1 |
|
---|
2 | ////////////////////////////////////////////////////////////////////////////
|
---|
3 | // //
|
---|
4 | // This program should be run under root : //
|
---|
5 | // root unfold.C++ //
|
---|
6 | // //
|
---|
7 | // Author(s) : T. Bretz 02/2002 <mailto:tbretz@astro.uni-wuerzburg.de> //
|
---|
8 | // Author(s) : W. Wittek 09/2002 <mailto:wittek@mppmu.mpg.de> //
|
---|
9 | // //
|
---|
10 | ////////////////////////////////////////////////////////////////////////////
|
---|
11 |
|
---|
12 | #include <TMath.h>
|
---|
13 | #include <TRandom3.h>
|
---|
14 | #include <TVector.h>
|
---|
15 | #include <TMatrixD.h>
|
---|
16 | #include <TMatrix.h>
|
---|
17 | #include <TH1.h>
|
---|
18 | #include <TH2.h>
|
---|
19 | #include <TProfile.h>
|
---|
20 | #include <TF1.h>
|
---|
21 | #include <iostream.h>
|
---|
22 | #include <TMinuit.h>
|
---|
23 | #include <TCanvas.h>
|
---|
24 | #include <TMarker.h>
|
---|
25 |
|
---|
26 | #include <fstream.h>
|
---|
27 | #include <iomanip.h>
|
---|
28 |
|
---|
29 | TH1 *DrawMatrixClone(const TMatrixD &m, Option_t *opt="")
|
---|
30 | {
|
---|
31 | const Int_t nrows = m.GetNrows();
|
---|
32 | const Int_t ncols = m.GetNcols();
|
---|
33 |
|
---|
34 | TMatrix m2(nrows, ncols);
|
---|
35 | for (int i=0; i<nrows; i++)
|
---|
36 | for (int j=0; j<ncols; j++)
|
---|
37 | m2(i, j) = m(i, j);
|
---|
38 |
|
---|
39 | TH2F *hist = new TH2F(m2);
|
---|
40 | hist->SetBit(kCanDelete);
|
---|
41 | hist->Draw(opt);
|
---|
42 | hist->SetDirectory(NULL);
|
---|
43 |
|
---|
44 | return hist;
|
---|
45 |
|
---|
46 | }
|
---|
47 |
|
---|
48 | TH1 *DrawMatrixColClone(const TMatrixD &m, Option_t *opt="", Int_t col=0)
|
---|
49 | {
|
---|
50 | const Int_t nrows = m.GetNrows();
|
---|
51 |
|
---|
52 | TVector vec(nrows);
|
---|
53 | for (int i=0; i<nrows; i++)
|
---|
54 | vec(i) = m(i, col);
|
---|
55 |
|
---|
56 | TH1F *hist = new TH1F("TVector","",nrows,0,nrows);
|
---|
57 | for (int i=0; i<nrows; i++)
|
---|
58 | {
|
---|
59 | hist->SetBinContent(i+1, vec(i));
|
---|
60 | }
|
---|
61 |
|
---|
62 | hist->SetBit(kCanDelete);
|
---|
63 | hist->Draw(opt);
|
---|
64 | hist->SetDirectory(NULL);
|
---|
65 |
|
---|
66 | return hist;
|
---|
67 | }
|
---|
68 |
|
---|
69 |
|
---|
70 | void PrintTH2Content(const TH2 &hist)
|
---|
71 | {
|
---|
72 | cout << hist.GetName() << ": " << hist.GetTitle() << endl;
|
---|
73 | cout << "-----------------------------------------------------" << endl;
|
---|
74 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
75 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
---|
76 | cout << hist.GetBinContent(i,j) << " \t";
|
---|
77 | cout << endl << endl;
|
---|
78 | }
|
---|
79 |
|
---|
80 | void PrintTH2Error(const TH2 &hist)
|
---|
81 | {
|
---|
82 | cout << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
---|
83 | cout << "-----------------------------------------------------" << endl;
|
---|
84 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
85 | {
|
---|
86 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
---|
87 | cout << hist.GetBinError(i, j) << " \t";
|
---|
88 | cout << endl << endl;
|
---|
89 | }
|
---|
90 | }
|
---|
91 |
|
---|
92 | void PrintTH1Content(const TH1 &hist)
|
---|
93 | {
|
---|
94 | cout << hist.GetName() << ": " << hist.GetTitle() << endl;
|
---|
95 | cout << "-----------------------------------------------------" << endl;
|
---|
96 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
97 | cout << hist.GetBinContent(i) << " \t";
|
---|
98 | cout << endl << endl;
|
---|
99 | }
|
---|
100 |
|
---|
101 | void PrintTH1Error(const TH1 &hist)
|
---|
102 | {
|
---|
103 | cout << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
---|
104 | cout << "-----------------------------------------------------" << endl;
|
---|
105 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
106 | cout << hist.GetBinError(i) << " \t";
|
---|
107 | cout << endl << endl;
|
---|
108 | }
|
---|
109 |
|
---|
110 | void CopyCol(TMatrixD &m, const TH1 &h, Int_t col=0)
|
---|
111 | {
|
---|
112 | const Int_t n = m.GetNrows();
|
---|
113 |
|
---|
114 | for (Int_t i=0; i<n; i++)
|
---|
115 | m(i, col) = h.GetBinContent(i+1);
|
---|
116 | }
|
---|
117 |
|
---|
118 | void CopyCol(TH1 &h, const TMatrixD &m, Int_t col=0)
|
---|
119 | {
|
---|
120 | const Int_t n = m.GetNrows();
|
---|
121 |
|
---|
122 | for (Int_t i=0; i<n; i++)
|
---|
123 | h.SetBinContent(i+1, m(i, col));
|
---|
124 | }
|
---|
125 |
|
---|
126 | void CopyH2M(TMatrixD &m, const TH2 &h)
|
---|
127 | {
|
---|
128 | const Int_t nx = m.GetNrows();
|
---|
129 | const Int_t ny = m.GetNcols();
|
---|
130 |
|
---|
131 | for (Int_t i=0; i<nx; i++)
|
---|
132 | for (Int_t j=0; j<ny; j++)
|
---|
133 | m(i, j) = h.GetBinContent(i+1, j+1);
|
---|
134 | }
|
---|
135 |
|
---|
136 | void CopySqr(TMatrixD &m, const TH1 &h)
|
---|
137 | {
|
---|
138 | const Int_t nx = m.GetNrows();
|
---|
139 | const Int_t ny = m.GetNcols();
|
---|
140 |
|
---|
141 | for (Int_t i=0; i<nx; i++)
|
---|
142 | for (Int_t j=0; j<ny; j++)
|
---|
143 | {
|
---|
144 | const Double_t bin = h.GetBinContent(i+1, j+1);
|
---|
145 | m(i, j) = bin*bin;
|
---|
146 | }
|
---|
147 | }
|
---|
148 |
|
---|
149 | Double_t GetMatrixSumRow(const TMatrixD &m, Int_t row)
|
---|
150 | {
|
---|
151 | const Int_t n = m.GetNcols();
|
---|
152 |
|
---|
153 | Double_t sum = 0;
|
---|
154 | for (Int_t i=0; i<n; i++)
|
---|
155 | sum += m(row, i);
|
---|
156 |
|
---|
157 | return sum;
|
---|
158 | }
|
---|
159 |
|
---|
160 | Double_t GetMatrixSumDiag(const TMatrixD &m)
|
---|
161 | {
|
---|
162 | const Int_t n = m.GetNcols();
|
---|
163 |
|
---|
164 | Double_t sum = 0;
|
---|
165 | for (Int_t i=0; i<n; i++)
|
---|
166 | sum += m(i, i);
|
---|
167 |
|
---|
168 | return sum;
|
---|
169 | }
|
---|
170 |
|
---|
171 | Double_t GetMatrixSumCol(const TMatrixD &m, Int_t col=0)
|
---|
172 | {
|
---|
173 | const Int_t n = m.GetNrows();
|
---|
174 |
|
---|
175 | Double_t sum = 0;
|
---|
176 | for (Int_t i=0; i<n; i++)
|
---|
177 | sum += m(i, col);
|
---|
178 |
|
---|
179 | return sum;
|
---|
180 | }
|
---|
181 | Double_t GetMatrixSum(const TMatrixD &m)
|
---|
182 | {
|
---|
183 | const Int_t n = m.GetNrows();
|
---|
184 |
|
---|
185 | Double_t sum = 0;
|
---|
186 | for (Int_t i=0; i<n; i++)
|
---|
187 | sum += GetMatrixSumRow(m, i);
|
---|
188 |
|
---|
189 | return sum;
|
---|
190 | }
|
---|
191 |
|
---|
192 | ////////////////////////////////////////////////////////////////////////////
|
---|
193 | // //
|
---|
194 | // fcnSmooth (used by SmoothMigrationMatrix) //
|
---|
195 | // //
|
---|
196 | // is called by MINUIT //
|
---|
197 | // for given values of the parameters it calculates //
|
---|
198 | // the function to be minimized //
|
---|
199 | // //
|
---|
200 | ////////////////////////////////////////////////////////////////////////////
|
---|
201 | void fcnSmooth(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
202 | Double_t *par, Int_t iflag);
|
---|
203 |
|
---|
204 |
|
---|
205 |
|
---|
206 | ////////////////////////////////////////////////////////////////////////////
|
---|
207 | // //
|
---|
208 | // fcnTikhonov2 (used by Tikhonov2) //
|
---|
209 | // //
|
---|
210 | // is called by MINUIT //
|
---|
211 | // for given values of the parameters it calculates //
|
---|
212 | // the function to be minimized //
|
---|
213 | // //
|
---|
214 | ////////////////////////////////////////////////////////////////////////////
|
---|
215 | void fcnTikhonov2(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
216 | Double_t *par, Int_t iflag);
|
---|
217 |
|
---|
218 | ////////////////////////////////////////////////////////////////////////////
|
---|
219 | // //
|
---|
220 | // MUnfold //
|
---|
221 | // //
|
---|
222 | // class for unfolding a 1-dimensional distribution //
|
---|
223 | // //
|
---|
224 | // the methods used are described in : //
|
---|
225 | // //
|
---|
226 | // V.B.Anykeyev et al., NIM A303 (1991) 350 //
|
---|
227 | // M. Schmelling, Nucl. Instr. and Meth. A 340 (1994) 400 //
|
---|
228 | // M. Schmelling : "Numerische Methoden der Datenanalyse" //
|
---|
229 | // Heidelberg, Maerz 1998 //
|
---|
230 | // M.Bertero, INFN/TC-88/2 (1988) //
|
---|
231 | // //
|
---|
232 | ////////////////////////////////////////////////////////////////////////////
|
---|
233 | class MUnfold : public TObject
|
---|
234 | {
|
---|
235 | public:
|
---|
236 |
|
---|
237 | UInt_t fNa; // Number of bins in the distribution to be unfolded
|
---|
238 | UInt_t fNb; // Number of bins in the unfolded distribution
|
---|
239 |
|
---|
240 | TMatrixD fMigrat; // migration matrix (fNa, fNb)
|
---|
241 | TMatrixD fMigraterr2;// error**2 of migration matrix (fNa, fNb)
|
---|
242 |
|
---|
243 | TMatrixD fMigOrig; // original migration matrix (fNa, fNb)
|
---|
244 | TMatrixD fMigOrigerr2;// error**2 oforiginal migr. matrix (fNa, fNb)
|
---|
245 |
|
---|
246 | TMatrixD fMigSmoo; // smoothed migration matrix M (fNa, fNb)
|
---|
247 | TMatrixD fMigSmooerr2;// error**2 of smoothed migr. matrix (fNa, fNb)
|
---|
248 | TMatrixD fMigChi2; // chi2 contributions for smoothing (fNa, fNb)
|
---|
249 |
|
---|
250 | TMatrixD fVa; // distribution to be unfolded (fNa)
|
---|
251 | TMatrixD fVacov; // error matrix of fVa (fNa, fNa)
|
---|
252 | TMatrixD fVacovInv; // inverse of fVacov (fNa, fNa)
|
---|
253 | Double_t fSpurVacov; // Spur of fVacov
|
---|
254 |
|
---|
255 | // UInt_t fVaevents; // total number of events
|
---|
256 | UInt_t fVapoints; // number of significant measurements
|
---|
257 |
|
---|
258 | TMatrixD fVb; // unfolded distribution (fNb)
|
---|
259 | TMatrixD fVbcov; // error matrix of fVb (fNb, fNb)
|
---|
260 |
|
---|
261 | TMatrixD fVEps; // prior distribution (fNb)
|
---|
262 | TMatrixDColumn fVEps0;
|
---|
263 |
|
---|
264 | Double_t fW; // weight
|
---|
265 | Double_t fWbest; // best weight
|
---|
266 | Int_t ixbest;
|
---|
267 |
|
---|
268 | TMatrixD fResult; // unfolded distribution and errors (fNb, 5)
|
---|
269 | TMatrixD fChi2; // chisquared contribution (fNa, 1)
|
---|
270 |
|
---|
271 | Double_t fChisq; // total chisquared
|
---|
272 | Double_t fNdf; // number of degrees of freedom
|
---|
273 | Double_t fProb; // chisquared probability
|
---|
274 |
|
---|
275 | TMatrixD G; // G = M * M(transposed) (fNa, fNa)
|
---|
276 | TVectorD EigenValue; // vector of eigenvalues lambda of G (fNa)
|
---|
277 | TMatrixD Eigen; // matrix of eigen vectors of G (fNa, fNa)
|
---|
278 | Double_t RankG; // rank of G
|
---|
279 | Double_t tau; // 1 / lambda_max
|
---|
280 | Double_t EpsLambda;
|
---|
281 |
|
---|
282 | // quantities stored for each weight :
|
---|
283 | TVectorD SpSig; // Spur of covariance matrix of fVbcov
|
---|
284 | TVectorD SpAR; // effective rank of G^tilde
|
---|
285 | TVectorD chisq; // chi squared (measures agreement between
|
---|
286 | // fVa and the folded fVb)
|
---|
287 | TVectorD SecDer; // regularization term = sum of (2nd der.)**2
|
---|
288 | TVectorD ZerDer; // regularization term = sum of (fVb)**2
|
---|
289 | TVectorD Entrop; // regularization term = reduced cross-entropy
|
---|
290 | TVectorD DAR2; //
|
---|
291 | TVectorD Dsqbar; //
|
---|
292 |
|
---|
293 | Double_t SpurAR;
|
---|
294 | Double_t SpurSigma;
|
---|
295 | Double_t SecDeriv;
|
---|
296 | Double_t ZerDeriv;
|
---|
297 | Double_t Entropy;
|
---|
298 | Double_t DiffAR2;
|
---|
299 | Double_t Chisq;
|
---|
300 | Double_t D2bar;
|
---|
301 |
|
---|
302 | TMatrixD Chi2;
|
---|
303 |
|
---|
304 | //
|
---|
305 |
|
---|
306 | // plots versus weight
|
---|
307 | Int_t Nix;
|
---|
308 | Double_t xmin;
|
---|
309 | Double_t xmax;
|
---|
310 | Double_t dlogx;
|
---|
311 |
|
---|
312 | TH1D *hBchisq;
|
---|
313 | TH1D *hBSpAR;
|
---|
314 | TH1D *hBDSpAR;
|
---|
315 | TH1D *hBSpSig;
|
---|
316 | TH1D *hBDSpSig;
|
---|
317 | TH1D *hBSecDeriv;
|
---|
318 | TH1D *hBDSecDeriv;
|
---|
319 | TH1D *hBZerDeriv;
|
---|
320 | TH1D *hBDZerDeriv;
|
---|
321 | TH1D *hBEntropy;
|
---|
322 | TH1D *hBDEntropy;
|
---|
323 | TH1D *hBDAR2;
|
---|
324 | TH1D *hBD2bar;
|
---|
325 |
|
---|
326 | //
|
---|
327 | TH1D *hEigen;
|
---|
328 |
|
---|
329 | // plots for the best solution
|
---|
330 | TH2D *fhmig;
|
---|
331 | TH2D *shmig;
|
---|
332 | TH2D *shmigChi2;
|
---|
333 |
|
---|
334 | TH1D *fhb0;
|
---|
335 |
|
---|
336 | TH1D *fha;
|
---|
337 |
|
---|
338 | TH1D *hprior;
|
---|
339 |
|
---|
340 | TH1D *hb;
|
---|
341 |
|
---|
342 | Double_t CalcSpurSigma(TMatrixD &T, Double_t norm=1)
|
---|
343 | {
|
---|
344 | Double_t spursigma = 0;
|
---|
345 |
|
---|
346 | for (UInt_t a=0; a<fNb; a++)
|
---|
347 | {
|
---|
348 | for (UInt_t b=0; b<fNb; b++)
|
---|
349 | {
|
---|
350 | fVbcov(a,b) = 0;
|
---|
351 |
|
---|
352 | for (UInt_t c=0; c<fNa; c++)
|
---|
353 | for (UInt_t d=0; d<fNa; d++)
|
---|
354 | fVbcov(a,b) += T(a,d)*fVacov(d,c)*T(b,c);
|
---|
355 |
|
---|
356 | fVbcov(a,b) *= norm*norm;
|
---|
357 | }
|
---|
358 | spursigma += fVbcov(a,a);
|
---|
359 | }
|
---|
360 |
|
---|
361 | return spursigma;
|
---|
362 | }
|
---|
363 |
|
---|
364 | public:
|
---|
365 | // -----------------------------------------------------------------------
|
---|
366 | //
|
---|
367 | // Constructor
|
---|
368 | // copy histograms into matrices
|
---|
369 | //
|
---|
370 | MUnfold(TH1D &ha, TH2D &hacov, TH2D &hmig)
|
---|
371 | : fVEps(hmig.GetYaxis()->GetNbins(),1), fVEps0(fVEps, 0)
|
---|
372 | {
|
---|
373 | // ha is the distribution to be unfolded
|
---|
374 | // hacov is the covariance matrix of ha
|
---|
375 | // hmig is the migration matrix;
|
---|
376 | // this matrix will be used in the unfolding
|
---|
377 | // unless SmoothMigrationMatrix(*hmigrat) is called;
|
---|
378 | // in the latter case hmigrat is smoothed
|
---|
379 | // and the smoothed matrix is used in the unfolding
|
---|
380 |
|
---|
381 | // Eigen values of the matrix G, which are smaller than EpsLambda
|
---|
382 | // will be considered as being zero
|
---|
383 | EpsLambda = 1.e-10;
|
---|
384 | fW = 0.0;
|
---|
385 |
|
---|
386 | fNa = hmig.GetXaxis()->GetNbins();
|
---|
387 | const Double_t alow = hmig.GetXaxis()->GetXmin();
|
---|
388 | const Double_t aup = hmig.GetXaxis()->GetXmax();
|
---|
389 |
|
---|
390 | fNb = hmig.GetYaxis()->GetNbins();
|
---|
391 | const Double_t blow = hmig.GetYaxis()->GetXmin();
|
---|
392 | const Double_t bup = hmig.GetYaxis()->GetXmax();
|
---|
393 |
|
---|
394 |
|
---|
395 | UInt_t Na = ha.GetNbinsX();
|
---|
396 | if (fNa != Na)
|
---|
397 | {
|
---|
398 | cout << "MUnfold::MUnfold : dimensions do not match, fNa = ";
|
---|
399 | cout << fNa << ", Na = " << Na << endl;
|
---|
400 | }
|
---|
401 |
|
---|
402 | cout << "MUnfold::MUnfold :" << endl;
|
---|
403 | cout << "==================" << endl;
|
---|
404 | cout << " fNa = " << fNa << ", fNb = " << fNb << endl;
|
---|
405 |
|
---|
406 | // ------------------------
|
---|
407 |
|
---|
408 | fVa.ResizeTo(fNa, 1);
|
---|
409 | CopyCol(fVa, ha, 0);
|
---|
410 |
|
---|
411 | cout << " fVa = ";
|
---|
412 |
|
---|
413 | for (UInt_t i=0; i<fNa; i++)
|
---|
414 | cout << fVa(i,0) << " \t";
|
---|
415 | cout << endl;
|
---|
416 |
|
---|
417 | Double_t vaevents = GetMatrixSumCol(fVa, 0);
|
---|
418 | cout << " Total number of events in fVa = " << vaevents << endl;
|
---|
419 |
|
---|
420 | // ------------------------
|
---|
421 |
|
---|
422 | fChi2.ResizeTo(fNa,1);
|
---|
423 | Chi2.ResizeTo(fNa,1);
|
---|
424 |
|
---|
425 | // ------------------------
|
---|
426 |
|
---|
427 | fVacov.ResizeTo(fNa, fNa);
|
---|
428 | fSpurVacov = 0;
|
---|
429 |
|
---|
430 | CopyH2M(fVacov, hacov);
|
---|
431 |
|
---|
432 | fVapoints = 0;
|
---|
433 | for (UInt_t i=0; i<fNa; i++)
|
---|
434 | if (fVa(i,0)>0 && fVacov(i,i)<fVa(i,0)*fVa(i,0))
|
---|
435 | fVapoints++;
|
---|
436 |
|
---|
437 | fSpurVacov = GetMatrixSumDiag(fVacov);
|
---|
438 |
|
---|
439 | cout << "MUnfold::MUnfold : fVacov = " << endl;
|
---|
440 | cout << "==============================" << endl;
|
---|
441 | fVacov.Print();
|
---|
442 |
|
---|
443 | cout << " Number of significant points in fVa = ";
|
---|
444 | cout << fVapoints << endl;
|
---|
445 |
|
---|
446 | cout << " Spur of fVacov = ";
|
---|
447 | cout << fSpurVacov << endl;
|
---|
448 |
|
---|
449 | // ------------------------
|
---|
450 |
|
---|
451 | fVacovInv.ResizeTo(fNa, fNa);
|
---|
452 | fVacovInv = fVacov;
|
---|
453 | fVacovInv.InvertPosDef();
|
---|
454 |
|
---|
455 | cout << "MUnfold::MUnfold : fVacovInv = " << endl;
|
---|
456 | cout << "==================================" << endl;
|
---|
457 | fVacovInv.Print();
|
---|
458 |
|
---|
459 | // ------------------------
|
---|
460 | // fMigrat is the migration matrix to be used in the unfolding;
|
---|
461 | // fMigrat may be overwritten by SmoothMigrationMatrix
|
---|
462 |
|
---|
463 | fMigrat.ResizeTo(fNa, fNb); // row, col
|
---|
464 |
|
---|
465 | CopyH2M(fMigrat, hmig);
|
---|
466 |
|
---|
467 |
|
---|
468 | // ------------------------
|
---|
469 |
|
---|
470 | fMigraterr2.ResizeTo(fNa, fNb); // row, col
|
---|
471 | CopySqr(fMigraterr2, hmig);
|
---|
472 |
|
---|
473 | // normaxlize
|
---|
474 |
|
---|
475 | for (UInt_t j=0; j<fNb; j++)
|
---|
476 | {
|
---|
477 | const Double_t sum = GetMatrixSumCol(fMigrat, j);
|
---|
478 |
|
---|
479 | if (sum==0)
|
---|
480 | continue;
|
---|
481 |
|
---|
482 | TMatrixDColumn col1(fMigrat, j);
|
---|
483 | col1 *= 1./sum;
|
---|
484 |
|
---|
485 | TMatrixDColumn col2(fMigraterr2, j);
|
---|
486 | col2 *= 1./(sum*sum);
|
---|
487 | }
|
---|
488 |
|
---|
489 | cout << "MUnfold::MUnfold : fMigrat = " << endl;
|
---|
490 | cout << "===============================" << endl;
|
---|
491 | fMigrat.Print();
|
---|
492 |
|
---|
493 | cout << "MUnfold::MUnfold : fMigraterr2 = " << endl;
|
---|
494 | cout << "===================================" << endl;
|
---|
495 | fMigraterr2.Print();
|
---|
496 |
|
---|
497 | // ------------------------
|
---|
498 | G.ResizeTo(fNa, fNa);
|
---|
499 | EigenValue.ResizeTo(fNa);
|
---|
500 | Eigen.ResizeTo(fNa, fNa);
|
---|
501 |
|
---|
502 | fMigOrig.ResizeTo(fNa, fNb);
|
---|
503 | fMigOrigerr2.ResizeTo(fNa, fNb);
|
---|
504 |
|
---|
505 | fMigSmoo.ResizeTo (fNa, fNb);
|
---|
506 | fMigSmooerr2.ResizeTo(fNa, fNb);
|
---|
507 | fMigChi2.ResizeTo (fNa, fNb);
|
---|
508 |
|
---|
509 | // ------------------------
|
---|
510 |
|
---|
511 | fVEps0 = 1./fNb;
|
---|
512 |
|
---|
513 | cout << "MUnfold::MUnfold : Default prior distribution fVEps = " << endl;
|
---|
514 | cout << "========================================================" << endl;
|
---|
515 | fVEps.Print();
|
---|
516 |
|
---|
517 | // ------------------------
|
---|
518 |
|
---|
519 | fVb.ResizeTo(fNb,1);
|
---|
520 | fVbcov.ResizeTo(fNb,fNb);
|
---|
521 |
|
---|
522 | // ----------------------------------------------------
|
---|
523 | // number and range of weights to be scanned
|
---|
524 | Nix = 30;
|
---|
525 | xmin = 1.e-5;
|
---|
526 | xmax = 1.e5;
|
---|
527 | dlogx = (log10(xmax)-log10(xmin)) / Nix;
|
---|
528 |
|
---|
529 | SpSig.ResizeTo (Nix);
|
---|
530 | SpAR.ResizeTo (Nix);
|
---|
531 | chisq.ResizeTo (Nix);
|
---|
532 | SecDer.ResizeTo(Nix);
|
---|
533 | ZerDer.ResizeTo(Nix);
|
---|
534 | Entrop.ResizeTo(Nix);
|
---|
535 | DAR2.ResizeTo (Nix);
|
---|
536 | Dsqbar.ResizeTo(Nix);
|
---|
537 |
|
---|
538 | //------------------------------------
|
---|
539 | // plots as a function of the iteration number
|
---|
540 |
|
---|
541 | hBchisq = new TH1D("Bchisq", "chisq",
|
---|
542 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
543 |
|
---|
544 | hBSpAR = new TH1D("BSpAR", "SpurAR",
|
---|
545 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
546 |
|
---|
547 | hBDSpAR = new TH1D("BDSpAR", "Delta(SpurAR)",
|
---|
548 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
549 |
|
---|
550 | hBSpSig = new TH1D("BSpSig", "SpurSigma/SpurC",
|
---|
551 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
552 |
|
---|
553 | hBDSpSig = new TH1D("BDSpSig", "Delta(SpurSigma/SpurC)",
|
---|
554 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
555 |
|
---|
556 | hBSecDeriv = new TH1D("BSecDeriv", "Second Derivative squared",
|
---|
557 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
558 |
|
---|
559 | hBDSecDeriv = new TH1D("BDSecDeriv", "Delta(Second Derivative squared)",
|
---|
560 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
561 |
|
---|
562 | hBZerDeriv = new TH1D("BZerDeriv", "Zero Derivative squared",
|
---|
563 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
564 |
|
---|
565 | hBDZerDeriv = new TH1D("BDZerDeriv", "Delta(Zero Derivative squared)",
|
---|
566 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
567 |
|
---|
568 | hBEntropy = new TH1D("BEntrop", "Entropy",
|
---|
569 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
570 |
|
---|
571 | hBDEntropy = new TH1D("BDEntrop", "Delta(Entropy)",
|
---|
572 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
573 |
|
---|
574 | hBDAR2 = new TH1D("BDAR2", "norm(AR-AR+)",
|
---|
575 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
576 |
|
---|
577 | hBD2bar = new TH1D("BD2bar", "(b_unfolded-b_ideal)**2",
|
---|
578 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
579 |
|
---|
580 | //-------------------------------------
|
---|
581 | // original migration matrix
|
---|
582 | fhmig = new TH2D("fMigrat", "Migration matrix",
|
---|
583 | fNa, alow, aup, fNb, blow, bup);
|
---|
584 | fhmig->Sumw2();
|
---|
585 |
|
---|
586 | //-------------------------------------
|
---|
587 | // smoothed migration matrix
|
---|
588 | shmig = new TH2D("sMigrat", "Smoothed migration matrix",
|
---|
589 | fNa, alow, aup, fNb, blow, bup);
|
---|
590 | shmig->Sumw2();
|
---|
591 |
|
---|
592 | //-------------------------------------
|
---|
593 | // chi2 contributions for smoothing of migration matrix
|
---|
594 | shmigChi2 = new TH2D("sMigratChi2", "Chi2 contr. for smoothing",
|
---|
595 | fNa, alow, aup, fNb, blow, bup);
|
---|
596 |
|
---|
597 | //-------------------------------------
|
---|
598 | // eigen values of matrix G = M * M(transposed)
|
---|
599 | hEigen = new TH1D("Eigen", "Eigen values of M*MT",
|
---|
600 | fNa, 0.5, fNa+0.5);
|
---|
601 |
|
---|
602 | //------------------------------------
|
---|
603 | // Ideal distribution
|
---|
604 |
|
---|
605 | fhb0 = new TH1D("fhb0", "Ideal distribution", fNb, blow, bup);
|
---|
606 | fhb0->Sumw2();
|
---|
607 |
|
---|
608 |
|
---|
609 | //------------------------------------
|
---|
610 | // Distribution to be unfolded
|
---|
611 | fha = new TH1D("fha", "Distribution to be unfolded", fNa, alow, aup);
|
---|
612 | fha->Sumw2();
|
---|
613 |
|
---|
614 | //------------------------------------
|
---|
615 | // Prior distribution
|
---|
616 | hprior = new TH1D("Prior", "Prior distribution", fNb, blow, bup);
|
---|
617 |
|
---|
618 | //------------------------------------
|
---|
619 | // Unfolded distribution
|
---|
620 | hb = new TH1D("DataSp", "Unfolded distribution", fNb, blow, bup);
|
---|
621 | hb->Sumw2();
|
---|
622 |
|
---|
623 | }
|
---|
624 |
|
---|
625 | // -----------------------------------------------------------------------
|
---|
626 | //
|
---|
627 | // Define prior distribution to be a constant
|
---|
628 | //
|
---|
629 | void SetPriorConstant()
|
---|
630 | {
|
---|
631 | fVEps0 = 1./fNb;
|
---|
632 |
|
---|
633 | CopyCol(*hprior, fVEps);
|
---|
634 |
|
---|
635 | cout << "SetPriorConstant : Prior distribution fVEps = " << endl;
|
---|
636 | cout << "==============================================" << endl;
|
---|
637 | fVEps.Print();
|
---|
638 | }
|
---|
639 |
|
---|
640 | // -----------------------------------------------------------------------
|
---|
641 | //
|
---|
642 | // Take prior distribution from the histogram 'ha'
|
---|
643 | // which may have a different binning than 'hprior'
|
---|
644 | //
|
---|
645 | Bool_t SetPriorRebin(TH1D &ha)
|
---|
646 | {
|
---|
647 | // ------------------------------------------------------------------
|
---|
648 | //
|
---|
649 | // fill the contents of histogram 'ha' into the histogram 'hrior';
|
---|
650 | // the histograms need not have the same binning;
|
---|
651 | // if the binnings are different, the bin contents of histogram 'ha'
|
---|
652 | // are distributed properly (linearly) over the bins of 'hprior'
|
---|
653 | //
|
---|
654 |
|
---|
655 | const Int_t na = ha.GetNbinsX();
|
---|
656 | const Double_t alow = ha.GetBinLowEdge(1);
|
---|
657 | const Double_t aup = ha.GetBinLowEdge(na+1);
|
---|
658 |
|
---|
659 | const Int_t nb = hprior->GetNbinsX();
|
---|
660 | const Double_t blow = hprior->GetBinLowEdge(1);
|
---|
661 | const Double_t bup = hprior->GetBinLowEdge(nb+1);
|
---|
662 |
|
---|
663 | // check whether there is an overlap
|
---|
664 | // between the x ranges of the 2 histograms
|
---|
665 | if (alow>bup || aup<blow)
|
---|
666 | {
|
---|
667 | cout << "Rebinning not possible because there is no overlap of the x ranges of the two histograms" << endl;
|
---|
668 | return kFALSE;
|
---|
669 | }
|
---|
670 |
|
---|
671 | // there is an overlap
|
---|
672 | //********************
|
---|
673 | Double_t sum = 0;
|
---|
674 | for (Int_t j=1; j<=nb; j++)
|
---|
675 | {
|
---|
676 | const Double_t yl = hprior->GetBinLowEdge(j);
|
---|
677 | const Double_t yh = hprior->GetBinLowEdge(j+1);
|
---|
678 |
|
---|
679 | // search bins of histogram ha which contribute
|
---|
680 | // to bin j of histogram hb
|
---|
681 | //----------------
|
---|
682 | Int_t il=0;
|
---|
683 | Int_t ih=0;
|
---|
684 | for (Int_t i=2; i<=na+1; i++)
|
---|
685 | {
|
---|
686 | const Double_t xl = ha.GetBinLowEdge(i);
|
---|
687 | if (xl>yl)
|
---|
688 | {
|
---|
689 | il = i-1;
|
---|
690 |
|
---|
691 | //.................................
|
---|
692 | ih = 0;
|
---|
693 | for (Int_t k=(il+1); k<=(na+1); k++)
|
---|
694 | {
|
---|
695 | const Double_t xh = ha.GetBinLowEdge(k);
|
---|
696 | if (xh >= yh)
|
---|
697 | {
|
---|
698 | ih = k-1;
|
---|
699 | break;
|
---|
700 | }
|
---|
701 | }
|
---|
702 | //.................................
|
---|
703 | if (ih == 0)
|
---|
704 | ih = na;
|
---|
705 | break;
|
---|
706 | }
|
---|
707 | }
|
---|
708 | //----------------
|
---|
709 | if (il == 0)
|
---|
710 | {
|
---|
711 | cout << "Something is wrong " << endl;
|
---|
712 | cout << " na, alow, aup = " << na << ", " << alow
|
---|
713 | << ", " << aup << endl;
|
---|
714 | cout << " nb, blow, bup = " << nb << ", " << blow
|
---|
715 | << ", " << bup << endl;
|
---|
716 | return kFALSE;
|
---|
717 | }
|
---|
718 |
|
---|
719 | Double_t content=0;
|
---|
720 | // sum up the contribution to bin j
|
---|
721 | for (Int_t i=il; i<=ih; i++)
|
---|
722 | {
|
---|
723 | const Double_t xl = ha.GetBinLowEdge(i);
|
---|
724 | const Double_t xh = ha.GetBinLowEdge(i+1);
|
---|
725 | const Double_t bina = xh-xl;
|
---|
726 |
|
---|
727 | if (xl<yl && xh<yh)
|
---|
728 | content += ha.GetBinContent(i) * (xh-yl) / bina;
|
---|
729 | else
|
---|
730 | if (xl<yl && xh>=yh)
|
---|
731 | content += ha.GetBinContent(i) * (yh-yl) / bina;
|
---|
732 | else
|
---|
733 | if (xl>=yl && xh<yh)
|
---|
734 | content += ha.GetBinContent(i);
|
---|
735 | else if (xl>=yl && xh>=yh)
|
---|
736 | content += ha.GetBinContent(i) * (yh-xl) / bina;
|
---|
737 | }
|
---|
738 | hprior->SetBinContent(j, content);
|
---|
739 | sum += content;
|
---|
740 | }
|
---|
741 |
|
---|
742 | // normalize histogram hb
|
---|
743 | if (sum==0)
|
---|
744 | {
|
---|
745 | cout << "histogram hb is empty; sum of weights in ha = ";
|
---|
746 | cout << ha.GetSumOfWeights() << endl;
|
---|
747 | return kFALSE;
|
---|
748 | }
|
---|
749 |
|
---|
750 | for (Int_t j=1; j<=nb; j++)
|
---|
751 | {
|
---|
752 | const Double_t content = hprior->GetBinContent(j)/sum;
|
---|
753 | hprior->SetBinContent(j, content);
|
---|
754 | fVEps0(j-1) = content;
|
---|
755 | }
|
---|
756 |
|
---|
757 | cout << "SetPriorRebin : Prior distribution fVEps = " << endl;
|
---|
758 | cout << "===========================================" << endl;
|
---|
759 | fVEps.Print();
|
---|
760 |
|
---|
761 | return kTRUE;
|
---|
762 | }
|
---|
763 |
|
---|
764 |
|
---|
765 | // -----------------------------------------------------------------------
|
---|
766 | //
|
---|
767 | // Set prior distribution to a given distribution 'hpr'
|
---|
768 | //
|
---|
769 | Bool_t SetPriorInput(TH1D &hpr)
|
---|
770 | {
|
---|
771 | CopyCol(fVEps, hpr);
|
---|
772 |
|
---|
773 | const Double_t sum = GetMatrixSumCol(fVEps, 0);
|
---|
774 |
|
---|
775 | if (sum<=0)
|
---|
776 | {
|
---|
777 | cout << "MUnfold::SetPriorInput: invalid prior distribution" << endl;
|
---|
778 | return kFALSE;
|
---|
779 | }
|
---|
780 |
|
---|
781 | // normalize prior distribution
|
---|
782 | fVEps0 *= 1./sum;
|
---|
783 |
|
---|
784 | CopyCol(*hprior, fVEps);
|
---|
785 |
|
---|
786 | cout << "SetPriorInput : Prior distribution fVEps = " << endl;
|
---|
787 | cout << "===========================================" << endl;
|
---|
788 | fVEps.Print();
|
---|
789 |
|
---|
790 | return kTRUE;
|
---|
791 | }
|
---|
792 |
|
---|
793 | // -----------------------------------------------------------------------
|
---|
794 | //
|
---|
795 | // Define prior distribution to be a power law
|
---|
796 | // use input distribution 'hprior' only
|
---|
797 | // for defining the histogram parameters
|
---|
798 | //
|
---|
799 | Bool_t SetPriorPower(Double_t gamma)
|
---|
800 | {
|
---|
801 | // generate distribution according to a power law
|
---|
802 | // dN/dE = E^{-gamma}
|
---|
803 | // or with y = lo10(E), E = 10^y :
|
---|
804 | // dN/dy = ln10 * 10^{y*(1-gamma)}
|
---|
805 | TH1D hpower(*hprior);
|
---|
806 |
|
---|
807 | const UInt_t nbin = hprior->GetNbinsX();
|
---|
808 | const Double_t xmin = hprior->GetBinLowEdge(1);
|
---|
809 | const Double_t xmax = hprior->GetBinLowEdge(nbin+1);
|
---|
810 |
|
---|
811 | cout << "nbin, xmin, xmax = " << nbin << ", ";
|
---|
812 | cout << xmin << ", " << xmax << endl;
|
---|
813 |
|
---|
814 | TF1* fpow = new TF1("fpow", "pow(10.0, x*(1.0-[0]))", xmin,xmax);
|
---|
815 | fpow->SetParName (0,"gamma");
|
---|
816 | fpow->SetParameter(0, gamma );
|
---|
817 |
|
---|
818 | hpower.FillRandom("fpow", 100000);
|
---|
819 |
|
---|
820 | // fill prior distribution
|
---|
821 | CopyCol(fVEps, hpower);
|
---|
822 |
|
---|
823 | const Double_t sum = GetMatrixSumCol(fVEps, 0);
|
---|
824 | if (sum <= 0)
|
---|
825 | {
|
---|
826 | cout << "MUnfold::SetPriorPower : invalid prior distribution" << endl;
|
---|
827 | return kFALSE;
|
---|
828 | }
|
---|
829 |
|
---|
830 | // normalize prior distribution
|
---|
831 | fVEps0 *= 1./sum;
|
---|
832 | CopyCol(*hprior, fVEps);
|
---|
833 |
|
---|
834 | cout << "SetPriorPower : Prior distribution fVEps = " << endl;
|
---|
835 | cout << "===========================================" << endl;
|
---|
836 | fVEps.Print();
|
---|
837 |
|
---|
838 | return kTRUE;
|
---|
839 | }
|
---|
840 |
|
---|
841 |
|
---|
842 | // -----------------------------------------------------------------------
|
---|
843 | //
|
---|
844 | // Set the initial weight
|
---|
845 | //
|
---|
846 | Bool_t SetInitialWeight(Double_t &weight)
|
---|
847 | {
|
---|
848 | if (weight == 0.0)
|
---|
849 | {
|
---|
850 | TMatrixD v1(fVa, TMatrixD::kTransposeMult, fVacovInv);
|
---|
851 | TMatrixD v2(v1, TMatrixD::kMult, fVa);
|
---|
852 | weight = 1./sqrt(v2(0,0));
|
---|
853 | }
|
---|
854 |
|
---|
855 | cout << "MUnfold::SetInitialWeight : Initial Weight = "
|
---|
856 | << weight << endl;
|
---|
857 |
|
---|
858 | return kTRUE;
|
---|
859 | }
|
---|
860 |
|
---|
861 | // -----------------------------------------------------------------------
|
---|
862 | //
|
---|
863 | // Print the unfolded distribution
|
---|
864 | //
|
---|
865 | void PrintResults()
|
---|
866 | {
|
---|
867 | cout << "PrintResults : Unfolded distribution fResult " << endl;
|
---|
868 | cout << "=============================================" << endl;
|
---|
869 | cout << "val, eparab, eplus, eminus, gcc = " << endl;
|
---|
870 |
|
---|
871 | for (UInt_t i=0; i<fNb; i++)
|
---|
872 | {
|
---|
873 | cout << fResult(i, 0) << " \t";
|
---|
874 | cout << fResult(i, 1) << " \t";
|
---|
875 | cout << fResult(i, 2) << " \t";
|
---|
876 | cout << fResult(i, 3) << " \t";
|
---|
877 | cout << fResult(i, 4) << endl;
|
---|
878 | }
|
---|
879 | cout << "Chisquared, NDF, chi2 probability, ixbest = "
|
---|
880 | << fChisq << ", "
|
---|
881 | << fNdf << ", " << fProb << ", " << ixbest << endl;
|
---|
882 |
|
---|
883 | }
|
---|
884 |
|
---|
885 |
|
---|
886 | // -----------------------------------------------------------------------
|
---|
887 | //
|
---|
888 | // Schmelling : unfolding by minimizing the function Z
|
---|
889 | // by Gauss-Newton iteration
|
---|
890 | //
|
---|
891 | // the weights are scanned between
|
---|
892 | // 1.e-5*fWinitial and 1.e5*fWinitial
|
---|
893 | //
|
---|
894 | Bool_t Schmelling(TH1D &hb0)
|
---|
895 | {
|
---|
896 |
|
---|
897 | //======================================================================
|
---|
898 | // copy ideal distribution
|
---|
899 | for (UInt_t i=1; i<=fNb; i++)
|
---|
900 | {
|
---|
901 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
---|
902 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
---|
903 | }
|
---|
904 |
|
---|
905 | //-----------------------------------------------------------------------
|
---|
906 | // Initialization
|
---|
907 | // ==============
|
---|
908 |
|
---|
909 | Int_t numGiteration;
|
---|
910 | Int_t MaxGiteration = 1000;
|
---|
911 |
|
---|
912 | TMatrixD alpha;
|
---|
913 | alpha.ResizeTo(fNa, 1);
|
---|
914 |
|
---|
915 |
|
---|
916 | //-----------------------------------------------------------------------
|
---|
917 | // Newton iteration
|
---|
918 | // ================
|
---|
919 |
|
---|
920 | Double_t dga2;
|
---|
921 | Double_t dga2old;
|
---|
922 | Double_t EpsG = 1.e-12;
|
---|
923 |
|
---|
924 | TMatrixD wZdp_inv(fNa, fNa);
|
---|
925 | TMatrixD d(fNb, 1);
|
---|
926 | TMatrixD p(fNb, 1);
|
---|
927 |
|
---|
928 | TMatrixD gamma (fNa, 1);
|
---|
929 | TMatrixD dgamma(fNa, 1);
|
---|
930 |
|
---|
931 | Double_t fWinitial;
|
---|
932 | fWinitial = 0.0;
|
---|
933 | SetInitialWeight(fWinitial);
|
---|
934 | // for my example this fWinitial was not good; therefore :
|
---|
935 | fWinitial = 1.0;
|
---|
936 |
|
---|
937 | Int_t ix;
|
---|
938 | Double_t xiter;
|
---|
939 |
|
---|
940 | //-------- start scanning weights --------------------------
|
---|
941 | // if full == kFALSE only quantities necessary for the Gauss-Newton
|
---|
942 | // iteration are calculated in SchmellCore
|
---|
943 | // if full == kTRUE in addition the unfolded distribution,
|
---|
944 | // its covariance matrix and quantities like
|
---|
945 | // Chisq, SpurAR, etc. are computed in SchmellCore
|
---|
946 | //Bool_t full;
|
---|
947 | //full = kFALSE;
|
---|
948 | Int_t full;
|
---|
949 |
|
---|
950 | dga2 = 1.e20;
|
---|
951 | for (ix=0; ix<Nix; ix++)
|
---|
952 | {
|
---|
953 | xiter = pow(10.0,log10(xmin)+ix*dlogx) * fWinitial;
|
---|
954 |
|
---|
955 | //---------- start Gauss-Newton iteration ----------------------
|
---|
956 | numGiteration = 0;
|
---|
957 |
|
---|
958 | // if there was no convergence and the starting gamma was != 0
|
---|
959 | // redo unfolding for the same weight starting with gamma = 0
|
---|
960 | //
|
---|
961 | Int_t gamma0 = 0;
|
---|
962 | while (1)
|
---|
963 | {
|
---|
964 | if (dga2 > EpsG)
|
---|
965 | {
|
---|
966 | gamma0 = 1;
|
---|
967 | gamma.Zero();
|
---|
968 | }
|
---|
969 |
|
---|
970 | dga2 = 1.e20;
|
---|
971 |
|
---|
972 | while (1)
|
---|
973 | {
|
---|
974 | dga2old = dga2;
|
---|
975 |
|
---|
976 | full = 0;
|
---|
977 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
---|
978 |
|
---|
979 | gamma += dgamma;
|
---|
980 |
|
---|
981 | //cout << "Schmelling : ix, numGiteration, dga2, dga2old = "
|
---|
982 | // << ix << ", " << numGiteration << ", "
|
---|
983 | // << dga2 << ", " << dga2old << endl;
|
---|
984 |
|
---|
985 | numGiteration += 1;
|
---|
986 |
|
---|
987 | // convergence
|
---|
988 | if (dga2 < EpsG)
|
---|
989 | break;
|
---|
990 |
|
---|
991 | // no convergence
|
---|
992 | if (numGiteration > MaxGiteration)
|
---|
993 | break;
|
---|
994 |
|
---|
995 | // gamma doesn't seem to change any more
|
---|
996 | if (fabs(dga2-dga2old) < EpsG/100.)
|
---|
997 | break;
|
---|
998 | }
|
---|
999 | //---------- end Gauss-Newton iteration ------------------------
|
---|
1000 | if (dga2<EpsG || gamma0 != 0) break;
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 | // if Gauss-Newton iteration has not converged
|
---|
1004 | // go to next weight
|
---|
1005 | if (dga2 > EpsG)
|
---|
1006 | {
|
---|
1007 | cout << "Schmelling : Gauss-Newton iteration has not converged;"
|
---|
1008 | << " numGiteration = " << numGiteration << endl;
|
---|
1009 | cout << " ix, dga2, dga2old = " << ix << ", "
|
---|
1010 | << dga2 << ", " << dga2old << endl;
|
---|
1011 | continue;
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | //cout << "Schmelling : Gauss-Newton iteration has converged;" << endl;
|
---|
1015 | //cout << "==================================================" << endl;
|
---|
1016 | //cout << " numGiteration = " << numGiteration << endl;
|
---|
1017 | //cout << " ix, dga2 = " << ix << ", " << dga2 << endl;
|
---|
1018 |
|
---|
1019 | // calculated quantities which will be useful for determining
|
---|
1020 | // the best weight (Chisq, SpurAR, ...)
|
---|
1021 | //full = kTRUE;
|
---|
1022 | full = 1;
|
---|
1023 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
---|
1024 |
|
---|
1025 | // calculate difference between ideal and unfolded distribution
|
---|
1026 | Double_t D2bar = 0.0;
|
---|
1027 | for (UInt_t i = 0; i<fNb; i++)
|
---|
1028 | {
|
---|
1029 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
---|
1030 | D2bar += temp*temp;
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 | SpAR(ix) = SpurAR;
|
---|
1034 | SpSig(ix) = SpurSigma;
|
---|
1035 | chisq(ix) = Chisq;
|
---|
1036 | SecDer(ix) = SecDeriv;
|
---|
1037 | ZerDer(ix) = ZerDeriv;
|
---|
1038 | Entrop(ix) = Entropy;
|
---|
1039 | DAR2(ix) = DiffAR2;
|
---|
1040 | Dsqbar(ix) = D2bar;
|
---|
1041 |
|
---|
1042 | }
|
---|
1043 | //---------- end of scanning weights -------------------------------
|
---|
1044 |
|
---|
1045 | // plots ------------------------------
|
---|
1046 | for (ix=0; ix<Nix; ix++)
|
---|
1047 | {
|
---|
1048 | Double_t xbin = log10(xmin)+ix*dlogx;
|
---|
1049 | xiter = pow(10.0,xbin) * fWinitial;
|
---|
1050 |
|
---|
1051 | Int_t bin;
|
---|
1052 | bin = hBchisq->FindBin( xbin );
|
---|
1053 | hBchisq->SetBinContent(bin,chisq(ix));
|
---|
1054 | hBSpAR->SetBinContent(bin,SpAR(ix));
|
---|
1055 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
---|
1056 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
---|
1057 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
---|
1058 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
---|
1059 | hBDAR2->SetBinContent(bin,DAR2(ix));
|
---|
1060 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
---|
1061 |
|
---|
1062 | if (ix > 0)
|
---|
1063 | {
|
---|
1064 | Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
---|
1065 | hBDSpAR->SetBinContent(bin,DSpAR);
|
---|
1066 |
|
---|
1067 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
---|
1068 | Double_t DSpSig = diff;
|
---|
1069 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
---|
1070 |
|
---|
1071 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
---|
1072 | hBDEntropy->SetBinContent(bin,DEntrop);
|
---|
1073 |
|
---|
1074 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
---|
1075 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
---|
1076 |
|
---|
1077 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
---|
1078 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
---|
1079 | }
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | // Select best weight
|
---|
1083 | SelectBestWeight();
|
---|
1084 |
|
---|
1085 | if (ixbest < 0.0)
|
---|
1086 | {
|
---|
1087 | cout << "Schmelling : no solution found; " << endl;
|
---|
1088 | return kFALSE;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | // do the unfolding using the best weight
|
---|
1092 | //full = kTRUE;
|
---|
1093 |
|
---|
1094 |
|
---|
1095 | xiter = pow(10.0,log10(xmin)+ixbest*dlogx) * fWinitial;
|
---|
1096 |
|
---|
1097 | //---------- start Gauss-Newton iteration ----------------------
|
---|
1098 | numGiteration = 0;
|
---|
1099 | gamma.Zero();
|
---|
1100 | dga2 = 1.e20;
|
---|
1101 |
|
---|
1102 | while (1)
|
---|
1103 | {
|
---|
1104 | full = 1;
|
---|
1105 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
---|
1106 | gamma += dgamma;
|
---|
1107 |
|
---|
1108 | //cout << "Schmelling : sum(dgamma^2) = " << dga2 << endl;
|
---|
1109 |
|
---|
1110 | numGiteration += 1;
|
---|
1111 |
|
---|
1112 | if (numGiteration > MaxGiteration)
|
---|
1113 | break;
|
---|
1114 |
|
---|
1115 | if (dga2 < EpsG)
|
---|
1116 | break;
|
---|
1117 | }
|
---|
1118 | //---------- end Gauss-Newton iteration ------------------------
|
---|
1119 |
|
---|
1120 |
|
---|
1121 | //-----------------------------------------------------------------------
|
---|
1122 | // termination stage
|
---|
1123 | // =================
|
---|
1124 |
|
---|
1125 | cout << "Schmelling : best solution found; " << endl;
|
---|
1126 | cout << "==================================" << endl;
|
---|
1127 | cout << " xiter, ixbest, numGiteration, Chisq = "
|
---|
1128 | << xiter << ", " << ixbest << ", "
|
---|
1129 | << numGiteration << ", " << Chisq << endl;
|
---|
1130 |
|
---|
1131 | //------------------------------------
|
---|
1132 | //..............................................
|
---|
1133 | // put unfolded distribution into fResult
|
---|
1134 | // fResult(i,0) value in bin i
|
---|
1135 | // fResult(i,1) error of value in bin i
|
---|
1136 |
|
---|
1137 | fNdf = SpurAR;
|
---|
1138 | fChisq = Chisq;
|
---|
1139 |
|
---|
1140 | for (UInt_t i=0; i<fNa; i++)
|
---|
1141 | {
|
---|
1142 | fChi2(i,0) = Chi2(i,0);
|
---|
1143 | }
|
---|
1144 |
|
---|
1145 | UInt_t iNdf = (UInt_t) (fNdf+0.5);
|
---|
1146 | fProb = iNdf>0 ? TMath::Prob(fChisq, iNdf) : 0;
|
---|
1147 |
|
---|
1148 | fResult.ResizeTo(fNb, 5);
|
---|
1149 | for (UInt_t i=0; i<fNb; i++)
|
---|
1150 | {
|
---|
1151 | fResult(i, 0) = fVb(i,0);
|
---|
1152 | fResult(i, 1) = sqrt(fVbcov(i,i));
|
---|
1153 | fResult(i, 2) = 0.0;
|
---|
1154 | fResult(i, 3) = 0.0;
|
---|
1155 | fResult(i, 4) = 1.0;
|
---|
1156 | }
|
---|
1157 |
|
---|
1158 | //--------------------------------------------------------
|
---|
1159 |
|
---|
1160 | cout << "Schmelling : gamma = " << endl;
|
---|
1161 | for (UInt_t i=0; i<fNa; i++)
|
---|
1162 | cout << gamma(i,0) << " \t";
|
---|
1163 | cout << endl;
|
---|
1164 |
|
---|
1165 | return kTRUE;
|
---|
1166 | }
|
---|
1167 |
|
---|
1168 |
|
---|
1169 |
|
---|
1170 |
|
---|
1171 | // -----------------------------------------------------------------------
|
---|
1172 | //
|
---|
1173 | // SchmellCore main part of Schmellings calculations
|
---|
1174 | //
|
---|
1175 | void SchmellCore(Int_t full, Double_t &xiter, TMatrixD &gamma,
|
---|
1176 | TMatrixD &dgamma, Double_t &dga2)
|
---|
1177 | {
|
---|
1178 | Double_t norm;
|
---|
1179 | TMatrixD wZdp_inv(fNa, fNa);
|
---|
1180 | TMatrixD d(fNb, 1);
|
---|
1181 | TMatrixD p(fNb, 1);
|
---|
1182 |
|
---|
1183 | //--------------------------------------------------------
|
---|
1184 | //-- determine the probability vector p
|
---|
1185 |
|
---|
1186 |
|
---|
1187 | TMatrixD v3(gamma, TMatrixD::kTransposeMult, fMigrat);
|
---|
1188 | TMatrixD v4(TMatrixD::kTransposed, v3);
|
---|
1189 | d = v4;
|
---|
1190 | Double_t dmax = -1.e10;
|
---|
1191 | for (UInt_t j=0; j<fNb; j++)
|
---|
1192 | if (d(j,0)>dmax)
|
---|
1193 | dmax = d(j,0);
|
---|
1194 |
|
---|
1195 | Double_t psum = 0.0;
|
---|
1196 | for (UInt_t j=0; j<fNb; j++)
|
---|
1197 | {
|
---|
1198 | d(j,0) -= dmax;
|
---|
1199 | p(j,0) = fVEps0(j)*exp(xiter*d(j,0));
|
---|
1200 | psum += p(j,0);
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 | p *= 1.0/psum;
|
---|
1204 |
|
---|
1205 | //-- get the vector alpha
|
---|
1206 |
|
---|
1207 | TMatrixD alpha(fMigrat, TMatrixD::kMult, p);
|
---|
1208 |
|
---|
1209 | //-- determine the current normalization
|
---|
1210 |
|
---|
1211 | TMatrixD v2 (alpha, TMatrixD::kTransposeMult, fVacovInv);
|
---|
1212 | TMatrixD normb(v2, TMatrixD::kMult, alpha);
|
---|
1213 |
|
---|
1214 | TMatrixD normc(v2, TMatrixD::kMult, fVa);
|
---|
1215 |
|
---|
1216 | norm = normc(0,0)/normb(0,0);
|
---|
1217 |
|
---|
1218 | //--------------------------------------------------------
|
---|
1219 | //-- determine the scaled slope vector s and Hessian H
|
---|
1220 |
|
---|
1221 | TMatrixD Zp(fNa,1);
|
---|
1222 | for (UInt_t i=0; i<fNa; i++)
|
---|
1223 | {
|
---|
1224 | Zp(i,0) = norm*alpha(i,0) - fVa(i,0);
|
---|
1225 | for (UInt_t k=0; k<fNa; k++)
|
---|
1226 | Zp(i,0) += gamma(k,0)*fVacov(k,i);
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 |
|
---|
1230 | TMatrixD Q (fNa, fNa);
|
---|
1231 | TMatrixD wZdp(fNa, fNa);
|
---|
1232 | for (UInt_t i=0; i<fNa; i++)
|
---|
1233 | {
|
---|
1234 | for (UInt_t j=0; j<fNa; j++)
|
---|
1235 | {
|
---|
1236 | Q(i,j) = - alpha(i,0)*alpha(j,0);
|
---|
1237 | for (UInt_t k=0; k<fNb; k++)
|
---|
1238 | Q(i,j) += fMigrat(i,k)*fMigrat(j,k)*p(k,0);
|
---|
1239 | wZdp(i,j) = xiter*norm*Q(i,j) + fVacov(i,j);
|
---|
1240 | }
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 | //-- invert H and calculate the next Newton step
|
---|
1244 |
|
---|
1245 | Double_t determ = 1.0;
|
---|
1246 | wZdp_inv = wZdp;
|
---|
1247 | wZdp_inv.Invert(&determ);
|
---|
1248 |
|
---|
1249 | if(determ == 0.0)
|
---|
1250 | {
|
---|
1251 | cout << "SchmellCore: matrix inversion for H failed" << endl;
|
---|
1252 | return;
|
---|
1253 | }
|
---|
1254 |
|
---|
1255 |
|
---|
1256 | dga2 = 0.0;
|
---|
1257 | for (UInt_t i=0; i<fNa; i++)
|
---|
1258 | {
|
---|
1259 | dgamma(i,0) = 0.0;
|
---|
1260 | for (UInt_t j=0; j<fNa; j++)
|
---|
1261 | dgamma(i,0) -= wZdp_inv(i,j)*Zp(j,0);
|
---|
1262 | dga2 += dgamma(i,0)*dgamma(i,0);
|
---|
1263 | }
|
---|
1264 |
|
---|
1265 | if (full == 0)
|
---|
1266 | return;
|
---|
1267 |
|
---|
1268 | //--------------------------------------------------------
|
---|
1269 | //-- determine chi2 and dNdf (#measurements ignored)
|
---|
1270 | Double_t dNdf = 0;
|
---|
1271 | for (UInt_t i=0; i<fNa; i++)
|
---|
1272 | {
|
---|
1273 | Chi2(i,0) = 0;
|
---|
1274 | for (UInt_t j=0; j<fNa; j++)
|
---|
1275 | {
|
---|
1276 | Chi2(i,0) += fVacov(i,j) * gamma(i,0) * gamma(j,0);
|
---|
1277 | dNdf += fVacov(i,j) * wZdp_inv(j,i);
|
---|
1278 | }
|
---|
1279 | }
|
---|
1280 | Chisq = GetMatrixSumCol(Chi2, 0);
|
---|
1281 | SpurAR = fNa - dNdf;
|
---|
1282 |
|
---|
1283 | //-----------------------------------------------------
|
---|
1284 | // calculate the norm |AR - AR+|**2
|
---|
1285 |
|
---|
1286 | TMatrixD AR(fNa, fNa);
|
---|
1287 | DiffAR2 = 0.0;
|
---|
1288 | for (UInt_t i=0; i<fNa; i++)
|
---|
1289 | {
|
---|
1290 | for (UInt_t j=0; j<fNa; j++)
|
---|
1291 | {
|
---|
1292 | AR(i,j) = 0.0;
|
---|
1293 | for (UInt_t k=0; k<fNa; k++)
|
---|
1294 | AR(i,j) += fVacov(i,k) * wZdp_inv(k,j);
|
---|
1295 | DiffAR2 += AR(i,j) * AR(i,j);
|
---|
1296 | }
|
---|
1297 | }
|
---|
1298 |
|
---|
1299 | //--------------------------------------------------------
|
---|
1300 | //-- fill distribution b(*)
|
---|
1301 | fVb = p;
|
---|
1302 | fVb *= norm;
|
---|
1303 |
|
---|
1304 | //-- determine the covariance matrix of b (very expensive)
|
---|
1305 |
|
---|
1306 | TMatrixD T(fNb,fNa);
|
---|
1307 | for (UInt_t i=0; i<fNb; i++)
|
---|
1308 | {
|
---|
1309 | for (UInt_t j=0; j<fNa; j++)
|
---|
1310 | {
|
---|
1311 | T(i,j) = 0.0;
|
---|
1312 | for (UInt_t k=0; k<fNa; k++)
|
---|
1313 | T(i,j) += xiter*wZdp_inv(k,j)*(fMigrat(k,i)-alpha(k,0))*p(i,0);
|
---|
1314 | }
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 | SpurSigma = CalcSpurSigma(T, norm);
|
---|
1318 |
|
---|
1319 | //--------------------------------------------------------
|
---|
1320 |
|
---|
1321 | //-----------------------------------------------------
|
---|
1322 | // calculate the second derivative squared
|
---|
1323 |
|
---|
1324 | SecDeriv = 0;
|
---|
1325 | for (UInt_t j=1; j<(fNb-1); j++)
|
---|
1326 | {
|
---|
1327 | Double_t temp =
|
---|
1328 | + 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
---|
1329 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
---|
1330 | SecDeriv += temp*temp;
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | ZerDeriv = 0;
|
---|
1334 | for (UInt_t j=0; j<fNb; j++)
|
---|
1335 | ZerDeriv += fVb(j,0) * fVb(j,0);
|
---|
1336 |
|
---|
1337 | //-----------------------------------------------------
|
---|
1338 | // calculate the entropy
|
---|
1339 | Entropy = 0;
|
---|
1340 | for (UInt_t j=0; j<fNb; j++)
|
---|
1341 | if (p(j,0) > 0.0)
|
---|
1342 | Entropy += p(j,0) * log( p(j,0) );
|
---|
1343 |
|
---|
1344 | //--------------------------------------------------------
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 |
|
---|
1348 | // -----------------------------------------------------------------------
|
---|
1349 | //
|
---|
1350 | // Smooth migration matrix
|
---|
1351 | // by fitting a function to the migration matrix
|
---|
1352 | //
|
---|
1353 | Bool_t SmoothMigrationMatrix(TH2D &hmigorig)
|
---|
1354 | {
|
---|
1355 | // copy histograms into matrices; the matrices will be used in fcnSmooth
|
---|
1356 | // ------------------------
|
---|
1357 |
|
---|
1358 | cout << "MUnfold::SmoothMigrationMatrix : fNa, fNb = " << fNa << ", " << fNb << endl;
|
---|
1359 |
|
---|
1360 | cout << "MUnfold::SmoothMigrationMatrix: fMigOrig = " << endl;
|
---|
1361 | cout << "========================================" << endl;
|
---|
1362 | for (UInt_t i=0; i<fNa; i++)
|
---|
1363 | {
|
---|
1364 | for (UInt_t j=0; j<fNb; j++)
|
---|
1365 | {
|
---|
1366 | fMigOrig(i, j) = hmigorig.GetBinContent(i+1, j+1);
|
---|
1367 | cout << fMigOrig(i, j) << " \t";
|
---|
1368 | }
|
---|
1369 | cout << endl;
|
---|
1370 | }
|
---|
1371 |
|
---|
1372 | // ------------------------
|
---|
1373 |
|
---|
1374 | cout << "MUnfold::SmoothMigrationMatrix : fMigOrigerr2 = " << endl;
|
---|
1375 | cout << "=============================================" << endl;
|
---|
1376 | for (UInt_t i=0; i<fNa; i++)
|
---|
1377 | {
|
---|
1378 | for (UInt_t j=0; j<fNb; j++)
|
---|
1379 | {
|
---|
1380 | fMigOrigerr2(i, j) = hmigorig.GetBinError(i+1, j+1)
|
---|
1381 | * hmigorig.GetBinError(i+1, j+1);
|
---|
1382 |
|
---|
1383 | cout << fMigOrigerr2(i, j) << " \t";
|
---|
1384 | }
|
---|
1385 | cout << endl;
|
---|
1386 | }
|
---|
1387 |
|
---|
1388 | // ------------------------
|
---|
1389 | // the number of free parameters (npar) is equal to 6:
|
---|
1390 | // a0mean, a1mean, a2mean
|
---|
1391 | // <log10(Eest)> = a0 + a1*log10(Etrue) + a2*SQR(log10(Etrue))
|
---|
1392 | // + log10(Etrue)
|
---|
1393 | // b0RMS, b1RMS, b2RMS
|
---|
1394 | // RMS(log10(Eest)) = b0 + b1*log10(Etrue) + b2*SQR(log10(Etrue))
|
---|
1395 | //
|
---|
1396 | UInt_t npar = 6;
|
---|
1397 |
|
---|
1398 | if (npar > 20)
|
---|
1399 | {
|
---|
1400 | cout << "MUnfold::SmoothMigrationMatrix : too many parameters, npar = "
|
---|
1401 | << npar << endl;
|
---|
1402 | return kFALSE;
|
---|
1403 | }
|
---|
1404 |
|
---|
1405 |
|
---|
1406 | //..............................................
|
---|
1407 | // Find reasonable starting values for a0, a1 and b0, b1
|
---|
1408 |
|
---|
1409 | Double_t xbar = 0.0;
|
---|
1410 | Double_t xxbar = 0.0;
|
---|
1411 |
|
---|
1412 | Double_t ybarm = 0.0;
|
---|
1413 | Double_t xybarm = 0.0;
|
---|
1414 |
|
---|
1415 | Double_t ybarR = 0.0;
|
---|
1416 | Double_t xybarR = 0.0;
|
---|
1417 |
|
---|
1418 | Double_t Sum = 0.0;
|
---|
1419 | for (UInt_t j=0; j<fNb; j++)
|
---|
1420 | {
|
---|
1421 | Double_t x = (double)j + 0.5;
|
---|
1422 |
|
---|
1423 | Double_t meany = 0.0;
|
---|
1424 | Double_t RMSy = 0.0;
|
---|
1425 | Double_t sum = 0.0;
|
---|
1426 | for (UInt_t i=0; i<fNa; i++)
|
---|
1427 | {
|
---|
1428 | Double_t y = (double)i + 0.5;
|
---|
1429 | meany += y * fMigOrig(i, j);
|
---|
1430 | RMSy += y*y * fMigOrig(i, j);
|
---|
1431 | sum += fMigOrig(i, j);
|
---|
1432 | }
|
---|
1433 | if (sum > 0.0)
|
---|
1434 | {
|
---|
1435 | meany = meany / sum;
|
---|
1436 | RMSy = RMSy / sum - meany*meany;
|
---|
1437 | RMSy = sqrt(RMSy);
|
---|
1438 |
|
---|
1439 | Sum += sum;
|
---|
1440 | xbar += x * sum;
|
---|
1441 | xxbar += x*x * sum;
|
---|
1442 |
|
---|
1443 | ybarm += meany * sum;
|
---|
1444 | xybarm += x*meany * sum;
|
---|
1445 |
|
---|
1446 | ybarR += RMSy * sum;
|
---|
1447 | xybarR += x*RMSy * sum;
|
---|
1448 | }
|
---|
1449 | }
|
---|
1450 |
|
---|
1451 | if (Sum > 0.0)
|
---|
1452 | {
|
---|
1453 | xbar /= Sum;
|
---|
1454 | xxbar /= Sum;
|
---|
1455 |
|
---|
1456 | ybarm /= Sum;
|
---|
1457 | xybarm /= Sum;
|
---|
1458 |
|
---|
1459 | ybarR /= Sum;
|
---|
1460 | xybarR /= Sum;
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | Double_t a1start = (xybarm - xbar*ybarm) / (xxbar - xbar*xbar);
|
---|
1464 | Double_t a0start = ybarm - a1start*xbar;
|
---|
1465 | a1start = a1start - 1.0;
|
---|
1466 |
|
---|
1467 | Double_t b1start = (xybarR - xbar*ybarR) / (xxbar - xbar*xbar);
|
---|
1468 | Double_t b0start = ybarR - b1start*xbar;
|
---|
1469 |
|
---|
1470 | cout << "MUnfold::SmoothMigrationMatrix : " << endl;
|
---|
1471 | cout << "============================" << endl;
|
---|
1472 | cout << "a0start, a1start = " << a0start << ", " << a1start << endl;
|
---|
1473 | cout << "b0start, b1start = " << b0start << ", " << b1start << endl;
|
---|
1474 |
|
---|
1475 | //..............................................
|
---|
1476 | // Set starting values and step sizes for parameters
|
---|
1477 |
|
---|
1478 | char name[20][100];
|
---|
1479 | Double_t vinit[20];
|
---|
1480 | Double_t step[20];
|
---|
1481 | Double_t limlo[20];
|
---|
1482 | Double_t limup[20];
|
---|
1483 | Int_t fix[20];
|
---|
1484 |
|
---|
1485 | sprintf(&name[0][0], "a0mean");
|
---|
1486 | vinit[0] = a0start;
|
---|
1487 | //vinit[0] = 1.0;
|
---|
1488 | step[0] = 0.1;
|
---|
1489 | limlo[0] = 0.0;
|
---|
1490 | limup[0] = 0.0;
|
---|
1491 | fix[0] = 0;
|
---|
1492 |
|
---|
1493 | sprintf(&name[1][0], "a1mean");
|
---|
1494 | vinit[1] = a1start;
|
---|
1495 | //vinit[1] = 0.0;
|
---|
1496 | step[1] = 0.1;
|
---|
1497 | limlo[1] = 0.0;
|
---|
1498 | limup[1] = 0.0;
|
---|
1499 | fix[1] = 0;
|
---|
1500 |
|
---|
1501 | sprintf(&name[2][0], "a2mean");
|
---|
1502 | vinit[2] = 0.0;
|
---|
1503 | step[2] = 0.1;
|
---|
1504 | limlo[2] = 0.0;
|
---|
1505 | limup[2] = 0.0;
|
---|
1506 | fix[2] = 0;
|
---|
1507 |
|
---|
1508 | sprintf(&name[3][0], "b0RMS");
|
---|
1509 | vinit[3] = b0start;
|
---|
1510 | //vinit[3] = 0.8;
|
---|
1511 | step[3] = 0.1;
|
---|
1512 | limlo[3] = 1.e-20;
|
---|
1513 | limup[3] = 10.0;
|
---|
1514 | fix[3] = 0;
|
---|
1515 |
|
---|
1516 | sprintf(&name[4][0], "b1RMS");
|
---|
1517 | vinit[4] = b1start;
|
---|
1518 | //vinit[4] = 0.0;
|
---|
1519 | step[4] = 0.1;
|
---|
1520 | limlo[4] = 0.0;
|
---|
1521 | limup[4] = 0.0;
|
---|
1522 | fix[4] = 0;
|
---|
1523 |
|
---|
1524 | sprintf(&name[5][0], "b2RMS");
|
---|
1525 | vinit[5] = 0.0;
|
---|
1526 | step[5] = 0.1;
|
---|
1527 | limlo[5] = 0.0;
|
---|
1528 | limup[5] = 0.0;
|
---|
1529 | fix[5] = 0;
|
---|
1530 |
|
---|
1531 |
|
---|
1532 | if ( CallMinuit(fcnSmooth, npar, name, vinit,
|
---|
1533 | step, limlo, limup, fix) )
|
---|
1534 | {
|
---|
1535 |
|
---|
1536 | // ------------------------
|
---|
1537 | // fMigrat is the migration matrix to be used in the unfolding;
|
---|
1538 | // fMigrat, as set by the constructor, is overwritten
|
---|
1539 | // by the smoothed migration matrix
|
---|
1540 |
|
---|
1541 | for (UInt_t i=0; i<fNa; i++)
|
---|
1542 | for (UInt_t j=0; j<fNb; j++)
|
---|
1543 | fMigrat(i, j) = fMigSmoo(i, j);
|
---|
1544 |
|
---|
1545 | // ------------------------
|
---|
1546 |
|
---|
1547 | for (UInt_t i=0; i<fNa; i++)
|
---|
1548 | for (UInt_t j=0; j<fNb; j++)
|
---|
1549 | fMigraterr2(i, j) = fMigSmooerr2(i, j);
|
---|
1550 |
|
---|
1551 |
|
---|
1552 | // normalize
|
---|
1553 | for (UInt_t j=0; j<fNb; j++)
|
---|
1554 | {
|
---|
1555 | Double_t sum = 0.0;
|
---|
1556 | for (UInt_t i=0; i<fNa; i++)
|
---|
1557 | sum += fMigrat(i, j);
|
---|
1558 |
|
---|
1559 | //cout << "SmoothMigrationMatrix : normalization fMigrat; j, sum + "
|
---|
1560 | // << j << ", " << sum << endl;
|
---|
1561 |
|
---|
1562 | if (sum == 0.0)
|
---|
1563 | continue;
|
---|
1564 |
|
---|
1565 | for (UInt_t i=0; i<fNa; i++)
|
---|
1566 | {
|
---|
1567 | fMigrat(i, j) /= sum;
|
---|
1568 | fMigraterr2(i, j) /= (sum*sum);
|
---|
1569 | }
|
---|
1570 | }
|
---|
1571 |
|
---|
1572 | cout << "MUnfold::SmoothMigrationMatrix : fMigrat = " << endl;
|
---|
1573 | cout << "========================================" << endl;
|
---|
1574 | for (UInt_t i=0; i<fNa; i++)
|
---|
1575 | {
|
---|
1576 | for (UInt_t j=0; j<fNb; j++)
|
---|
1577 | cout << fMigrat(i, j) << " \t";
|
---|
1578 | cout << endl;
|
---|
1579 | }
|
---|
1580 |
|
---|
1581 | cout << "MUnfold::SmoothMigrationMatrix : fMigraterr2 = " << endl;
|
---|
1582 | cout << "============================================" << endl;
|
---|
1583 | for (UInt_t i=0; i<fNa; i++)
|
---|
1584 | {
|
---|
1585 | for (UInt_t j=0; j<fNb; j++)
|
---|
1586 | cout << fMigraterr2(i, j) << " \t";
|
---|
1587 | cout << endl;
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | // ------------------------
|
---|
1591 |
|
---|
1592 | return kTRUE;
|
---|
1593 | }
|
---|
1594 |
|
---|
1595 | return kFALSE;
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 | // -----------------------------------------------------------------------
|
---|
1599 | //
|
---|
1600 | // Prepare the call to MINUIT for the minimization of the function
|
---|
1601 | // f = chi2*w/2 + reg, where reg is the regularization term
|
---|
1602 | // reg is the sum the squared 2nd derivatives
|
---|
1603 | // of the unfolded distribution
|
---|
1604 | //
|
---|
1605 | // the corresponding fcn routine is 'fcnTikhonov2'
|
---|
1606 | //
|
---|
1607 | Bool_t Tikhonov2(TH1D &hb0)
|
---|
1608 | {
|
---|
1609 | // the number of free parameters (npar) is equal to
|
---|
1610 | // the number of bins (fNb) of the unfolded distribution minus 1,
|
---|
1611 | // because of the constraint that the total number of events
|
---|
1612 | // is fixed
|
---|
1613 | UInt_t npar = fNb-1;
|
---|
1614 |
|
---|
1615 | if (npar > 20)
|
---|
1616 | {
|
---|
1617 | cout << "MUnfold::Tikhonov2 : too many parameters, npar = "
|
---|
1618 | << npar << ", fNb = " << fNb << endl;
|
---|
1619 | return kFALSE;
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | // copy ideal distribution
|
---|
1623 |
|
---|
1624 | for (UInt_t i=1; i<=fNb; i++)
|
---|
1625 | {
|
---|
1626 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
---|
1627 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
---|
1628 | }
|
---|
1629 |
|
---|
1630 |
|
---|
1631 | //--- start w loop -----------------------------------
|
---|
1632 | Int_t ix;
|
---|
1633 | Double_t xiter;
|
---|
1634 |
|
---|
1635 | for (ix=0; ix<Nix; ix++)
|
---|
1636 | {
|
---|
1637 | fW = pow(10.0,log10(xmin)+ix*dlogx);
|
---|
1638 |
|
---|
1639 | //..............................................
|
---|
1640 | // Set starting values and step sizes for parameters
|
---|
1641 |
|
---|
1642 | char name[20][100];
|
---|
1643 | Double_t vinit[20];
|
---|
1644 | Double_t step[20];
|
---|
1645 | Double_t limlo[20];
|
---|
1646 | Double_t limup[20];
|
---|
1647 | Int_t fix[20];
|
---|
1648 |
|
---|
1649 | for (UInt_t i=0; i<npar; i++)
|
---|
1650 | {
|
---|
1651 | sprintf(&name[i][0], "p%d", i+1);
|
---|
1652 | vinit[i] = fVEps0(i);
|
---|
1653 | step[i] = fVEps0(i)/10;
|
---|
1654 |
|
---|
1655 | // lower and upper limits (limlo=limup=0: no limits)
|
---|
1656 | //limlo[i] = 1.e-20;
|
---|
1657 | limlo[i] = -1.0;
|
---|
1658 | limup[i] = 1.0;
|
---|
1659 | fix[i] = 0;
|
---|
1660 | }
|
---|
1661 |
|
---|
1662 | // calculate solution for the weight fW
|
---|
1663 | // flag non-convergence by chisq(ix) = 0.0
|
---|
1664 | chisq(ix) = 0.0;
|
---|
1665 | if ( CallMinuit(fcnTikhonov2, npar, name, vinit,
|
---|
1666 | step, limlo, limup, fix) )
|
---|
1667 | {
|
---|
1668 | // calculate difference between ideal and unfolded distribution
|
---|
1669 | Double_t D2bar = 0.0;
|
---|
1670 | for (UInt_t i = 0; i<fNb; i++)
|
---|
1671 | {
|
---|
1672 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
---|
1673 | D2bar += temp*temp;
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | SpAR(ix) = SpurAR;
|
---|
1677 | SpSig(ix) = SpurSigma;
|
---|
1678 | chisq(ix) = Chisq;
|
---|
1679 | SecDer(ix) = SecDeriv;
|
---|
1680 | ZerDer(ix) = ZerDeriv;
|
---|
1681 | Entrop(ix) = Entropy;
|
---|
1682 | DAR2(ix) = DiffAR2;
|
---|
1683 | Dsqbar(ix) = D2bar;
|
---|
1684 | }
|
---|
1685 | }
|
---|
1686 |
|
---|
1687 |
|
---|
1688 | // plots ------------------------------
|
---|
1689 | for (ix=0; ix<Nix; ix++)
|
---|
1690 | {
|
---|
1691 | // test whether minimization has converged
|
---|
1692 | if (chisq(ix) != 0.0)
|
---|
1693 | {
|
---|
1694 | xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
---|
1695 |
|
---|
1696 | Int_t bin;
|
---|
1697 | bin = hBchisq->FindBin( log10(xiter) );
|
---|
1698 | hBchisq->SetBinContent(bin,chisq(ix));
|
---|
1699 |
|
---|
1700 | //hBSpAR->SetBinContent(bin,SpAR(ix));
|
---|
1701 | hBSpAR->SetBinContent(bin,0.0);
|
---|
1702 |
|
---|
1703 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
---|
1704 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
---|
1705 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
---|
1706 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
---|
1707 |
|
---|
1708 | //hBDAR2->SetBinContent(bin,DAR2(ix));
|
---|
1709 | hBDAR2->SetBinContent(bin,0.0);
|
---|
1710 |
|
---|
1711 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
---|
1712 |
|
---|
1713 | if (ix > 0)
|
---|
1714 | {
|
---|
1715 | //Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
---|
1716 | //hBDSpAR->SetBinContent(bin,DSpAR);
|
---|
1717 |
|
---|
1718 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
---|
1719 | Double_t DSpSig = diff;
|
---|
1720 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
---|
1721 |
|
---|
1722 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
---|
1723 | hBDEntropy->SetBinContent(bin,DEntrop);
|
---|
1724 |
|
---|
1725 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
---|
1726 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
---|
1727 |
|
---|
1728 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
---|
1729 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
---|
1730 | }
|
---|
1731 | }
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 |
|
---|
1735 | //--- end w loop -----------------------------------
|
---|
1736 |
|
---|
1737 | // Select best weight
|
---|
1738 | SelectBestWeight();
|
---|
1739 |
|
---|
1740 | cout << " Tikhonov2 : after SelectBestWeight" << endl;
|
---|
1741 |
|
---|
1742 | if (ixbest < 0.0)
|
---|
1743 | {
|
---|
1744 | cout << "Tikhonov2 : no result found; " << endl;
|
---|
1745 | return kFALSE;
|
---|
1746 | }
|
---|
1747 |
|
---|
1748 | cout << "Tikhonov2 : best result found; " << endl;
|
---|
1749 | cout << "===============================" << endl;
|
---|
1750 | cout << " ixbest = " << ixbest << endl;
|
---|
1751 |
|
---|
1752 |
|
---|
1753 | // do a final unfolding using the best weight
|
---|
1754 |
|
---|
1755 | fW = pow(10.0,log10(xmin)+ixbest*dlogx);
|
---|
1756 |
|
---|
1757 | //..............................................
|
---|
1758 | // Set starting values and step sizes for parameters
|
---|
1759 |
|
---|
1760 | char name[20][100];
|
---|
1761 | Double_t vinit[20];
|
---|
1762 | Double_t step[20];
|
---|
1763 | Double_t limlo[20];
|
---|
1764 | Double_t limup[20];
|
---|
1765 | Int_t fix[20];
|
---|
1766 |
|
---|
1767 | for (UInt_t i=0; i<npar; i++)
|
---|
1768 | {
|
---|
1769 | sprintf(&name[i][0], "p%d", i+1);
|
---|
1770 | vinit[i] = fVEps0(i);
|
---|
1771 | step[i] = fVEps0(i)/10;
|
---|
1772 |
|
---|
1773 | // lower and upper limits (limlo=limup=0: no limits)
|
---|
1774 | //limlo[i] = 1.e-20;
|
---|
1775 | limlo[i] = -1.0;
|
---|
1776 | limup[i] = 1.0;
|
---|
1777 | fix[i] = 0;
|
---|
1778 | }
|
---|
1779 |
|
---|
1780 | // calculate solution for the best weight
|
---|
1781 | CallMinuit(fcnTikhonov2, npar, name, vinit,
|
---|
1782 | step, limlo, limup, fix);
|
---|
1783 |
|
---|
1784 |
|
---|
1785 | cout << "Tikhonov : Values for best weight " << endl;
|
---|
1786 | cout << "==================================" << endl;
|
---|
1787 | cout << "fW, ixbest, Chisq, SpurAR, SpurSigma, SecDeriv, ZerDeriv, Entrop, DiffAR2, D2bar = " << endl;
|
---|
1788 | cout << " " << fW << ", " << ixbest << ", "
|
---|
1789 | << Chisq << ", " << SpurAR << ", "
|
---|
1790 | << SpurSigma << ", " << SecDeriv << ", " << ZerDeriv << ", "
|
---|
1791 | << Entropy << ", " << DiffAR2 << ", "
|
---|
1792 | << Dsqbar(ixbest) << endl;
|
---|
1793 |
|
---|
1794 | return kTRUE;
|
---|
1795 |
|
---|
1796 | }
|
---|
1797 |
|
---|
1798 |
|
---|
1799 | // -----------------------------------------------------------------------
|
---|
1800 | //
|
---|
1801 | // Bertero :
|
---|
1802 | //
|
---|
1803 | // the unfolded distribution is calculated iteratively;
|
---|
1804 | // the number of iterations after which the iteration is stopped
|
---|
1805 | // corresponds to the 'weight' in other methods
|
---|
1806 | // a small number of iterations corresponds to strong regularization
|
---|
1807 | // a high number to no regularization
|
---|
1808 | //
|
---|
1809 | // see : M.Bertero, INFN/TC-88/2 (1988)
|
---|
1810 | // V.B.Anykeyev et al., NIM A303 (1991) 350
|
---|
1811 | //
|
---|
1812 | Bool_t Bertero(TH1D &hb0)
|
---|
1813 | {
|
---|
1814 | // copy ideal distribution
|
---|
1815 |
|
---|
1816 | for (UInt_t i=1; i<=fNb; i++)
|
---|
1817 | {
|
---|
1818 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
---|
1819 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
---|
1820 | }
|
---|
1821 |
|
---|
1822 |
|
---|
1823 | TMatrixD bold(fNb, 1);
|
---|
1824 | bold.Zero();
|
---|
1825 |
|
---|
1826 | //----------------------------------------------------------
|
---|
1827 |
|
---|
1828 | Double_t db2 = 1.e20;
|
---|
1829 |
|
---|
1830 |
|
---|
1831 | TMatrixD aminusaest(fNa, 1);
|
---|
1832 |
|
---|
1833 | //------- scan number of iterations -----------------
|
---|
1834 |
|
---|
1835 | Int_t ix;
|
---|
1836 |
|
---|
1837 | for (ix=0; ix<Nix; ix++)
|
---|
1838 | {
|
---|
1839 | Double_t xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
---|
1840 |
|
---|
1841 | // calculate solution for the iteration number xiter
|
---|
1842 | BertCore(xiter);
|
---|
1843 |
|
---|
1844 | // calculate difference between ideal and unfolded distribution
|
---|
1845 | Double_t D2bar = 0.0;
|
---|
1846 | for (UInt_t i = 0; i<fNb; i++)
|
---|
1847 | {
|
---|
1848 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
---|
1849 | D2bar += temp*temp;
|
---|
1850 | }
|
---|
1851 |
|
---|
1852 | SpAR(ix) = SpurAR;
|
---|
1853 | SpSig(ix) = SpurSigma;
|
---|
1854 | chisq(ix) = Chisq;
|
---|
1855 | SecDer(ix) = SecDeriv;
|
---|
1856 | ZerDer(ix) = ZerDeriv;
|
---|
1857 | Entrop(ix) = Entropy;
|
---|
1858 | DAR2(ix) = DiffAR2;
|
---|
1859 | Dsqbar(ix) = D2bar;
|
---|
1860 |
|
---|
1861 | db2 = 0.0;
|
---|
1862 | for (UInt_t i = 0; i<fNb; i++)
|
---|
1863 | {
|
---|
1864 | Double_t temp = fVb(i,0)-bold(i,0);
|
---|
1865 | db2 += temp*temp;
|
---|
1866 | }
|
---|
1867 | bold = fVb;
|
---|
1868 |
|
---|
1869 | //if (db2 < Epsdb2) break;
|
---|
1870 |
|
---|
1871 | }
|
---|
1872 |
|
---|
1873 | // plots ------------------------------
|
---|
1874 | for (ix=0; ix<Nix; ix++)
|
---|
1875 | {
|
---|
1876 | Double_t xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
---|
1877 |
|
---|
1878 | Int_t bin;
|
---|
1879 | bin = hBchisq->FindBin( log10(xiter) );
|
---|
1880 | hBchisq->SetBinContent(bin,chisq(ix));
|
---|
1881 | hBSpAR->SetBinContent(bin,SpAR(ix));
|
---|
1882 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
---|
1883 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
---|
1884 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
---|
1885 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
---|
1886 | hBDAR2->SetBinContent(bin,DAR2(ix));
|
---|
1887 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
---|
1888 |
|
---|
1889 | if (ix > 0)
|
---|
1890 | {
|
---|
1891 | Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
---|
1892 | hBDSpAR->SetBinContent(bin,DSpAR);
|
---|
1893 |
|
---|
1894 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
---|
1895 | Double_t DSpSig = diff;
|
---|
1896 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
---|
1897 |
|
---|
1898 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
---|
1899 | hBDEntropy->SetBinContent(bin,DEntrop);
|
---|
1900 |
|
---|
1901 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
---|
1902 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
---|
1903 |
|
---|
1904 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
---|
1905 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
---|
1906 | }
|
---|
1907 | }
|
---|
1908 | //------- end of scan of number of iterations -----------------
|
---|
1909 |
|
---|
1910 | // Select best weight
|
---|
1911 | SelectBestWeight();
|
---|
1912 |
|
---|
1913 |
|
---|
1914 | if (ixbest < 0.0)
|
---|
1915 | {
|
---|
1916 | cout << "Bertero : weight iteration has NOT converged; " << endl;
|
---|
1917 | return kFALSE;
|
---|
1918 | }
|
---|
1919 |
|
---|
1920 | cout << "Bertero : weight iteration has converged; " << endl;
|
---|
1921 | cout << " ixbest = " << ixbest << endl;
|
---|
1922 |
|
---|
1923 |
|
---|
1924 | // do a final unfolding using the best weight
|
---|
1925 |
|
---|
1926 | // calculate solution for the iteration number xiter
|
---|
1927 | Double_t xiter = pow(10.0,log10(xmin)+ixbest*dlogx);
|
---|
1928 | BertCore(xiter);
|
---|
1929 |
|
---|
1930 | cout << "Bertero : Values for best weight " << endl;
|
---|
1931 | cout << "=================================" << endl;
|
---|
1932 | cout << "fW, ixbest, Chisq, SpurAR, SpurSigma, SecDeriv, ZerDeriv, Entrop, DiffAR2, D2bar = " << endl;
|
---|
1933 | cout << " " << fW << ", " << ixbest << ", "
|
---|
1934 | << Chisq << ", " << SpurAR << ", "
|
---|
1935 | << SpurSigma << ", " << SecDeriv << ", " << ZerDeriv << ", "
|
---|
1936 | << Entropy << ", " << DiffAR2 << ", "
|
---|
1937 | << Dsqbar(ixbest) << endl;
|
---|
1938 |
|
---|
1939 | //----------------
|
---|
1940 |
|
---|
1941 | fNdf = SpurAR;
|
---|
1942 | fChisq = Chisq;
|
---|
1943 |
|
---|
1944 | for (UInt_t i=0; i<fNa; i++)
|
---|
1945 | {
|
---|
1946 | fChi2(i,0) = Chi2(i,0);
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 | UInt_t iNdf = (UInt_t) (fNdf+0.5);
|
---|
1950 | fProb = iNdf>0 ? TMath::Prob(fChisq, iNdf) : 0;
|
---|
1951 |
|
---|
1952 |
|
---|
1953 | fResult.ResizeTo(fNb, 5);
|
---|
1954 | for (UInt_t i=0; i<fNb; i++)
|
---|
1955 | {
|
---|
1956 | fResult(i, 0) = fVb(i,0);
|
---|
1957 | fResult(i, 1) = sqrt(fVbcov(i,i));
|
---|
1958 | fResult(i, 2) = 0.0;
|
---|
1959 | fResult(i, 3) = 0.0;
|
---|
1960 | fResult(i, 4) = 1.0;
|
---|
1961 | }
|
---|
1962 |
|
---|
1963 | return kTRUE;
|
---|
1964 | }
|
---|
1965 |
|
---|
1966 | // -----------------------------------------------------------------------
|
---|
1967 | //
|
---|
1968 | // main part of Bertero's calculations
|
---|
1969 | //
|
---|
1970 | Bool_t BertCore(Double_t &xiter)
|
---|
1971 | {
|
---|
1972 | // ignore eigen values which are smaller than EpsLambda
|
---|
1973 | TMatrixD G_inv(fNa, fNa);
|
---|
1974 | TMatrixD Gtil_inv(fNa, fNa);
|
---|
1975 | TMatrixD atil(fNb, fNa);
|
---|
1976 | TMatrixD aminusaest(fNa, 1);
|
---|
1977 |
|
---|
1978 | G_inv.Zero();
|
---|
1979 | Gtil_inv.Zero();
|
---|
1980 | SpurAR = 0.0;
|
---|
1981 |
|
---|
1982 | // ----- loop over eigen values ------------------
|
---|
1983 | // calculate the approximate inverse of the matrix G
|
---|
1984 | //cout << "flaml = " << endl;
|
---|
1985 |
|
---|
1986 | UInt_t flagstart = 2;
|
---|
1987 | Double_t flaml=0;
|
---|
1988 |
|
---|
1989 | for (UInt_t l=0; l<fNa; l++)
|
---|
1990 | {
|
---|
1991 | if (EigenValue(l) < EpsLambda)
|
---|
1992 | continue;
|
---|
1993 |
|
---|
1994 | switch (flagstart)
|
---|
1995 | {
|
---|
1996 | case 1 :
|
---|
1997 | // This is the expression for f(lambda) if the initial C^(0)
|
---|
1998 | // is chosen to be zero
|
---|
1999 | flaml = 1.0 - pow(1.0-tau*EigenValue(l),xiter);
|
---|
2000 | break;
|
---|
2001 |
|
---|
2002 | case 2 :
|
---|
2003 | // This is the expression for f(lambda) if the initial C^(0)
|
---|
2004 | // is chosen to be equal to the measured distribution
|
---|
2005 | flaml = 1.0 - pow(1.0-tau*EigenValue(l),xiter)
|
---|
2006 | + EigenValue(l) * pow(1.0-tau*EigenValue(l),xiter);
|
---|
2007 | break;
|
---|
2008 | }
|
---|
2009 |
|
---|
2010 | // cout << flaml << ", ";
|
---|
2011 |
|
---|
2012 | for (UInt_t m=0; m<fNa; m++)
|
---|
2013 | {
|
---|
2014 | for (UInt_t n=0; n<fNa; n++)
|
---|
2015 | {
|
---|
2016 | G_inv(m,n) += 1.0 /EigenValue(l) * Eigen(m,l)*Eigen(n,l);
|
---|
2017 | Gtil_inv(m,n) += flaml/EigenValue(l) * Eigen(m,l)*Eigen(n,l);
|
---|
2018 | }
|
---|
2019 | }
|
---|
2020 | SpurAR += flaml;
|
---|
2021 | }
|
---|
2022 | //cout << endl;
|
---|
2023 |
|
---|
2024 |
|
---|
2025 | //cout << "Gtil_inv =" << endl;
|
---|
2026 | //for (Int_t m=0; m<fNa; m++)
|
---|
2027 | //{
|
---|
2028 | // for (Int_t n=0; n<fNa; n++)
|
---|
2029 | // {
|
---|
2030 | // cout << Gtil_inv(m,n) << ", ";
|
---|
2031 | // }
|
---|
2032 | // cout << endl;
|
---|
2033 | //}
|
---|
2034 |
|
---|
2035 | //-----------------------------------------------------
|
---|
2036 | // calculate the unfolded distribution b
|
---|
2037 | TMatrixD v2(fMigrat, TMatrixD::kTransposeMult, Gtil_inv);
|
---|
2038 | atil = v2;
|
---|
2039 | TMatrixD v4(atil, TMatrixD::kMult, fVa);
|
---|
2040 | fVb = v4;
|
---|
2041 |
|
---|
2042 | //-----------------------------------------------------
|
---|
2043 | // calculate AR and AR+
|
---|
2044 | TMatrixD AR(v2, TMatrixD::kMult, fMigrat);
|
---|
2045 |
|
---|
2046 | TMatrixD v3(fMigrat, TMatrixD::kTransposeMult, G_inv);
|
---|
2047 | TMatrixD ARplus(v3, TMatrixD::kMult, fMigrat);
|
---|
2048 |
|
---|
2049 |
|
---|
2050 | //-----------------------------------------------------
|
---|
2051 | // calculate the norm |AR - AR+|**2
|
---|
2052 |
|
---|
2053 | DiffAR2 = 0.0;
|
---|
2054 | for (UInt_t j=0; j<fNb; j++)
|
---|
2055 | {
|
---|
2056 | for (UInt_t k=0; k<fNb; k++)
|
---|
2057 | {
|
---|
2058 | Double_t tempo = AR(j,k) - ARplus(j,k);
|
---|
2059 | DiffAR2 += tempo*tempo;
|
---|
2060 | }
|
---|
2061 | }
|
---|
2062 |
|
---|
2063 | //-----------------------------------------------------
|
---|
2064 | // calculate the second derivative squared
|
---|
2065 |
|
---|
2066 | SecDeriv = 0;
|
---|
2067 | for (UInt_t j=1; j<(fNb-1); j++)
|
---|
2068 | {
|
---|
2069 | // temp = ( 2.0*fVb(j,0)-fVb(j-1,0)-fVb(j+1,0) ) / ( 2.0*fVb(j,0) );
|
---|
2070 | Double_t temp = 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
---|
2071 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
---|
2072 | SecDeriv += temp*temp;
|
---|
2073 | }
|
---|
2074 |
|
---|
2075 | ZerDeriv = 0;
|
---|
2076 | for (UInt_t j=0; j<fNb; j++)
|
---|
2077 | ZerDeriv += fVb(j,0) * fVb(j,0);
|
---|
2078 |
|
---|
2079 | //-----------------------------------------------------
|
---|
2080 | // calculate the entropy
|
---|
2081 |
|
---|
2082 | Double_t sumb = 0.0;
|
---|
2083 | for (UInt_t j=0; j<fNb; j++)
|
---|
2084 | sumb += fVb(j,0);
|
---|
2085 |
|
---|
2086 | TMatrixD p(fNb,1);
|
---|
2087 | p = fVb;
|
---|
2088 | if (sumb > 0.0)
|
---|
2089 | p *= 1.0/sumb;
|
---|
2090 |
|
---|
2091 | Entropy = 0;
|
---|
2092 | for (UInt_t j=0; j<fNb; j++)
|
---|
2093 | if (p(j,0) > 0.0)
|
---|
2094 | Entropy += p(j,0) * log( p(j,0) );
|
---|
2095 |
|
---|
2096 | //-----------------------------------------------------
|
---|
2097 |
|
---|
2098 | TMatrixD Gb(fMigrat, TMatrixD::kMult, fVb);
|
---|
2099 | aminusaest = fVa;
|
---|
2100 | aminusaest -= Gb;
|
---|
2101 |
|
---|
2102 | TMatrixD v1(1,fNa);
|
---|
2103 | for (UInt_t i=0; i<fNa; i++)
|
---|
2104 | {
|
---|
2105 | v1(0,i) = 0.0;
|
---|
2106 | for (UInt_t j=0; j<fNa; j++)
|
---|
2107 | v1(0,i) += aminusaest(j,0) * fVacovInv(j,i) ;
|
---|
2108 | }
|
---|
2109 |
|
---|
2110 | //-----------------------------------------------------
|
---|
2111 | // calculate error matrix fVbcov of unfolded distribution
|
---|
2112 | SpurSigma = CalcSpurSigma(atil);
|
---|
2113 |
|
---|
2114 | //-----------------------------------------------------
|
---|
2115 | // calculate the chi squared
|
---|
2116 | for (UInt_t i = 0; i<fNa; i++)
|
---|
2117 | Chi2(i,0) = v1(0,i) * aminusaest(i,0);
|
---|
2118 |
|
---|
2119 | Chisq = GetMatrixSumCol(Chi2,0);
|
---|
2120 | return kTRUE;
|
---|
2121 | }
|
---|
2122 |
|
---|
2123 |
|
---|
2124 | // -----------------------------------------------------------------------
|
---|
2125 | //
|
---|
2126 | // Calculate the matrix G = M * M(transposed)
|
---|
2127 | // and its eigen values and eigen vectors
|
---|
2128 | //
|
---|
2129 | Bool_t CalculateG()
|
---|
2130 | {
|
---|
2131 | // Calculate matrix G = M*M(transposed) (M = migration matrix)
|
---|
2132 | // the matrix Eigen of the eigen vectors of G
|
---|
2133 | // the vector EigenValues of the eigen values of G
|
---|
2134 | // the parameter tau = 1/lambda_max
|
---|
2135 | //
|
---|
2136 | TMatrixD v5(TMatrixD::kTransposed, fMigrat);
|
---|
2137 | //TMatrixD G(fMigrat, TMatrixD::kMult, v5);
|
---|
2138 | G.Mult(fMigrat, v5);
|
---|
2139 |
|
---|
2140 | Eigen = G.EigenVectors(EigenValue);
|
---|
2141 |
|
---|
2142 | RankG = 0.0;
|
---|
2143 | for (UInt_t l=0; l<fNa; l++)
|
---|
2144 | {
|
---|
2145 | if (EigenValue(l) < EpsLambda) continue;
|
---|
2146 | RankG += 1.0;
|
---|
2147 | }
|
---|
2148 |
|
---|
2149 | tau = 1.0 / EigenValue(0);
|
---|
2150 |
|
---|
2151 | // cout << "eigen values : " << endl;
|
---|
2152 | // for (Int_t i=0; i<fNa; i++)
|
---|
2153 | // {
|
---|
2154 | // cout << EigenValue(i) << ", ";
|
---|
2155 | // }
|
---|
2156 | // cout << endl;
|
---|
2157 |
|
---|
2158 | //cout << "eigen vectors : " << endl;
|
---|
2159 | //for (Int_t i=0; i<fNa; i++)
|
---|
2160 | //{
|
---|
2161 | // cout << " vector " << i << endl;
|
---|
2162 | // for (Int_t j=0; j<fNa; j++)
|
---|
2163 | // {
|
---|
2164 | // cout << Eigen(j,i) << ", ";
|
---|
2165 | // }
|
---|
2166 | // cout << endl;
|
---|
2167 | //}
|
---|
2168 | //cout << endl;
|
---|
2169 |
|
---|
2170 | //cout << "G =" << endl;
|
---|
2171 | //for (Int_t m=0; m<fNa; m++)
|
---|
2172 | //{
|
---|
2173 | // for (Int_t n=0; n<fNa; n++)
|
---|
2174 | // {
|
---|
2175 | // cout << G(m,n) << ", ";
|
---|
2176 | // }
|
---|
2177 | // cout << endl;
|
---|
2178 | //}
|
---|
2179 |
|
---|
2180 | return kTRUE;
|
---|
2181 | }
|
---|
2182 |
|
---|
2183 | // -----------------------------------------------------------------------
|
---|
2184 | //
|
---|
2185 | // Select the best weight
|
---|
2186 | //
|
---|
2187 | Bool_t SelectBestWeight()
|
---|
2188 | {
|
---|
2189 | //-------------------------------
|
---|
2190 | // select 'best' weight according to some criterion
|
---|
2191 |
|
---|
2192 | Int_t ix;
|
---|
2193 |
|
---|
2194 | Double_t DiffSpSigmax = -1.e10;
|
---|
2195 | Int_t ixDiffSpSigmax = -1;
|
---|
2196 |
|
---|
2197 | Double_t DiffSigpointsmin = 1.e10;
|
---|
2198 | Int_t ixDiffSigpointsmin = -1;
|
---|
2199 |
|
---|
2200 | Double_t DiffRankGmin = 1.e10;
|
---|
2201 | Int_t ixDiffRankGmin = -1;
|
---|
2202 |
|
---|
2203 | Double_t D2barmin = 1.e10;
|
---|
2204 | Int_t ixD2barmin = -1;
|
---|
2205 |
|
---|
2206 | Double_t DiffSpSig1min = 1.e10;
|
---|
2207 | Int_t ixDiffSpSig1min = -1;
|
---|
2208 |
|
---|
2209 |
|
---|
2210 | Int_t ixmax = -1;
|
---|
2211 |
|
---|
2212 | // first loop over all weights :
|
---|
2213 | // find smallest chi2
|
---|
2214 | Double_t chisqmin = 1.e20;
|
---|
2215 | for (ix=0; ix<Nix; ix++)
|
---|
2216 | {
|
---|
2217 | // consider only weights for which
|
---|
2218 | // - unfolding was successful
|
---|
2219 | if (chisq(ix) != 0.0)
|
---|
2220 | {
|
---|
2221 | if (chisq(ix) < chisqmin)
|
---|
2222 | chisqmin = chisq(ix);
|
---|
2223 | }
|
---|
2224 | }
|
---|
2225 | Double_t chisq0 = chisqmin > fVapoints ? chisqmin : fVapoints/2.0;
|
---|
2226 |
|
---|
2227 | // second loop over all weights :
|
---|
2228 | // consider only weights for which chisq(ix) < chisq0
|
---|
2229 | ixbest = -1;
|
---|
2230 | for (ix=0; ix<Nix; ix++)
|
---|
2231 | {
|
---|
2232 | if (chisq(ix) != 0.0 && chisq(ix) < 2.0*chisq0)
|
---|
2233 | {
|
---|
2234 | // ixmax = highest weight with successful unfolding
|
---|
2235 | // (Least squares solution)
|
---|
2236 | ixmax = ix;
|
---|
2237 |
|
---|
2238 | SpurSigma = SpSig(ix);
|
---|
2239 | SpurAR = SpAR(ix);
|
---|
2240 | Chisq = chisq(ix);
|
---|
2241 | D2bar = Dsqbar(ix);
|
---|
2242 |
|
---|
2243 | //----------------------------------
|
---|
2244 | // search weight where SpurSigma changes most
|
---|
2245 | // (as a function of the weight)
|
---|
2246 | if (ix > 0 && chisq(ix-1) != 0.0)
|
---|
2247 | {
|
---|
2248 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
---|
2249 | if (diff > DiffSpSigmax)
|
---|
2250 | {
|
---|
2251 | DiffSpSigmax = diff;
|
---|
2252 | ixDiffSpSigmax = ix;
|
---|
2253 | }
|
---|
2254 | }
|
---|
2255 |
|
---|
2256 | //----------------------------------
|
---|
2257 | // search weight where Chisq is close
|
---|
2258 | // to the number of significant measurements
|
---|
2259 | Double_t DiffSigpoints = fabs(Chisq-fVapoints);
|
---|
2260 |
|
---|
2261 | if (DiffSigpoints < DiffSigpointsmin)
|
---|
2262 | {
|
---|
2263 | DiffSigpointsmin = DiffSigpoints;
|
---|
2264 | ixDiffSigpointsmin = ix;
|
---|
2265 | }
|
---|
2266 |
|
---|
2267 | //----------------------------------
|
---|
2268 | // search weight where Chisq is close
|
---|
2269 | // to the rank of matrix G
|
---|
2270 | Double_t DiffRankG = fabs(Chisq-RankG);
|
---|
2271 |
|
---|
2272 | if (DiffRankG < DiffRankGmin)
|
---|
2273 | {
|
---|
2274 | DiffRankGmin = DiffRankG;
|
---|
2275 | ixDiffRankGmin = ix;
|
---|
2276 | }
|
---|
2277 |
|
---|
2278 | //----------------------------------
|
---|
2279 | // search weight where SpurSigma is close to 1.0
|
---|
2280 | Double_t DiffSpSig1 = fabs(SpurSigma/fSpurVacov-1.0);
|
---|
2281 |
|
---|
2282 | if (DiffSpSig1 < DiffSpSig1min)
|
---|
2283 | {
|
---|
2284 | DiffSpSig1min = DiffSpSig1;
|
---|
2285 | ixDiffSpSig1min = ix;
|
---|
2286 | }
|
---|
2287 |
|
---|
2288 | //----------------------------------
|
---|
2289 | // search weight where D2bar is minimal
|
---|
2290 |
|
---|
2291 | if (D2bar < D2barmin)
|
---|
2292 | {
|
---|
2293 | D2barmin = D2bar;
|
---|
2294 | ixD2barmin = ix;
|
---|
2295 | }
|
---|
2296 |
|
---|
2297 | //----------------------------------
|
---|
2298 | }
|
---|
2299 | }
|
---|
2300 |
|
---|
2301 |
|
---|
2302 | // choose solution where increase of SpurSigma is biggest
|
---|
2303 | //if ( DiffSpSigmax > 0.0)
|
---|
2304 | // ixbest = ixDiffSpSigmax;
|
---|
2305 | //else
|
---|
2306 | // ixbest = ixDiffSigpointsmin;
|
---|
2307 |
|
---|
2308 | // choose Least Squares Solution
|
---|
2309 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
---|
2310 | // ixbest = ixmax;
|
---|
2311 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
---|
2312 |
|
---|
2313 | // choose weight where chi2 is close to the number of significant
|
---|
2314 | // measurements
|
---|
2315 | // ixbest = ixDiffSigpointsmin;
|
---|
2316 |
|
---|
2317 | // choose weight where chi2 is close to the rank of matrix G
|
---|
2318 | // ixbest = ixDiffRankGmin;
|
---|
2319 |
|
---|
2320 | // choose weight where chi2 is close to the rank of matrix G
|
---|
2321 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
---|
2322 | ixbest = ixDiffSpSig1min;
|
---|
2323 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
---|
2324 |
|
---|
2325 | cout << "SelectBestWeight : ixDiffSpSigmax, DiffSpSigmax = "
|
---|
2326 | << ixDiffSpSigmax << ", " << DiffSpSigmax << endl;
|
---|
2327 | cout << "================== ixDiffSigpointsmin, DiffSigpointsmin = "
|
---|
2328 | << ixDiffSigpointsmin << ", " << DiffSigpointsmin << endl;
|
---|
2329 |
|
---|
2330 | cout << " ixDiffRankGmin, DiffRankGmin = "
|
---|
2331 | << ixDiffRankGmin << ", " << DiffRankGmin << endl;
|
---|
2332 |
|
---|
2333 | cout << " ixDiffSpSig1min, DiffSpSig1min = "
|
---|
2334 | << ixDiffSpSig1min << ", " << DiffSpSig1min << endl;
|
---|
2335 |
|
---|
2336 | cout << " ixD2barmin, D2barmin = "
|
---|
2337 | << ixD2barmin << ", " << D2barmin << endl;
|
---|
2338 | cout << " ixmax = " << ixmax << endl;
|
---|
2339 | cout << " ixbest = " << ixbest << endl;
|
---|
2340 |
|
---|
2341 |
|
---|
2342 | return kTRUE;
|
---|
2343 | }
|
---|
2344 |
|
---|
2345 | // -----------------------------------------------------------------------
|
---|
2346 | //
|
---|
2347 | // Draw the plots
|
---|
2348 | //
|
---|
2349 | Bool_t DrawPlots()
|
---|
2350 | {
|
---|
2351 |
|
---|
2352 | // in the plots, mark the weight which has been selected
|
---|
2353 | Double_t xbin = log10(xmin)+ixbest*dlogx;
|
---|
2354 |
|
---|
2355 | TMarker *m = new TMarker();
|
---|
2356 | m->SetMarkerSize(1);
|
---|
2357 | m->SetMarkerStyle(20);
|
---|
2358 |
|
---|
2359 | //-------------------------------------
|
---|
2360 | // draw the iteration plots
|
---|
2361 | TCanvas *c = new TCanvas("iter", "Plots versus weight", 900, 600);
|
---|
2362 | c->Divide(3,2);
|
---|
2363 |
|
---|
2364 | c->cd(1);
|
---|
2365 | hBchisq->Draw();
|
---|
2366 | gPad->SetLogy();
|
---|
2367 | hBchisq->SetXTitle("log10(iteration number)");
|
---|
2368 | hBchisq->SetYTitle("chisq");
|
---|
2369 | m->DrawMarker(xbin, log10(chisq(ixbest)));
|
---|
2370 |
|
---|
2371 | c->cd(2);
|
---|
2372 | hBD2bar->Draw();
|
---|
2373 | gPad->SetLogy();
|
---|
2374 | hBD2bar->SetXTitle("log10(iteration number)");
|
---|
2375 | hBD2bar->SetYTitle("(b_unfolded-b_ideal)**2");
|
---|
2376 | m->DrawMarker(xbin, log10(Dsqbar(ixbest)));
|
---|
2377 |
|
---|
2378 | /*
|
---|
2379 | c->cd(3);
|
---|
2380 | hBDAR2->Draw();
|
---|
2381 | gPad->SetLogy();
|
---|
2382 | strgx = "log10(iteration number)";
|
---|
2383 | strgy = "norm(AR-AR+)";
|
---|
2384 | hBDAR2->SetXTitle(strgx);
|
---|
2385 | hBDAR2->SetYTitle(strgy);
|
---|
2386 | m->DrawMarker(xbin, log10(DAR2(ixbest)));
|
---|
2387 | */
|
---|
2388 |
|
---|
2389 | c->cd(3);
|
---|
2390 | hBSecDeriv->Draw();
|
---|
2391 | hBSecDeriv->SetXTitle("log10(iteration number)");
|
---|
2392 | hBSecDeriv->SetYTitle("Second Derivative squared");
|
---|
2393 | m->DrawMarker(xbin, SecDer(ixbest));
|
---|
2394 |
|
---|
2395 | /*
|
---|
2396 | c->cd(8);
|
---|
2397 | hBDSecDeriv->Draw();
|
---|
2398 | strgx = "log10(iteration number)";
|
---|
2399 | strgy = "Delta(Second Derivative squared)";
|
---|
2400 | hBDSecDeriv->SetXTitle(strgx);
|
---|
2401 | hBDSecDeriv->SetYTitle(strgy);
|
---|
2402 | */
|
---|
2403 |
|
---|
2404 | /*
|
---|
2405 | c->cd(4);
|
---|
2406 | hBZerDeriv->Draw();
|
---|
2407 | strgx = "log10(iteration number)";
|
---|
2408 | strgy = "Zero Derivative squared";
|
---|
2409 | hBZerDeriv->SetXTitle(strgx);
|
---|
2410 | hBZerDeriv->SetYTitle(strgy);
|
---|
2411 | m->DrawMarker(xbin, ZerDer(ixbest));
|
---|
2412 | */
|
---|
2413 |
|
---|
2414 | /*
|
---|
2415 | c->cd(5);
|
---|
2416 | hBDZerDeriv->Draw();
|
---|
2417 | strgx = "log10(iteration number)";
|
---|
2418 | strgy = "Delta(Zero Derivative squared)";
|
---|
2419 | hBDZerDeriv->SetXTitle(strgx);
|
---|
2420 | hBDZerDeriv->SetYTitle(strgy);
|
---|
2421 | */
|
---|
2422 |
|
---|
2423 | c->cd(4);
|
---|
2424 | hBSpAR->Draw();
|
---|
2425 | hBSpAR->SetXTitle("log10(iteration number)");
|
---|
2426 | hBSpAR->SetYTitle("SpurAR");
|
---|
2427 | m->DrawMarker(xbin, SpAR(ixbest));
|
---|
2428 |
|
---|
2429 |
|
---|
2430 | /*
|
---|
2431 | c->cd(11);
|
---|
2432 | hBDSpAR->Draw();
|
---|
2433 | strgx = "log10(iteration number)";
|
---|
2434 | strgy = "Delta(SpurAR)";
|
---|
2435 | hBDSpAR->SetXTitle(strgx);
|
---|
2436 | hBDSpAR->SetYTitle(strgy);
|
---|
2437 | */
|
---|
2438 |
|
---|
2439 | c->cd(5);
|
---|
2440 | hBSpSig->Draw();
|
---|
2441 | hBSpSig->SetXTitle("log10(iteration number)");
|
---|
2442 | hBSpSig->SetYTitle("SpurSig/SpurC");
|
---|
2443 | m->DrawMarker(xbin, SpSig(ixbest)/fSpurVacov);
|
---|
2444 |
|
---|
2445 | /*
|
---|
2446 | c->cd(14);
|
---|
2447 | hBDSpSig->Draw();
|
---|
2448 | strgx = "log10(iteration number)";
|
---|
2449 | strgy = "Delta(SpurSig/SpurC)";
|
---|
2450 | hBDSpSig->SetXTitle(strgx);
|
---|
2451 | hBDSpSig->SetYTitle(strgy);
|
---|
2452 | */
|
---|
2453 |
|
---|
2454 | c->cd(6);
|
---|
2455 | hBEntropy->Draw();
|
---|
2456 | hBEntropy->SetXTitle("log10(iteration number)");
|
---|
2457 | hBEntropy->SetYTitle("Entropy");
|
---|
2458 | m->DrawMarker(xbin, Entrop(ixbest));
|
---|
2459 |
|
---|
2460 | /*
|
---|
2461 | c->cd(17);
|
---|
2462 | hBDEntropy->Draw();
|
---|
2463 | strgx = "log10(iteration number)";
|
---|
2464 | strgy = "Delta(Entropy)";
|
---|
2465 | hBDEntropy->SetXTitle(strgx);
|
---|
2466 | hBDEntropy->SetYTitle(strgy);
|
---|
2467 | */
|
---|
2468 |
|
---|
2469 | //-------------------------------------
|
---|
2470 |
|
---|
2471 | for (UInt_t i=0; i<fNa; i++)
|
---|
2472 | {
|
---|
2473 | fha->SetBinContent(i+1, fVa(i, 0) );
|
---|
2474 | fha->SetBinError (i+1, sqrt(fVacov(i, i)));
|
---|
2475 |
|
---|
2476 | for (UInt_t j=0; j<fNb; j++)
|
---|
2477 | {
|
---|
2478 | fhmig->SetBinContent(i+1, j+1, fMigOrig(i, j) );
|
---|
2479 | fhmig->SetBinError (i+1, j+1, sqrt(fMigOrigerr2(i, j)) );
|
---|
2480 |
|
---|
2481 | shmig->SetBinContent(i+1, j+1, fMigrat(i, j) );
|
---|
2482 | shmig->SetBinError (i+1, j+1, sqrt(fMigraterr2(i, j)) );
|
---|
2483 | shmigChi2->SetBinContent(i+1, j+1, fMigChi2(i, j) );
|
---|
2484 | }
|
---|
2485 | }
|
---|
2486 |
|
---|
2487 | PrintTH2Content(*shmig);
|
---|
2488 | PrintTH2Content(*shmigChi2);
|
---|
2489 |
|
---|
2490 | //-------------------------------------
|
---|
2491 | CopyCol(*hprior, fVEps);
|
---|
2492 | CopyCol(*hb, fVb);
|
---|
2493 | for (UInt_t i=0; i<fNb; i++)
|
---|
2494 | hb->SetBinError(i+1, sqrt(fVbcov(i, i)));
|
---|
2495 |
|
---|
2496 | PrintTH1Content(*hb);
|
---|
2497 | PrintTH1Error(*hb);
|
---|
2498 |
|
---|
2499 | //..............................................
|
---|
2500 | for (UInt_t i=0; i<fNa; i++)
|
---|
2501 | hEigen->SetBinContent(i+1, EigenValue(i));
|
---|
2502 |
|
---|
2503 | //..............................................
|
---|
2504 | // draw the plots
|
---|
2505 | TCanvas *cc = new TCanvas("input", "Unfolding input", 900, 600);
|
---|
2506 | cc->Divide(3, 2);
|
---|
2507 |
|
---|
2508 | // distribution to be unfolded
|
---|
2509 | cc->cd(1);
|
---|
2510 | fha->Draw();
|
---|
2511 | gPad->SetLogy();
|
---|
2512 | fha->SetXTitle("log10(E-est/GeV)");
|
---|
2513 | fha->SetYTitle("Counts");
|
---|
2514 |
|
---|
2515 | // superimpose unfolded distribution
|
---|
2516 | // hb->Draw("*HSAME");
|
---|
2517 |
|
---|
2518 | // prior distribution
|
---|
2519 | cc->cd(2);
|
---|
2520 | hprior->Draw();
|
---|
2521 | gPad->SetLogy();
|
---|
2522 | hprior->SetXTitle("log10(E-true/GeV)");
|
---|
2523 | hprior->SetYTitle("Counts");
|
---|
2524 |
|
---|
2525 | // migration matrix
|
---|
2526 | cc->cd(3);
|
---|
2527 | fhmig->Draw("box");
|
---|
2528 | fhmig->SetXTitle("log10(E-est/GeV)");
|
---|
2529 | fhmig->SetYTitle("log10(E-true/GeV)");
|
---|
2530 |
|
---|
2531 | // smoothed migration matrix
|
---|
2532 | cc->cd(4);
|
---|
2533 | shmig->Draw("box");
|
---|
2534 | shmig->SetXTitle("log10(E-est/GeV)");
|
---|
2535 | shmig->SetYTitle("log10(E-true/GeV)");
|
---|
2536 |
|
---|
2537 | // chi2 contributions for smoothing
|
---|
2538 | cc->cd(5);
|
---|
2539 | shmigChi2->Draw("box");
|
---|
2540 | shmigChi2->SetXTitle("log10(E-est/GeV)");
|
---|
2541 | shmigChi2->SetYTitle("log10(E-true/GeV)");
|
---|
2542 |
|
---|
2543 | // Eigenvalues of matrix M*M(transposed)
|
---|
2544 | cc->cd(6);
|
---|
2545 | hEigen->Draw();
|
---|
2546 | hEigen->SetXTitle("l");
|
---|
2547 | hEigen->SetYTitle("Eigen values Lambda_l of M*M(transposed)");
|
---|
2548 |
|
---|
2549 |
|
---|
2550 | //..............................................
|
---|
2551 | // draw the results
|
---|
2552 | TCanvas *cr = new TCanvas("results", "Unfolding results", 600, 600);
|
---|
2553 | cr->Divide(2, 2);
|
---|
2554 |
|
---|
2555 | // unfolded distribution
|
---|
2556 | cr->cd(1);
|
---|
2557 | hb->Draw();
|
---|
2558 | gPad->SetLogy();
|
---|
2559 | hb->SetXTitle("log10(E-true/GeV)");
|
---|
2560 | hb->SetYTitle("Counts");
|
---|
2561 |
|
---|
2562 |
|
---|
2563 | // covariance matrix of unfolded distribution
|
---|
2564 | cr->cd(2);
|
---|
2565 | TH1 *hbcov=DrawMatrixClone(fVbcov, "lego");
|
---|
2566 | hbcov->SetBins(fNb, hb->GetBinLowEdge(1), hb->GetBinLowEdge(fNb+1),
|
---|
2567 | fNb, hb->GetBinLowEdge(1), hb->GetBinLowEdge(fNb+1));
|
---|
2568 |
|
---|
2569 | hbcov->SetName("hbcov");
|
---|
2570 | hbcov->SetTitle("Error matrix of distribution hb");
|
---|
2571 | hbcov->SetXTitle("log10(E-true/GeV)");
|
---|
2572 | hbcov->SetYTitle("log10(E-true/GeV)");
|
---|
2573 |
|
---|
2574 |
|
---|
2575 | // chi2 contributions
|
---|
2576 | cr->cd(3);
|
---|
2577 | TH1 *hchi2=DrawMatrixColClone(fChi2);
|
---|
2578 | hchi2->SetBins(fNa, fha->GetBinLowEdge(1), fha->GetBinLowEdge(fNa+1));
|
---|
2579 |
|
---|
2580 | hchi2->SetName("Chi2");
|
---|
2581 | hchi2->SetTitle("chi2 contributions");
|
---|
2582 | hchi2->SetXTitle("log10(E-est/GeV)");
|
---|
2583 | hchi2->SetYTitle("Chisquared");
|
---|
2584 |
|
---|
2585 |
|
---|
2586 | // ideal distribution
|
---|
2587 |
|
---|
2588 | cr->cd(4);
|
---|
2589 | fhb0->Draw();
|
---|
2590 | gPad->SetLogy();
|
---|
2591 | fhb0->SetXTitle("log10(E-true/GeV)");
|
---|
2592 | fhb0->SetYTitle("Counts");
|
---|
2593 |
|
---|
2594 |
|
---|
2595 | // superimpose unfolded distribution
|
---|
2596 | hb->Draw("*Hsame");
|
---|
2597 |
|
---|
2598 |
|
---|
2599 | return kTRUE;
|
---|
2600 | }
|
---|
2601 |
|
---|
2602 |
|
---|
2603 | // -----------------------------------------------------------------------
|
---|
2604 | //
|
---|
2605 | // Interface to MINUIT
|
---|
2606 | //
|
---|
2607 | //
|
---|
2608 | Bool_t CallMinuit(
|
---|
2609 | void (*fcnx)(Int_t &, Double_t *, Double_t &, Double_t *, Int_t),
|
---|
2610 | UInt_t npar, char name[20][100],
|
---|
2611 | Double_t vinit[20], Double_t step[20],
|
---|
2612 | Double_t limlo[20], Double_t limup[20], Int_t fix[20])
|
---|
2613 | {
|
---|
2614 | //
|
---|
2615 | // Be carefull: This is not thread safe
|
---|
2616 | //
|
---|
2617 | UInt_t maxpar = 100;
|
---|
2618 |
|
---|
2619 | if (npar > maxpar)
|
---|
2620 | {
|
---|
2621 | cout << "MUnfold::CallMinuit : too many parameters, npar = " << fNb
|
---|
2622 | << ", maxpar = " << maxpar << endl;
|
---|
2623 | return kFALSE;
|
---|
2624 | }
|
---|
2625 |
|
---|
2626 | //..............................................
|
---|
2627 | // Set the maximum number of parameters
|
---|
2628 | TMinuit minuit(maxpar);
|
---|
2629 |
|
---|
2630 |
|
---|
2631 | //..............................................
|
---|
2632 | // Set the print level
|
---|
2633 | // -1 no output except SHOW comands
|
---|
2634 | // 0 minimum output
|
---|
2635 | // 1 normal output (default)
|
---|
2636 | // 2 additional ouput giving intermediate results
|
---|
2637 | // 3 maximum output, showing progress of minimizations
|
---|
2638 | //
|
---|
2639 | Int_t printLevel = -1;
|
---|
2640 | minuit.SetPrintLevel(printLevel);
|
---|
2641 |
|
---|
2642 | //..............................................
|
---|
2643 | // Printout for warnings
|
---|
2644 | // SET WAR print warnings
|
---|
2645 | // SET NOW suppress warnings
|
---|
2646 | Int_t errWarn;
|
---|
2647 | Double_t tmpwar = 0;
|
---|
2648 | minuit.mnexcm("SET NOW", &tmpwar, 0, errWarn);
|
---|
2649 |
|
---|
2650 | //..............................................
|
---|
2651 | // Set the address of the minimization function
|
---|
2652 | minuit.SetFCN(fcnx);
|
---|
2653 |
|
---|
2654 | //..............................................
|
---|
2655 | // Set starting values and step sizes for parameters
|
---|
2656 | for (UInt_t i=0; i<npar; i++)
|
---|
2657 | {
|
---|
2658 | if (minuit.DefineParameter(i, &name[i][0], vinit[i], step[i],
|
---|
2659 | limlo[i], limup[i]))
|
---|
2660 | {
|
---|
2661 | cout << "MUnfold::CallMinuit: Error in defining parameter "
|
---|
2662 | << name << endl;
|
---|
2663 | return kFALSE;
|
---|
2664 | }
|
---|
2665 | }
|
---|
2666 |
|
---|
2667 | //..............................................
|
---|
2668 | //Int_t NumPars = minuit.GetNumPars();
|
---|
2669 | //cout << "MUnfold::CallMinuit : number of free parameters = "
|
---|
2670 | // << NumPars << endl;
|
---|
2671 |
|
---|
2672 | //..............................................
|
---|
2673 | // Minimization
|
---|
2674 | minuit.SetObjectFit(this);
|
---|
2675 |
|
---|
2676 | //..............................................
|
---|
2677 | // Error definition :
|
---|
2678 | //
|
---|
2679 | // for chisquare function :
|
---|
2680 | // up = 1.0 means calculate 1-standard deviation error
|
---|
2681 | // = 4.0 means calculate 2-standard deviation error
|
---|
2682 | //
|
---|
2683 | // for log(likelihood) function :
|
---|
2684 | // up = 0.5 means calculate 1-standard deviation error
|
---|
2685 | // = 2.0 means calculate 2-standard deviation error
|
---|
2686 | Double_t up = 1.0;
|
---|
2687 | minuit.SetErrorDef(up);
|
---|
2688 |
|
---|
2689 |
|
---|
2690 |
|
---|
2691 | // Int_t errMigrad;
|
---|
2692 | // Double_t tmp = 0;
|
---|
2693 | // minuit.mnexcm("MIGRAD", &tmp, 0, errMigrad);
|
---|
2694 |
|
---|
2695 |
|
---|
2696 | //..............................................
|
---|
2697 | // fix a parameter
|
---|
2698 | for (UInt_t i=0; i<npar; i++)
|
---|
2699 | {
|
---|
2700 | if (fix[i] > 0)
|
---|
2701 | {
|
---|
2702 | Int_t parNo = i;
|
---|
2703 | minuit.FixParameter(parNo);
|
---|
2704 | }
|
---|
2705 | }
|
---|
2706 |
|
---|
2707 | //..............................................
|
---|
2708 | // Set maximum number of iterations (default = 500)
|
---|
2709 | Int_t maxiter = 100000;
|
---|
2710 | minuit.SetMaxIterations(maxiter);
|
---|
2711 |
|
---|
2712 | //..............................................
|
---|
2713 | // minimization by the method of Migrad
|
---|
2714 | // Int_t errMigrad;
|
---|
2715 | // Double_t tmp = 0;
|
---|
2716 | // minuit.mnexcm("MIGRAD", &tmp, 0, errMigrad);
|
---|
2717 |
|
---|
2718 | //..............................................
|
---|
2719 | // same minimization as by Migrad
|
---|
2720 | // but switches to the SIMPLEX method if MIGRAD fails to converge
|
---|
2721 | Int_t errMinimize;
|
---|
2722 | Double_t tmp = 0;
|
---|
2723 | minuit.mnexcm("MINIMIZE", &tmp, 0, errMinimize);
|
---|
2724 |
|
---|
2725 | //..............................................
|
---|
2726 | // check quality of minimization
|
---|
2727 | // istat = 0 covariance matrix not calculated
|
---|
2728 | // 1 diagonal approximation only (not accurate)
|
---|
2729 | // 2 full matrix, but forced positive-definite
|
---|
2730 | // 3 full accurate covariance matrix
|
---|
2731 | // (indication of normal convergence)
|
---|
2732 | Double_t fmin, fedm, errdef;
|
---|
2733 | Int_t npari, nparx, istat;
|
---|
2734 | minuit.mnstat(fmin, fedm, errdef, npari, nparx, istat);
|
---|
2735 |
|
---|
2736 | if (errMinimize || istat < 3)
|
---|
2737 | {
|
---|
2738 | cout << "MUnfold::CallMinuit : Minimization failed" << endl;
|
---|
2739 | cout << " fmin = " << fmin << ", fedm = " << fedm
|
---|
2740 | << ", errdef = " << errdef << ", istat = " << istat
|
---|
2741 | << endl;
|
---|
2742 | return kFALSE;
|
---|
2743 | }
|
---|
2744 |
|
---|
2745 | //..............................................
|
---|
2746 | // Minos error analysis
|
---|
2747 | // minuit.mnmnos();
|
---|
2748 |
|
---|
2749 | //..............................................
|
---|
2750 | // Print current status of minimization
|
---|
2751 | // if nkode = 0 only function value
|
---|
2752 | // 1 parameter values, errors, limits
|
---|
2753 | // 2 values, errors, step sizes, internal values
|
---|
2754 | // 3 values, errors, step sizes, 1st derivatives
|
---|
2755 | // 4 values, paraboloc errors, MINOS errors
|
---|
2756 |
|
---|
2757 | //Int_t nkode = 4;
|
---|
2758 | //minuit.mnprin(nkode, fmin);
|
---|
2759 |
|
---|
2760 | //..............................................
|
---|
2761 | // call fcn with IFLAG = 3 (final calculation : calculate p(chi2))
|
---|
2762 | // iflag = 1 initial calculations only
|
---|
2763 | // 2 calculate 1st derivatives and function
|
---|
2764 | // 3 calculate function only
|
---|
2765 | // 4 calculate function + final calculations
|
---|
2766 | const char *command = "CALL";
|
---|
2767 | Double_t iflag = 3;
|
---|
2768 | Int_t errfcn3;
|
---|
2769 | minuit.mnexcm(command, &iflag, 1, errfcn3);
|
---|
2770 |
|
---|
2771 | return kTRUE;
|
---|
2772 | }
|
---|
2773 |
|
---|
2774 | // -----------------------------------------------------------------------
|
---|
2775 | //
|
---|
2776 | // Return the unfolded distribution
|
---|
2777 | //
|
---|
2778 | TMatrixD &GetVb() { return fVb; }
|
---|
2779 |
|
---|
2780 | // -----------------------------------------------------------------------
|
---|
2781 | //
|
---|
2782 | // Return the covariance matrix of the unfolded distribution
|
---|
2783 | //
|
---|
2784 | TMatrixD &GetVbcov() { return fVbcov; }
|
---|
2785 |
|
---|
2786 | // -----------------------------------------------------------------------
|
---|
2787 | //
|
---|
2788 | // Return the unfolded distribution + various errors
|
---|
2789 | //
|
---|
2790 | TMatrixD &GetResult() { return fResult; }
|
---|
2791 |
|
---|
2792 | // -----------------------------------------------------------------------
|
---|
2793 | //
|
---|
2794 | // Return the chisquared contributions
|
---|
2795 | //
|
---|
2796 | TMatrixD &GetChi2() { return fChi2; }
|
---|
2797 |
|
---|
2798 | // -----------------------------------------------------------------------
|
---|
2799 | //
|
---|
2800 | // Return the total chisquared
|
---|
2801 | //
|
---|
2802 | Double_t &GetChisq() { return fChisq; }
|
---|
2803 |
|
---|
2804 | // -----------------------------------------------------------------------
|
---|
2805 | //
|
---|
2806 | // Return the number of degrees of freedom
|
---|
2807 | //
|
---|
2808 | Double_t &GetNdf() { return fNdf; }
|
---|
2809 |
|
---|
2810 | // -----------------------------------------------------------------------
|
---|
2811 | //
|
---|
2812 | // Return the chisquared probability
|
---|
2813 | //
|
---|
2814 | Double_t &GetProb() { return fProb; }
|
---|
2815 |
|
---|
2816 | // -----------------------------------------------------------------------
|
---|
2817 | //
|
---|
2818 | // Return the smoothed migration matrix
|
---|
2819 | //
|
---|
2820 | TMatrixD &GetMigSmoo() { return fMigSmoo; }
|
---|
2821 |
|
---|
2822 | // -----------------------------------------------------------------------
|
---|
2823 | //
|
---|
2824 | // Return the error2 of the smoothed migration matrix
|
---|
2825 | //
|
---|
2826 | TMatrixD &GetMigSmooerr2() { return fMigSmooerr2; }
|
---|
2827 |
|
---|
2828 | // -----------------------------------------------------------------------
|
---|
2829 | //
|
---|
2830 | // Return the chi2 contributions for the smoothing
|
---|
2831 | //
|
---|
2832 | TMatrixD &GetMigChi2() { return fMigChi2; }
|
---|
2833 | };
|
---|
2834 | // end of definition of class MUnfold
|
---|
2835 | ///////////////////////////////////////////////////
|
---|
2836 |
|
---|
2837 |
|
---|
2838 | // -----------------------------------------------------------------------
|
---|
2839 | //
|
---|
2840 | // fcnSmooth (used by SmoothMigrationMatrix)
|
---|
2841 | //
|
---|
2842 | // is called by MINUIT
|
---|
2843 | // for given values of the parameters it calculates the function
|
---|
2844 | // to be minimized
|
---|
2845 | //
|
---|
2846 | void fcnSmooth(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
2847 | Double_t *par, Int_t iflag)
|
---|
2848 | {
|
---|
2849 | MUnfold &gUnfold = *(MUnfold*)gMinuit->GetObjectFit();
|
---|
2850 |
|
---|
2851 | Double_t a0 = par[0];
|
---|
2852 | Double_t a1 = par[1];
|
---|
2853 | Double_t a2 = par[2];
|
---|
2854 |
|
---|
2855 | Double_t b0 = par[3];
|
---|
2856 | Double_t b1 = par[4];
|
---|
2857 | Double_t b2 = par[5];
|
---|
2858 |
|
---|
2859 | // loop over bins of log10(E-true)
|
---|
2860 | Double_t chi2 = 0.0;
|
---|
2861 | Int_t npoints = 0;
|
---|
2862 | Double_t func[20];
|
---|
2863 |
|
---|
2864 | for (UInt_t j=0; j<gUnfold.fNb; j++)
|
---|
2865 | {
|
---|
2866 | Double_t yj = ((double)j) + 0.5;
|
---|
2867 | Double_t mean = a0 + a1*yj + a2*yj*yj + yj;
|
---|
2868 | Double_t RMS = b0 + b1*yj + b2*yj*yj;
|
---|
2869 |
|
---|
2870 | if (RMS <= 0.0)
|
---|
2871 | {
|
---|
2872 | chi2 = 1.e20;
|
---|
2873 | break;
|
---|
2874 | }
|
---|
2875 |
|
---|
2876 | // loop over bins of log10(E-est)
|
---|
2877 |
|
---|
2878 | //.......................................
|
---|
2879 | Double_t function;
|
---|
2880 | Double_t sum=0.0;
|
---|
2881 | for (UInt_t i=0; i<gUnfold.fNa; i++)
|
---|
2882 | {
|
---|
2883 | Double_t xlow = (double)i;
|
---|
2884 | Double_t xup = xlow + 1.0;
|
---|
2885 | Double_t xl = (xlow- mean) / RMS;
|
---|
2886 | Double_t xu = (xup - mean) / RMS;
|
---|
2887 | function = (TMath::Freq(xu) - TMath::Freq(xl));
|
---|
2888 |
|
---|
2889 | //cout << "i, xl, xu, function = " << i << ", " << xl << ", "
|
---|
2890 | // << xu << ", " << function << endl;
|
---|
2891 |
|
---|
2892 | if (function < 1.e-10)
|
---|
2893 | function = 0.0;
|
---|
2894 |
|
---|
2895 | func[i] = function;
|
---|
2896 | sum += function;
|
---|
2897 | }
|
---|
2898 |
|
---|
2899 | // cout << "mean, RMS = " << mean << ", " << RMS
|
---|
2900 | // << ", j , sum of function = " << j << ", " << sum << endl;
|
---|
2901 |
|
---|
2902 | //.......................................
|
---|
2903 |
|
---|
2904 | for (UInt_t i=0; i<gUnfold.fNa; i++)
|
---|
2905 | {
|
---|
2906 | if (sum != 0.0)
|
---|
2907 | func[i] /= sum;
|
---|
2908 |
|
---|
2909 | gUnfold.fMigSmoo(i,j) = func[i];
|
---|
2910 | gUnfold.fMigChi2(i,j) = 0.0;
|
---|
2911 |
|
---|
2912 | // if relative error is greater than 30 % ignore the point
|
---|
2913 |
|
---|
2914 | if (gUnfold.fMigOrig(i,j) != 0 &&
|
---|
2915 | gUnfold.fMigOrigerr2(i,j) != 0 &&
|
---|
2916 | func[i] != 0 )
|
---|
2917 | {
|
---|
2918 | if (gUnfold.fMigOrigerr2(i,j)/
|
---|
2919 | (gUnfold.fMigOrig(i,j)*gUnfold.fMigOrig(i,j)) <= 0.09)
|
---|
2920 | {
|
---|
2921 | gUnfold.fMigChi2(i,j) = ( gUnfold.fMigOrig(i,j) - func[i] )
|
---|
2922 | * ( gUnfold.fMigOrig(i,j) - func[i] )
|
---|
2923 | / gUnfold.fMigOrigerr2(i,j);
|
---|
2924 | chi2 += gUnfold.fMigChi2(i,j);
|
---|
2925 | npoints += 1;
|
---|
2926 | }
|
---|
2927 | }
|
---|
2928 | }
|
---|
2929 | //.......................................
|
---|
2930 |
|
---|
2931 | }
|
---|
2932 | f = chi2;
|
---|
2933 |
|
---|
2934 | //cout << "fcnSmooth : f = " << f << endl;
|
---|
2935 |
|
---|
2936 | //--------------------------------------------------------------------
|
---|
2937 | // final calculations
|
---|
2938 | if (iflag == 3)
|
---|
2939 | {
|
---|
2940 | Int_t NDF = npoints - npar;
|
---|
2941 | Double_t prob = TMath::Prob(chi2, NDF);
|
---|
2942 |
|
---|
2943 | cout << "fcnSmooth : npoints, chi2, NDF, prob = " << npoints << ", ";
|
---|
2944 | cout << chi2 << ", " << NDF << ", " << prob << endl;
|
---|
2945 | cout << "=======================================" << endl;
|
---|
2946 | }
|
---|
2947 | }
|
---|
2948 |
|
---|
2949 | // -----------------------------------------------------------------------
|
---|
2950 | //
|
---|
2951 | // fcnTikhonov2 (used by Tikhonov2)
|
---|
2952 | //
|
---|
2953 | // is called by MINUIT
|
---|
2954 | // for given values of the parameters it calculates the function F
|
---|
2955 | // the free parameters are the first (fNb-1) elements
|
---|
2956 | // of the normalized unfolded distribution
|
---|
2957 | //
|
---|
2958 | void fcnTikhonov2(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
2959 | Double_t *par, Int_t iflag)
|
---|
2960 | {
|
---|
2961 | MUnfold &gUnfold = *(MUnfold*)gMinuit->GetObjectFit();
|
---|
2962 |
|
---|
2963 | // (npar+1) is the number of bins of the unfolded distribuition (fNb)
|
---|
2964 | // npar is the number of free parameters (fNb-1)
|
---|
2965 |
|
---|
2966 | UInt_t npar1 = npar + 1;
|
---|
2967 |
|
---|
2968 | UInt_t fNa = gUnfold.fNa;
|
---|
2969 | UInt_t fNb = gUnfold.fNb;
|
---|
2970 | if (npar1 != fNb)
|
---|
2971 | {
|
---|
2972 | cout << "fcnTikhonov2 : inconsistency in number of parameters; npar, fNb = ";
|
---|
2973 | cout << npar << ", " << fNb << endl;
|
---|
2974 | //return;
|
---|
2975 | }
|
---|
2976 | npar1 = fNb;
|
---|
2977 |
|
---|
2978 | TMatrixD p(npar1, 1);
|
---|
2979 | TMatrixD &fVb = gUnfold.fVb;
|
---|
2980 |
|
---|
2981 | // p is the normalized unfolded distribution
|
---|
2982 | // sum(p(i,0)) from i=0 to npar is equal to 1
|
---|
2983 | Double_t sum = 0.0;
|
---|
2984 | for (Int_t i=0; i<npar; i++)
|
---|
2985 | {
|
---|
2986 | p(i,0) = par[i];
|
---|
2987 | sum += par[i];
|
---|
2988 | }
|
---|
2989 | p(npar,0) = 1.0 - sum;
|
---|
2990 |
|
---|
2991 |
|
---|
2992 | // all p(i,0) have to be greater than zero
|
---|
2993 | for (UInt_t i=0; i<npar1; i++)
|
---|
2994 | if (p(i,0) <= 0.0)
|
---|
2995 | {
|
---|
2996 | f = 1.e20;
|
---|
2997 | return;
|
---|
2998 | }
|
---|
2999 |
|
---|
3000 | //.......................
|
---|
3001 | // take least squares result for the normaliztion
|
---|
3002 | TMatrixD alpha(gUnfold.fMigrat, TMatrixD::kMult, p);
|
---|
3003 |
|
---|
3004 | //TMatrixD v4 (gUnfold.fVa, TMatrixD::kTransposeMult,
|
---|
3005 | // gUnfold.fVacovInv);
|
---|
3006 | //TMatrixD norma(v4, TMatrixD::kMult, gUnfold.fVa);
|
---|
3007 |
|
---|
3008 | TMatrixD v5 (alpha, TMatrixD::kTransposeMult, gUnfold.fVacovInv);
|
---|
3009 | TMatrixD normb(v5, TMatrixD::kMult, alpha);
|
---|
3010 |
|
---|
3011 | TMatrixD normc(v5, TMatrixD::kMult, gUnfold.fVa);
|
---|
3012 |
|
---|
3013 | Double_t norm = normc(0,0)/normb(0,0);
|
---|
3014 |
|
---|
3015 | //.......................
|
---|
3016 |
|
---|
3017 | // b is the unnormalized unfolded distribution
|
---|
3018 | // sum(b(i,0)) from i=0 to npar is equal to norm
|
---|
3019 | // (the total number of events)
|
---|
3020 | for (UInt_t i=0; i<npar1; i++)
|
---|
3021 | fVb(i,0) = p(i,0) * norm;
|
---|
3022 |
|
---|
3023 | TMatrixD Gb(gUnfold.fMigrat, TMatrixD::kMult, fVb);
|
---|
3024 | TMatrixD v3(fNa, 1);
|
---|
3025 | v3 = gUnfold.fVa;
|
---|
3026 | v3 -= Gb;
|
---|
3027 |
|
---|
3028 | TMatrixD v1(1,fNa);
|
---|
3029 | for (UInt_t i=0; i<fNa; i++)
|
---|
3030 | {
|
---|
3031 | v1(0,i) = 0;
|
---|
3032 | for (UInt_t j=0; j<fNa; j++)
|
---|
3033 | v1(0,i) += v3(j,0) * gUnfold.fVacovInv(j,i) ;
|
---|
3034 | }
|
---|
3035 |
|
---|
3036 | for (UInt_t i = 0; i<fNa; i++)
|
---|
3037 | gUnfold.Chi2(i,0) = v1(0,i) * v3(i,0);
|
---|
3038 |
|
---|
3039 | gUnfold.Chisq = GetMatrixSumCol(gUnfold.Chi2,0);
|
---|
3040 |
|
---|
3041 | //-----------------------------------------------------
|
---|
3042 | // calculate 2nd derivative squared
|
---|
3043 | // regularization term (second derivative squared)
|
---|
3044 | gUnfold.SecDeriv = 0;
|
---|
3045 | for (UInt_t j=1; j<(fNb-1); j++)
|
---|
3046 | {
|
---|
3047 | const Double_t temp =
|
---|
3048 | + 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
---|
3049 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
---|
3050 |
|
---|
3051 | gUnfold.SecDeriv += temp*temp;
|
---|
3052 | }
|
---|
3053 |
|
---|
3054 | gUnfold.ZerDeriv = 0;
|
---|
3055 | for (UInt_t j=0; j<fNb; j++)
|
---|
3056 | gUnfold.ZerDeriv += fVb(j,0) * fVb(j,0);
|
---|
3057 |
|
---|
3058 | f = gUnfold.Chisq/2 * gUnfold.fW + gUnfold.SecDeriv;
|
---|
3059 |
|
---|
3060 | //cout << "F=" << f << " \tSecDeriv=" << gUnfold.SecDeriv
|
---|
3061 | // << " \tchi2="
|
---|
3062 | // << gUnfold.Chisq << " \tfW=" << gUnfold.fW << endl;
|
---|
3063 |
|
---|
3064 | //--------------------------------------------------------------------
|
---|
3065 | // final calculations
|
---|
3066 | if (iflag == 3)
|
---|
3067 | {
|
---|
3068 | //..............................................
|
---|
3069 | // calculate external error matrix of the fitted parameters 'val'
|
---|
3070 | // extend it with the covariances for y=1-sum(val)
|
---|
3071 | Double_t emat[20][20];
|
---|
3072 | Int_t ndim = 20;
|
---|
3073 | gMinuit->mnemat(&emat[0][0], ndim);
|
---|
3074 |
|
---|
3075 | Double_t covv = 0;
|
---|
3076 | for (UInt_t i=0; i<(gUnfold.fNb-1); i++)
|
---|
3077 | {
|
---|
3078 | Double_t cov = 0;
|
---|
3079 | for (UInt_t k=0; k<(gUnfold.fNb-1); k++)
|
---|
3080 | cov += emat[i][k];
|
---|
3081 |
|
---|
3082 | emat[i][gUnfold.fNb-1] = -cov;
|
---|
3083 | emat[gUnfold.fNb-1][i] = -cov;
|
---|
3084 |
|
---|
3085 | covv += cov;
|
---|
3086 | }
|
---|
3087 | emat[gUnfold.fNb-1][gUnfold.fNb-1] = covv;
|
---|
3088 |
|
---|
3089 | for (UInt_t i=0; i<gUnfold.fNb; i++)
|
---|
3090 | for (UInt_t k=0; k<gUnfold.fNb; k++)
|
---|
3091 | gUnfold.fVbcov(i,k) = emat[i][k] *norm*norm;
|
---|
3092 |
|
---|
3093 | //-----------------------------------------------------
|
---|
3094 | //..............................................
|
---|
3095 | // put unfolded distribution into fResult
|
---|
3096 | // fResult(i,0) value in bin i
|
---|
3097 | // fResult(i,1) error of value in bin i
|
---|
3098 |
|
---|
3099 | gUnfold.fResult.ResizeTo(gUnfold.fNb, 5);
|
---|
3100 |
|
---|
3101 | Double_t sum = 0;
|
---|
3102 | for (UInt_t i=0; i<(gUnfold.fNb-1); i++)
|
---|
3103 | {
|
---|
3104 | Double_t val;
|
---|
3105 | Double_t err;
|
---|
3106 | if (!gMinuit->GetParameter(i, val, err))
|
---|
3107 | {
|
---|
3108 | cout << "Error getting parameter #" << i << endl;
|
---|
3109 | return;
|
---|
3110 | }
|
---|
3111 |
|
---|
3112 | Double_t eplus;
|
---|
3113 | Double_t eminus;
|
---|
3114 | Double_t eparab;
|
---|
3115 | Double_t gcc;
|
---|
3116 | gMinuit->mnerrs(i, eplus, eminus, eparab, gcc);
|
---|
3117 |
|
---|
3118 | gUnfold.fVb(i, 0) = val * norm;
|
---|
3119 |
|
---|
3120 | gUnfold.fResult(i, 0) = val * norm;
|
---|
3121 | gUnfold.fResult(i, 1) = eparab * norm;
|
---|
3122 | gUnfold.fResult(i, 2) = eplus * norm;
|
---|
3123 | gUnfold.fResult(i, 3) = eminus * norm;
|
---|
3124 | gUnfold.fResult(i, 4) = gcc;
|
---|
3125 | sum += val;
|
---|
3126 | }
|
---|
3127 | gUnfold.fVb(gUnfold.fNb-1, 0) = (1.0-sum) * norm;
|
---|
3128 |
|
---|
3129 | gUnfold.fResult(gUnfold.fNb-1, 0) = (1.0-sum) * norm;
|
---|
3130 | gUnfold.fResult(gUnfold.fNb-1, 1) =
|
---|
3131 | sqrt(gUnfold.fVbcov(gUnfold.fNb-1,gUnfold.fNb-1));
|
---|
3132 | gUnfold.fResult(gUnfold.fNb-1, 2) = 0;
|
---|
3133 | gUnfold.fResult(gUnfold.fNb-1, 3) = 0;
|
---|
3134 | gUnfold.fResult(gUnfold.fNb-1, 4) = 1;
|
---|
3135 | //..............................................
|
---|
3136 |
|
---|
3137 | //-----------------------------------------------------
|
---|
3138 | // calculate 0th derivative squared
|
---|
3139 | gUnfold.ZerDeriv = 0;
|
---|
3140 | for (UInt_t j=0; j<fNb; j++)
|
---|
3141 | gUnfold.ZerDeriv += fVb(j,0) * fVb(j,0);
|
---|
3142 |
|
---|
3143 | //-----------------------------------------------------
|
---|
3144 | // calculate the entropy
|
---|
3145 |
|
---|
3146 | gUnfold.Entropy = 0;
|
---|
3147 | for (UInt_t j=0; j<gUnfold.fNb; j++)
|
---|
3148 | if (p(j,0) > 0)
|
---|
3149 | gUnfold.Entropy += p(j,0) * log( p(j,0) );
|
---|
3150 |
|
---|
3151 |
|
---|
3152 | //-----------------------------------------------------
|
---|
3153 | // calculate SpurSigma
|
---|
3154 | gUnfold.SpurSigma = 0.0;
|
---|
3155 | for (UInt_t m=0; m<fNb; m++)
|
---|
3156 | gUnfold.SpurSigma += gUnfold.fVbcov(m,m);
|
---|
3157 | // cout << "SpurSigma =" << SpurSigma << endl;
|
---|
3158 |
|
---|
3159 | //-----------------------------------------------------
|
---|
3160 | gUnfold.SpurAR = 0;
|
---|
3161 | gUnfold.DiffAR2 = 0;
|
---|
3162 |
|
---|
3163 | //-----------------------------------------------------
|
---|
3164 | gUnfold.fNdf = gUnfold.fNa;
|
---|
3165 | gUnfold.fChisq = gUnfold.Chisq;
|
---|
3166 |
|
---|
3167 | for (UInt_t i=0; i<fNa; i++)
|
---|
3168 | {
|
---|
3169 | gUnfold.fChi2(i,0) = gUnfold.Chi2(i,0);
|
---|
3170 | }
|
---|
3171 |
|
---|
3172 |
|
---|
3173 | UInt_t iNdf = (UInt_t) (gUnfold.fNdf+0.5);
|
---|
3174 |
|
---|
3175 | //cout << "fcnTikhonov2 : fW, chisq (from fcnF) = "
|
---|
3176 | // << gUnfold.fW << ", " << gUnfold.fChisq << endl;
|
---|
3177 |
|
---|
3178 | gUnfold.fProb = iNdf>0 ? TMath::Prob(gUnfold.fChisq, iNdf) : 0;
|
---|
3179 | }
|
---|
3180 | }
|
---|
3181 |
|
---|
3182 |
|
---|
3183 | // ======================================================
|
---|
3184 | //
|
---|
3185 | // SteerUnfold
|
---|
3186 | //
|
---|
3187 | void SteerUnfold(TH1D &ha, TH2D &hacov, TH2D &hmig,
|
---|
3188 | TH2D &hmigor, TH1D &hb0, TH1D *hpr=NULL)
|
---|
3189 | {
|
---|
3190 | // ha is the distribution to be unfolded
|
---|
3191 | // hacov is the covariance matrix of the distribution ha
|
---|
3192 | // hmig is the migration matrix;
|
---|
3193 | // it is used in the unfolding unless it is overwritten
|
---|
3194 | // by SmoothMigrationMatrix by the smoothed migration matrix
|
---|
3195 | // hmigor is the migration matrix to be smoothed;
|
---|
3196 | // the smoothed migration matrix will be used in the unfolding
|
---|
3197 | // hpr the prior distribution
|
---|
3198 | // it is only used if SetPriorInput(*hpr) is called
|
---|
3199 |
|
---|
3200 | //..............................................
|
---|
3201 | // create an MUnfold object;
|
---|
3202 | // fill histograms into vectors and matrices
|
---|
3203 |
|
---|
3204 | MUnfold unfold(ha, hacov, hmig);
|
---|
3205 |
|
---|
3206 | //..............................................
|
---|
3207 | // smooth the migration matrix;
|
---|
3208 | // the smoothed migration matrix will be used in the unfolding
|
---|
3209 | // hmig is the original (unsmoothed) migration matrix
|
---|
3210 |
|
---|
3211 | unfold.SmoothMigrationMatrix(hmigor);
|
---|
3212 |
|
---|
3213 | //..............................................
|
---|
3214 | // define prior distribution (has always to be defined)
|
---|
3215 | // the alternatives are :
|
---|
3216 |
|
---|
3217 | // 1 SetPriorConstant() : isotropic distribution
|
---|
3218 | // 2 SetPriorPower(gamma) : dN/dE = E^{-gamma}
|
---|
3219 | // 3 SetPriorInput(*hpr): the distribution *hpr is used
|
---|
3220 | // 4 SetPriorRebin(*ha) : use rebinned histogram ha
|
---|
3221 |
|
---|
3222 | UInt_t flagprior = 4;
|
---|
3223 | cout << "SteerUnfold : flagprior = " << flagprior << endl;
|
---|
3224 | cout << "=========================="<< endl;
|
---|
3225 |
|
---|
3226 | Bool_t errorprior=kTRUE;
|
---|
3227 | switch (flagprior)
|
---|
3228 | {
|
---|
3229 | case 1:
|
---|
3230 | unfold.SetPriorConstant();
|
---|
3231 | break;
|
---|
3232 | case 2:
|
---|
3233 | errorprior = unfold.SetPriorPower(1.5);
|
---|
3234 | break;
|
---|
3235 | case 3:
|
---|
3236 | if (!hpr)
|
---|
3237 | {
|
---|
3238 | cout << "Error: No hpr!" << endl;
|
---|
3239 | return;
|
---|
3240 | }
|
---|
3241 | errorprior = unfold.SetPriorInput(*hpr);
|
---|
3242 | break;
|
---|
3243 | case 4:
|
---|
3244 | errorprior = unfold.SetPriorRebin(ha);
|
---|
3245 | break;
|
---|
3246 | }
|
---|
3247 | if (!errorprior)
|
---|
3248 | {
|
---|
3249 | cout << "MUnfold::SetPrior... : failed. flagprior = " ;
|
---|
3250 | cout << flagprior << endl;
|
---|
3251 | return;
|
---|
3252 | }
|
---|
3253 |
|
---|
3254 | //..............................................
|
---|
3255 | // calculate the matrix G = M * M(transposed)
|
---|
3256 | // M being the migration matrix
|
---|
3257 |
|
---|
3258 | unfold.CalculateG();
|
---|
3259 |
|
---|
3260 | //..............................................
|
---|
3261 | // call steering routine for the actual unfolding;
|
---|
3262 | // the alternatives are :
|
---|
3263 |
|
---|
3264 | // 1 Schmelling : minimize the function Z by Gauss-Newton iteration;
|
---|
3265 | // the parameters to be fitted are gamma(i) = lambda(i)/w;
|
---|
3266 |
|
---|
3267 | // 2 Tikhonov2 : regularization term is sum of (2nd deriv.)**2 ;
|
---|
3268 | // minimization by using MINUIT;
|
---|
3269 | // the parameters to be fitted are
|
---|
3270 | // the bin contents of the unfolded distribution
|
---|
3271 |
|
---|
3272 | // 3 Bertero: minimization by iteration
|
---|
3273 | //
|
---|
3274 |
|
---|
3275 | UInt_t flagunfold = 1;
|
---|
3276 | cout << "SteerUnfold : flagunfold = " << flagunfold << endl;
|
---|
3277 | cout << "===========================" << endl;
|
---|
3278 |
|
---|
3279 |
|
---|
3280 |
|
---|
3281 | switch (flagunfold)
|
---|
3282 | {
|
---|
3283 | case 1: // Schmelling
|
---|
3284 | cout << "" << endl;
|
---|
3285 | cout << "Unfolding algorithm : Schmelling" << endl;
|
---|
3286 | cout << "================================" << endl;
|
---|
3287 | if (!unfold.Schmelling(hb0))
|
---|
3288 | cout << "MUnfold::Schmelling : failed." << endl;
|
---|
3289 | break;
|
---|
3290 |
|
---|
3291 | case 2: // Tikhonov2
|
---|
3292 | cout << "" << endl;
|
---|
3293 | cout << "Unfolding algorithm : Tikhonov" << endl;
|
---|
3294 | cout << "================================" << endl;
|
---|
3295 | if (!unfold.Tikhonov2(hb0))
|
---|
3296 | cout << "MUnfold::Tikhonov2 : failed." << endl;
|
---|
3297 | break;
|
---|
3298 |
|
---|
3299 | case 3: // Bertero
|
---|
3300 | cout << "" << endl;
|
---|
3301 | cout << "Unfolding algorithm : Bertero" << endl;
|
---|
3302 | cout << "================================" << endl;
|
---|
3303 | if (!unfold.Bertero(hb0))
|
---|
3304 | cout << "MUnfold::Bertero : failed." << endl;
|
---|
3305 | break;
|
---|
3306 | }
|
---|
3307 |
|
---|
3308 |
|
---|
3309 | //..............................................
|
---|
3310 | // Print fResult
|
---|
3311 | unfold.PrintResults();
|
---|
3312 |
|
---|
3313 |
|
---|
3314 | //..............................................
|
---|
3315 | // Draw the plots
|
---|
3316 | unfold.DrawPlots();
|
---|
3317 |
|
---|
3318 | //..............................................
|
---|
3319 | // get unfolded distribution
|
---|
3320 | //TMatrixD &Vb = unfold.GetVb();
|
---|
3321 | //TMatrixD &Vbcov = unfold.GetVbcov();
|
---|
3322 |
|
---|
3323 | }
|
---|
3324 |
|
---|
3325 | //__________________________________________________________________________
|
---|
3326 |
|
---|
3327 |
|
---|
3328 | ////////////////////////////////////////////////////////////////////////////
|
---|
3329 | // //
|
---|
3330 | // Main program //
|
---|
3331 | // defines the ideal distribution (hb0) //
|
---|
3332 | // defines the migration matrix (hMigrat) //
|
---|
3333 | // defines the distribution to be unfolded (hVa) //
|
---|
3334 | // //
|
---|
3335 | // calls member functions of the class MUnfold //
|
---|
3336 | // to do the unfolding //
|
---|
3337 | // //
|
---|
3338 | ////////////////////////////////////////////////////////////////////////////
|
---|
3339 | void unfold()
|
---|
3340 | {
|
---|
3341 | // -----------------------------------------
|
---|
3342 | // migration matrix :
|
---|
3343 | // x corresponds to measured quantity
|
---|
3344 | // y corresponds to true quantity
|
---|
3345 |
|
---|
3346 | //const Int_t na = 13;
|
---|
3347 | const Int_t na = 18;
|
---|
3348 | const Axis_t alow = 0.25;
|
---|
3349 | const Axis_t aup = 3.50;
|
---|
3350 |
|
---|
3351 | //const Int_t nb = 11;
|
---|
3352 | const Int_t nb = 22;
|
---|
3353 | const Axis_t blow = 0.50;
|
---|
3354 | const Axis_t bup = 3.25;
|
---|
3355 |
|
---|
3356 | TH2D hmig("Migrat", "Migration Matrix", na, alow, aup, nb, blow, bup);
|
---|
3357 | hmig.Sumw2();
|
---|
3358 |
|
---|
3359 | // parametrize migration matrix as
|
---|
3360 | // <log10(Eest)> = a0 + a1*log10(Etrue) + a2*log10(Etrue)**2
|
---|
3361 | // + log10(Etrue)
|
---|
3362 | // RMS( log10(Eest) ) = b0 + b1*log10(Etrue) + b2*log10(Etrue)**2
|
---|
3363 | Double_t a0 = 0.0;
|
---|
3364 | Double_t a1 = 0.0;
|
---|
3365 | Double_t a2 = 0.0;
|
---|
3366 |
|
---|
3367 | Double_t b0 = 0.26;
|
---|
3368 | Double_t b1 =-0.054;
|
---|
3369 | Double_t b2 = 0.0;
|
---|
3370 |
|
---|
3371 | TF1 f2("f2", "gaus(0)", alow, aup);
|
---|
3372 | f2.SetParName(0, "ampl");
|
---|
3373 | f2.SetParName(1, "mean");
|
---|
3374 | f2.SetParName(2, "sigma");
|
---|
3375 |
|
---|
3376 | // loop over log10(Etrue) bins
|
---|
3377 | TAxis &yaxis = *hmig.GetYaxis();
|
---|
3378 | for (Int_t j=1; j<=nb; j++)
|
---|
3379 | {
|
---|
3380 | Double_t yvalue = yaxis.GetBinCenter(j);
|
---|
3381 |
|
---|
3382 | const Double_t mean = a0 + a1*yvalue + a2*yvalue*yvalue + yvalue;
|
---|
3383 | const Double_t sigma = b0 + b1*yvalue + b2*yvalue*yvalue;
|
---|
3384 | const Double_t ampl = 1./ ( sigma*TMath::Sqrt(2.0*TMath::Pi()));
|
---|
3385 |
|
---|
3386 | // gaus(0) is a substitute for [0]*exp( -0.5*( (x-[1])/[2] )**2 )
|
---|
3387 | f2.SetParameter(0, ampl);
|
---|
3388 | f2.SetParameter(1, mean);
|
---|
3389 | f2.SetParameter(2, sigma);
|
---|
3390 |
|
---|
3391 | // fill temporary 1-dim histogram with the function
|
---|
3392 | // fill the histogram using
|
---|
3393 | // - either FillRandom
|
---|
3394 | // - or using Freq
|
---|
3395 | TH1D htemp("temp", "temp", na, alow, aup);
|
---|
3396 | htemp.Sumw2();
|
---|
3397 |
|
---|
3398 | for (Int_t k=0; k<1000000; k++)
|
---|
3399 | htemp.Fill(f2.GetRandom());
|
---|
3400 |
|
---|
3401 | // copy it into the migration matrix
|
---|
3402 | Double_t sum = 0;
|
---|
3403 | for (Int_t i=1; i<=na; i++)
|
---|
3404 | {
|
---|
3405 | const Stat_t content = htemp.GetBinContent(i);
|
---|
3406 | hmig.SetBinContent(i, j, content);
|
---|
3407 | sum += content;
|
---|
3408 | }
|
---|
3409 |
|
---|
3410 | // normalize migration matrix
|
---|
3411 | if (sum==0)
|
---|
3412 | continue;
|
---|
3413 |
|
---|
3414 | for (Int_t i=1; i<=na; i++)
|
---|
3415 | {
|
---|
3416 | const Stat_t content = hmig.GetBinContent(i,j);
|
---|
3417 | hmig.SetBinContent(i,j, content/sum);
|
---|
3418 | hmig.SetBinError (i,j,sqrt(content)/sum);
|
---|
3419 | }
|
---|
3420 | }
|
---|
3421 |
|
---|
3422 | PrintTH2Content(hmig);
|
---|
3423 | PrintTH2Error(hmig);
|
---|
3424 |
|
---|
3425 | // -----------------------------------------
|
---|
3426 | // ideal distribution
|
---|
3427 |
|
---|
3428 | TH1D hb0("hb0", "Ideal distribution", nb, blow, bup);
|
---|
3429 | hb0.Sumw2();
|
---|
3430 |
|
---|
3431 | // fill histogram with random numbers according to
|
---|
3432 | // an exponential function dN/dE = E^{-gamma}
|
---|
3433 | // or with y = log10(E), E = 10^y :
|
---|
3434 | // dN/dy = ln10 * 10^{y*(1-gamma)}
|
---|
3435 | TF1 f1("f1", "pow(10.0, x*(1.0-[0]))", blow, bup);
|
---|
3436 | f1.SetParName(0,"gamma");
|
---|
3437 | f1.SetParameter(0, 2.7);
|
---|
3438 |
|
---|
3439 | // ntimes is the number of entries
|
---|
3440 | for (Int_t k=0; k<10000; k++)
|
---|
3441 | hb0.Fill(f1.GetRandom());
|
---|
3442 |
|
---|
3443 | // introduce energy threshold at 50 GeV
|
---|
3444 |
|
---|
3445 | const Double_t lgEth = 1.70;
|
---|
3446 | const Double_t dlgEth = 0.09;
|
---|
3447 |
|
---|
3448 | for (Int_t j=1; j<=nb; j++)
|
---|
3449 | {
|
---|
3450 | const Double_t lgE = hb0.GetBinCenter(j);
|
---|
3451 | const Double_t c = hb0.GetBinContent(j);
|
---|
3452 | const Double_t dc = hb0.GetBinError(j);
|
---|
3453 | const Double_t f = 1.0 / (1.0 + exp( -(lgE-lgEth)/dlgEth ));
|
---|
3454 |
|
---|
3455 | hb0.SetBinContent(j, f* c);
|
---|
3456 | hb0.SetBinError (j, f*dc);
|
---|
3457 | }
|
---|
3458 |
|
---|
3459 | PrintTH1Content(hb0);
|
---|
3460 |
|
---|
3461 | // -----------------------------------------
|
---|
3462 | // here the prior distribution can be defined for the call
|
---|
3463 | // to SetPriorInput(*hpr)
|
---|
3464 | TH1D hpr("hpr", "Prior distribution" , nb, blow, bup);
|
---|
3465 | for (Int_t j=1; j<=nb; j++)
|
---|
3466 | hpr.SetBinContent(j, 1.0/nb);
|
---|
3467 |
|
---|
3468 | PrintTH1Content(hpr);
|
---|
3469 |
|
---|
3470 | // -----------------------------------------
|
---|
3471 | // generate distribution to be unfolded (ha)
|
---|
3472 | // by smearing the ideal distribution (hb0)
|
---|
3473 | //
|
---|
3474 | TH1D ha("ha", "Distribution to be unfolded", na, alow, aup);
|
---|
3475 | ha.Sumw2();
|
---|
3476 |
|
---|
3477 | for (Int_t i=1; i<=na; i++)
|
---|
3478 | {
|
---|
3479 | Double_t cont = 0;
|
---|
3480 | for (Int_t j=1; j<=nb; j++)
|
---|
3481 | cont += hmig.GetBinContent(i, j) * hb0.GetBinContent(j);
|
---|
3482 |
|
---|
3483 | ha.SetBinContent(i, cont);
|
---|
3484 | ha.SetBinError(i, sqrt(cont));
|
---|
3485 | }
|
---|
3486 |
|
---|
3487 | PrintTH1Content(ha);
|
---|
3488 | PrintTH1Error(ha);
|
---|
3489 |
|
---|
3490 | // -----------------------------------------
|
---|
3491 | // covariance matrix of the distribution ha
|
---|
3492 | TH2D hacov("hacov", "Error matrix of distribution ha",
|
---|
3493 | na, alow, aup, na, alow, aup);
|
---|
3494 |
|
---|
3495 | for (Int_t i=1; i<=na; i++)
|
---|
3496 | {
|
---|
3497 | const Double_t content = ha.GetBinContent(i);
|
---|
3498 | hacov.SetBinContent(i, i, content<3 ? 3.0 : content);
|
---|
3499 | }
|
---|
3500 |
|
---|
3501 | PrintTH2Content(hacov);
|
---|
3502 |
|
---|
3503 | SteerUnfold(ha, hacov, hmig, hmig, hb0, &hpr);
|
---|
3504 | }
|
---|
3505 | //========================================================================//
|
---|