar", "Events"); write1.AddContainer("MNewImagePar", "Events"); if (OutFilename2) { MWriteRootFile write2(OutFilename2.Data()); // Writes output2 write2.AddContainer("MRawRunHeader", "RunHeaders"); write2.AddContainer("MMcRunHeader", "RunHeaders"); write2.AddContainer("MSrcPosCam", "RunHeaders"); write2.AddContainer("MGeomCam", "RunHeaders"); write2.AddContainer("MMcConfigRunHeader", "RunHeaders"); write2.AddContainer("MMcCorsikaRunHeader", "RunHeaders"); write2.AddContainer("MMcFadcHeader", "RunHeaders"); write2.AddContainer("MMcTrigHeader", "RunHeaders"); write2.AddContainer("MMcEvt", "Events"); write2.AddContainer("MHillas", "Events"); write2.AddContainer("MHillasExt", "Events"); write2.AddContainer("MHillasSrc", "Events"); write2.AddContainer("MImagePar", "Events"); write2.AddContainer("MNewImagePar", "Events"); // // Divide output in train and test samples, using the event number // (odd/even) to achieve otherwise unbiased event samples: // MF filter1("{MMcEvt.fEvtNumber%2}>0.5"); MF filter2("{MMcEvt.fEvtNumber%2}<0.5"); write1.SetFilter(&filter1); write2.SetFilter(&filter2); } // // First loop: Calibration loop // MProgressBar bar; bar.SetWindowName("Calibrating..."); MEvtLoop evtloop; evtloop.SetProgressBar(&bar); evtloop.SetParList(&plist); if (CalibrationFilename) { if (!evtloop.Eventloop()) return; mccalibcalc->GetHistADC2PhotEl()->Write(); mccalibcalc->GetHistPhot2PhotEl()->Write(); } // // Second loop: analysis loop // // // Change the read task by another one which reads the file we want to analyze: // MReadMarsFile read2("Events"); read2.AddFile(AnalysisFilename); read2.DisableAutoScheme(); tlist.AddToListBefore(&read2, &read); tlist.RemoveFromList(&read); // // Analyzed only the desired fraction of events, skip the rest: // MFEventSelector eventselector; Float_t rejected_fraction = 1. - accepted_fraction; eventselector.SetSelectionRatio(rejected_fraction); MContinue skip(&eventselector); tlist.AddToListBefore(&skip, &sigextract); bar.SetWindowName("Analyzing..."); tlist.RemoveFromList(&mccalibcalc); // Removes calibration task from list. hcalc.Enable(MHillasCalc::kCalcHillasSrc); // Add tasks to write output: if (OutFilename2) { tlist.AddToList(&filter1); tlist.AddToList(&filter2); tlist.AddToList(&write2); } tlist.AddToList(&write1); if (!evtloop.Eventloop()) return; tlist.PrintStatistics(); }