| 1 |
|
|---|
| 2 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 3 | // //
|
|---|
| 4 | // This program should be run under root : //
|
|---|
| 5 | // root unfold.C++ //
|
|---|
| 6 | // //
|
|---|
| 7 | // Author(s) : T. Bretz 02/2002 <mailto:tbretz@astro.uni-wuerzburg.de> //
|
|---|
| 8 | // Author(s) : W. Wittek 09/2002 <mailto:wittek@mppmu.mpg.de> //
|
|---|
| 9 | // //
|
|---|
| 10 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 11 |
|
|---|
| 12 | #include <TMath.h>
|
|---|
| 13 | #include <TRandom3.h>
|
|---|
| 14 | #include <TVector.h>
|
|---|
| 15 | #include <TMatrixD.h>
|
|---|
| 16 | #include <TMatrix.h>
|
|---|
| 17 | #include <TH1.h>
|
|---|
| 18 | #include <TH2.h>
|
|---|
| 19 | #include <TProfile.h>
|
|---|
| 20 | #include <TF1.h>
|
|---|
| 21 | #include <iostream.h>
|
|---|
| 22 | #include <TMinuit.h>
|
|---|
| 23 | #include <TCanvas.h>
|
|---|
| 24 | #include <TMarker.h>
|
|---|
| 25 |
|
|---|
| 26 | #include <fstream.h>
|
|---|
| 27 | #include <iomanip.h>
|
|---|
| 28 |
|
|---|
| 29 | TH1 *DrawMatrixClone(const TMatrixD &m, Option_t *opt="")
|
|---|
| 30 | {
|
|---|
| 31 | const Int_t nrows = m.GetNrows();
|
|---|
| 32 | const Int_t ncols = m.GetNcols();
|
|---|
| 33 |
|
|---|
| 34 | TMatrix m2(nrows, ncols);
|
|---|
| 35 | for (int i=0; i<nrows; i++)
|
|---|
| 36 | for (int j=0; j<ncols; j++)
|
|---|
| 37 | m2(i, j) = m(i, j);
|
|---|
| 38 |
|
|---|
| 39 | TH2F *hist = new TH2F(m2);
|
|---|
| 40 | hist->SetBit(kCanDelete);
|
|---|
| 41 | hist->Draw(opt);
|
|---|
| 42 | hist->SetDirectory(NULL);
|
|---|
| 43 |
|
|---|
| 44 | return hist;
|
|---|
| 45 |
|
|---|
| 46 | }
|
|---|
| 47 |
|
|---|
| 48 | TH1 *DrawMatrixColClone(const TMatrixD &m, Option_t *opt="", Int_t col=0)
|
|---|
| 49 | {
|
|---|
| 50 | const Int_t nrows = m.GetNrows();
|
|---|
| 51 |
|
|---|
| 52 | TVector vec(nrows);
|
|---|
| 53 | for (int i=0; i<nrows; i++)
|
|---|
| 54 | vec(i) = m(i, col);
|
|---|
| 55 |
|
|---|
| 56 | TH1F *hist = new TH1F("TVector","",nrows,0,nrows);
|
|---|
| 57 | for (int i=0; i<nrows; i++)
|
|---|
| 58 | {
|
|---|
| 59 | hist->SetBinContent(i+1, vec(i));
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 | hist->SetBit(kCanDelete);
|
|---|
| 63 | hist->Draw(opt);
|
|---|
| 64 | hist->SetDirectory(NULL);
|
|---|
| 65 |
|
|---|
| 66 | return hist;
|
|---|
| 67 | }
|
|---|
| 68 |
|
|---|
| 69 |
|
|---|
| 70 | void PrintTH2Content(const TH2 &hist)
|
|---|
| 71 | {
|
|---|
| 72 | cout << hist.GetName() << ": " << hist.GetTitle() << endl;
|
|---|
| 73 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 74 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 75 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
|---|
| 76 | cout << hist.GetBinContent(i,j) << " \t";
|
|---|
| 77 | cout << endl << endl;
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | void PrintTH2Error(const TH2 &hist)
|
|---|
| 81 | {
|
|---|
| 82 | cout << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
|---|
| 83 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 84 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 85 | {
|
|---|
| 86 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
|---|
| 87 | cout << hist.GetBinError(i, j) << " \t";
|
|---|
| 88 | cout << endl << endl;
|
|---|
| 89 | }
|
|---|
| 90 | }
|
|---|
| 91 |
|
|---|
| 92 | void PrintTH1Content(const TH1 &hist)
|
|---|
| 93 | {
|
|---|
| 94 | cout << hist.GetName() << ": " << hist.GetTitle() << endl;
|
|---|
| 95 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 96 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 97 | cout << hist.GetBinContent(i) << " \t";
|
|---|
| 98 | cout << endl << endl;
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | void PrintTH1Error(const TH1 &hist)
|
|---|
| 102 | {
|
|---|
| 103 | cout << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
|---|
| 104 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 105 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 106 | cout << hist.GetBinError(i) << " \t";
|
|---|
| 107 | cout << endl << endl;
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 | void CopyCol(TMatrixD &m, const TH1 &h, Int_t col=0)
|
|---|
| 111 | {
|
|---|
| 112 | const Int_t n = m.GetNrows();
|
|---|
| 113 |
|
|---|
| 114 | for (Int_t i=0; i<n; i++)
|
|---|
| 115 | m(i, col) = h.GetBinContent(i+1);
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | void CopyCol(TH1 &h, const TMatrixD &m, Int_t col=0)
|
|---|
| 119 | {
|
|---|
| 120 | const Int_t n = m.GetNrows();
|
|---|
| 121 |
|
|---|
| 122 | for (Int_t i=0; i<n; i++)
|
|---|
| 123 | h.SetBinContent(i+1, m(i, col));
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | void CopyH2M(TMatrixD &m, const TH2 &h)
|
|---|
| 127 | {
|
|---|
| 128 | const Int_t nx = m.GetNrows();
|
|---|
| 129 | const Int_t ny = m.GetNcols();
|
|---|
| 130 |
|
|---|
| 131 | for (Int_t i=0; i<nx; i++)
|
|---|
| 132 | for (Int_t j=0; j<ny; j++)
|
|---|
| 133 | m(i, j) = h.GetBinContent(i+1, j+1);
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 | void CopySqr(TMatrixD &m, const TH1 &h)
|
|---|
| 137 | {
|
|---|
| 138 | const Int_t nx = m.GetNrows();
|
|---|
| 139 | const Int_t ny = m.GetNcols();
|
|---|
| 140 |
|
|---|
| 141 | for (Int_t i=0; i<nx; i++)
|
|---|
| 142 | for (Int_t j=0; j<ny; j++)
|
|---|
| 143 | {
|
|---|
| 144 | const Double_t bin = h.GetBinContent(i+1, j+1);
|
|---|
| 145 | m(i, j) = bin*bin;
|
|---|
| 146 | }
|
|---|
| 147 | }
|
|---|
| 148 |
|
|---|
| 149 | Double_t GetMatrixSumRow(const TMatrixD &m, Int_t row)
|
|---|
| 150 | {
|
|---|
| 151 | const Int_t n = m.GetNcols();
|
|---|
| 152 |
|
|---|
| 153 | Double_t sum = 0;
|
|---|
| 154 | for (Int_t i=0; i<n; i++)
|
|---|
| 155 | sum += m(row, i);
|
|---|
| 156 |
|
|---|
| 157 | return sum;
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | Double_t GetMatrixSumDiag(const TMatrixD &m)
|
|---|
| 161 | {
|
|---|
| 162 | const Int_t n = m.GetNcols();
|
|---|
| 163 |
|
|---|
| 164 | Double_t sum = 0;
|
|---|
| 165 | for (Int_t i=0; i<n; i++)
|
|---|
| 166 | sum += m(i, i);
|
|---|
| 167 |
|
|---|
| 168 | return sum;
|
|---|
| 169 | }
|
|---|
| 170 |
|
|---|
| 171 | Double_t GetMatrixSumCol(const TMatrixD &m, Int_t col=0)
|
|---|
| 172 | {
|
|---|
| 173 | const Int_t n = m.GetNrows();
|
|---|
| 174 |
|
|---|
| 175 | Double_t sum = 0;
|
|---|
| 176 | for (Int_t i=0; i<n; i++)
|
|---|
| 177 | sum += m(i, col);
|
|---|
| 178 |
|
|---|
| 179 | return sum;
|
|---|
| 180 | }
|
|---|
| 181 | Double_t GetMatrixSum(const TMatrixD &m)
|
|---|
| 182 | {
|
|---|
| 183 | const Int_t n = m.GetNrows();
|
|---|
| 184 |
|
|---|
| 185 | Double_t sum = 0;
|
|---|
| 186 | for (Int_t i=0; i<n; i++)
|
|---|
| 187 | sum += GetMatrixSumRow(m, i);
|
|---|
| 188 |
|
|---|
| 189 | return sum;
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 193 | // //
|
|---|
| 194 | // fcnSmooth (used by SmoothMigrationMatrix) //
|
|---|
| 195 | // //
|
|---|
| 196 | // is called by MINUIT //
|
|---|
| 197 | // for given values of the parameters it calculates //
|
|---|
| 198 | // the function to be minimized //
|
|---|
| 199 | // //
|
|---|
| 200 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 201 | void fcnSmooth(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 202 | Double_t *par, Int_t iflag);
|
|---|
| 203 |
|
|---|
| 204 |
|
|---|
| 205 |
|
|---|
| 206 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 207 | // //
|
|---|
| 208 | // fcnTikhonov2 (used by Tikhonov2) //
|
|---|
| 209 | // //
|
|---|
| 210 | // is called by MINUIT //
|
|---|
| 211 | // for given values of the parameters it calculates //
|
|---|
| 212 | // the function to be minimized //
|
|---|
| 213 | // //
|
|---|
| 214 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 215 | void fcnTikhonov2(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 216 | Double_t *par, Int_t iflag);
|
|---|
| 217 |
|
|---|
| 218 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 219 | // //
|
|---|
| 220 | // MUnfold //
|
|---|
| 221 | // //
|
|---|
| 222 | // class for unfolding a 1-dimensional distribution //
|
|---|
| 223 | // //
|
|---|
| 224 | // the methods used are described in : //
|
|---|
| 225 | // //
|
|---|
| 226 | // V.B.Anykeyev et al., NIM A303 (1991) 350 //
|
|---|
| 227 | // M. Schmelling, Nucl. Instr. and Meth. A 340 (1994) 400 //
|
|---|
| 228 | // M. Schmelling : "Numerische Methoden der Datenanalyse" //
|
|---|
| 229 | // Heidelberg, Maerz 1998 //
|
|---|
| 230 | // M.Bertero, INFN/TC-88/2 (1988) //
|
|---|
| 231 | // //
|
|---|
| 232 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 233 | class MUnfold : public TObject
|
|---|
| 234 | {
|
|---|
| 235 | public:
|
|---|
| 236 |
|
|---|
| 237 | UInt_t fNa; // Number of bins in the distribution to be unfolded
|
|---|
| 238 | UInt_t fNb; // Number of bins in the unfolded distribution
|
|---|
| 239 |
|
|---|
| 240 | TMatrixD fMigrat; // migration matrix (fNa, fNb)
|
|---|
| 241 | TMatrixD fMigraterr2;// error**2 of migration matrix (fNa, fNb)
|
|---|
| 242 |
|
|---|
| 243 | TMatrixD fMigOrig; // original migration matrix (fNa, fNb)
|
|---|
| 244 | TMatrixD fMigOrigerr2;// error**2 oforiginal migr. matrix (fNa, fNb)
|
|---|
| 245 |
|
|---|
| 246 | TMatrixD fMigSmoo; // smoothed migration matrix M (fNa, fNb)
|
|---|
| 247 | TMatrixD fMigSmooerr2;// error**2 of smoothed migr. matrix (fNa, fNb)
|
|---|
| 248 | TMatrixD fMigChi2; // chi2 contributions for smoothing (fNa, fNb)
|
|---|
| 249 |
|
|---|
| 250 | TMatrixD fVa; // distribution to be unfolded (fNa)
|
|---|
| 251 | TMatrixD fVacov; // error matrix of fVa (fNa, fNa)
|
|---|
| 252 | TMatrixD fVacovInv; // inverse of fVacov (fNa, fNa)
|
|---|
| 253 | Double_t fSpurVacov; // Spur of fVacov
|
|---|
| 254 |
|
|---|
| 255 | // UInt_t fVaevents; // total number of events
|
|---|
| 256 | UInt_t fVapoints; // number of significant measurements
|
|---|
| 257 |
|
|---|
| 258 | TMatrixD fVb; // unfolded distribution (fNb)
|
|---|
| 259 | TMatrixD fVbcov; // error matrix of fVb (fNb, fNb)
|
|---|
| 260 |
|
|---|
| 261 | TMatrixD fVEps; // prior distribution (fNb)
|
|---|
| 262 | TMatrixDColumn fVEps0;
|
|---|
| 263 |
|
|---|
| 264 | Double_t fW; // weight
|
|---|
| 265 | Double_t fWbest; // best weight
|
|---|
| 266 | Int_t ixbest;
|
|---|
| 267 |
|
|---|
| 268 | TMatrixD fResult; // unfolded distribution and errors (fNb, 5)
|
|---|
| 269 | TMatrixD fChi2; // chisquared contribution (fNa, 1)
|
|---|
| 270 |
|
|---|
| 271 | Double_t fChisq; // total chisquared
|
|---|
| 272 | Double_t fNdf; // number of degrees of freedom
|
|---|
| 273 | Double_t fProb; // chisquared probability
|
|---|
| 274 |
|
|---|
| 275 | TMatrixD G; // G = M * M(transposed) (fNa, fNa)
|
|---|
| 276 | TVectorD EigenValue; // vector of eigenvalues lambda of G (fNa)
|
|---|
| 277 | TMatrixD Eigen; // matrix of eigen vectors of G (fNa, fNa)
|
|---|
| 278 | Double_t RankG; // rank of G
|
|---|
| 279 | Double_t tau; // 1 / lambda_max
|
|---|
| 280 | Double_t EpsLambda;
|
|---|
| 281 |
|
|---|
| 282 | // quantities stored for each weight :
|
|---|
| 283 | TVectorD SpSig; // Spur of covariance matrix of fVbcov
|
|---|
| 284 | TVectorD SpAR; // effective rank of G^tilde
|
|---|
| 285 | TVectorD chisq; // chi squared (measures agreement between
|
|---|
| 286 | // fVa and the folded fVb)
|
|---|
| 287 | TVectorD SecDer; // regularization term = sum of (2nd der.)**2
|
|---|
| 288 | TVectorD ZerDer; // regularization term = sum of (fVb)**2
|
|---|
| 289 | TVectorD Entrop; // regularization term = reduced cross-entropy
|
|---|
| 290 | TVectorD DAR2; //
|
|---|
| 291 | TVectorD Dsqbar; //
|
|---|
| 292 |
|
|---|
| 293 | Double_t SpurAR;
|
|---|
| 294 | Double_t SpurSigma;
|
|---|
| 295 | Double_t SecDeriv;
|
|---|
| 296 | Double_t ZerDeriv;
|
|---|
| 297 | Double_t Entropy;
|
|---|
| 298 | Double_t DiffAR2;
|
|---|
| 299 | Double_t Chisq;
|
|---|
| 300 | Double_t D2bar;
|
|---|
| 301 |
|
|---|
| 302 | TMatrixD Chi2;
|
|---|
| 303 |
|
|---|
| 304 | //
|
|---|
| 305 |
|
|---|
| 306 | // plots versus weight
|
|---|
| 307 | Int_t Nix;
|
|---|
| 308 | Double_t xmin;
|
|---|
| 309 | Double_t xmax;
|
|---|
| 310 | Double_t dlogx;
|
|---|
| 311 |
|
|---|
| 312 | TH1D *hBchisq;
|
|---|
| 313 | TH1D *hBSpAR;
|
|---|
| 314 | TH1D *hBDSpAR;
|
|---|
| 315 | TH1D *hBSpSig;
|
|---|
| 316 | TH1D *hBDSpSig;
|
|---|
| 317 | TH1D *hBSecDeriv;
|
|---|
| 318 | TH1D *hBDSecDeriv;
|
|---|
| 319 | TH1D *hBZerDeriv;
|
|---|
| 320 | TH1D *hBDZerDeriv;
|
|---|
| 321 | TH1D *hBEntropy;
|
|---|
| 322 | TH1D *hBDEntropy;
|
|---|
| 323 | TH1D *hBDAR2;
|
|---|
| 324 | TH1D *hBD2bar;
|
|---|
| 325 |
|
|---|
| 326 | //
|
|---|
| 327 | TH1D *hEigen;
|
|---|
| 328 |
|
|---|
| 329 | // plots for the best solution
|
|---|
| 330 | TH2D *fhmig;
|
|---|
| 331 | TH2D *shmig;
|
|---|
| 332 | TH2D *shmigChi2;
|
|---|
| 333 |
|
|---|
| 334 | TH1D *fhb0;
|
|---|
| 335 |
|
|---|
| 336 | TH1D *fha;
|
|---|
| 337 |
|
|---|
| 338 | TH1D *hprior;
|
|---|
| 339 |
|
|---|
| 340 | TH1D *hb;
|
|---|
| 341 |
|
|---|
| 342 | Double_t CalcSpurSigma(TMatrixD &T, Double_t norm=1)
|
|---|
| 343 | {
|
|---|
| 344 | Double_t spursigma = 0;
|
|---|
| 345 |
|
|---|
| 346 | for (UInt_t a=0; a<fNb; a++)
|
|---|
| 347 | {
|
|---|
| 348 | for (UInt_t b=0; b<fNb; b++)
|
|---|
| 349 | {
|
|---|
| 350 | fVbcov(a,b) = 0;
|
|---|
| 351 |
|
|---|
| 352 | for (UInt_t c=0; c<fNa; c++)
|
|---|
| 353 | for (UInt_t d=0; d<fNa; d++)
|
|---|
| 354 | fVbcov(a,b) += T(a,d)*fVacov(d,c)*T(b,c);
|
|---|
| 355 |
|
|---|
| 356 | fVbcov(a,b) *= norm*norm;
|
|---|
| 357 | }
|
|---|
| 358 | spursigma += fVbcov(a,a);
|
|---|
| 359 | }
|
|---|
| 360 |
|
|---|
| 361 | return spursigma;
|
|---|
| 362 | }
|
|---|
| 363 |
|
|---|
| 364 | public:
|
|---|
| 365 | // -----------------------------------------------------------------------
|
|---|
| 366 | //
|
|---|
| 367 | // Constructor
|
|---|
| 368 | // copy histograms into matrices
|
|---|
| 369 | //
|
|---|
| 370 | MUnfold(TH1D &ha, TH2D &hacov, TH2D &hmig)
|
|---|
| 371 | : fVEps(hmig.GetYaxis()->GetNbins(),1), fVEps0(fVEps, 0)
|
|---|
| 372 | {
|
|---|
| 373 | // ha is the distribution to be unfolded
|
|---|
| 374 | // hacov is the covariance matrix of ha
|
|---|
| 375 | // hmig is the migration matrix;
|
|---|
| 376 | // this matrix will be used in the unfolding
|
|---|
| 377 | // unless SmoothMigrationMatrix(*hmigrat) is called;
|
|---|
| 378 | // in the latter case hmigrat is smoothed
|
|---|
| 379 | // and the smoothed matrix is used in the unfolding
|
|---|
| 380 |
|
|---|
| 381 | // Eigen values of the matrix G, which are smaller than EpsLambda
|
|---|
| 382 | // will be considered as being zero
|
|---|
| 383 | EpsLambda = 1.e-10;
|
|---|
| 384 | fW = 0.0;
|
|---|
| 385 |
|
|---|
| 386 | fNa = hmig.GetXaxis()->GetNbins();
|
|---|
| 387 | const Double_t alow = hmig.GetXaxis()->GetXmin();
|
|---|
| 388 | const Double_t aup = hmig.GetXaxis()->GetXmax();
|
|---|
| 389 |
|
|---|
| 390 | fNb = hmig.GetYaxis()->GetNbins();
|
|---|
| 391 | const Double_t blow = hmig.GetYaxis()->GetXmin();
|
|---|
| 392 | const Double_t bup = hmig.GetYaxis()->GetXmax();
|
|---|
| 393 |
|
|---|
| 394 |
|
|---|
| 395 | UInt_t Na = ha.GetNbinsX();
|
|---|
| 396 | if (fNa != Na)
|
|---|
| 397 | {
|
|---|
| 398 | cout << "MUnfold::MUnfold : dimensions do not match, fNa = ";
|
|---|
| 399 | cout << fNa << ", Na = " << Na << endl;
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 | cout << "MUnfold::MUnfold :" << endl;
|
|---|
| 403 | cout << "==================" << endl;
|
|---|
| 404 | cout << " fNa = " << fNa << ", fNb = " << fNb << endl;
|
|---|
| 405 |
|
|---|
| 406 | // ------------------------
|
|---|
| 407 |
|
|---|
| 408 | fVa.ResizeTo(fNa, 1);
|
|---|
| 409 | CopyCol(fVa, ha, 0);
|
|---|
| 410 |
|
|---|
| 411 | cout << " fVa = ";
|
|---|
| 412 |
|
|---|
| 413 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 414 | cout << fVa(i,0) << " \t";
|
|---|
| 415 | cout << endl;
|
|---|
| 416 |
|
|---|
| 417 | Double_t vaevents = GetMatrixSumCol(fVa, 0);
|
|---|
| 418 | cout << " Total number of events in fVa = " << vaevents << endl;
|
|---|
| 419 |
|
|---|
| 420 | // ------------------------
|
|---|
| 421 |
|
|---|
| 422 | fChi2.ResizeTo(fNa,1);
|
|---|
| 423 | Chi2.ResizeTo(fNa,1);
|
|---|
| 424 |
|
|---|
| 425 | // ------------------------
|
|---|
| 426 |
|
|---|
| 427 | fVacov.ResizeTo(fNa, fNa);
|
|---|
| 428 | fSpurVacov = 0;
|
|---|
| 429 |
|
|---|
| 430 | CopyH2M(fVacov, hacov);
|
|---|
| 431 |
|
|---|
| 432 | fVapoints = 0;
|
|---|
| 433 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 434 | if (fVa(i,0)>0 && fVacov(i,i)<fVa(i,0)*fVa(i,0))
|
|---|
| 435 | fVapoints++;
|
|---|
| 436 |
|
|---|
| 437 | fSpurVacov = GetMatrixSumDiag(fVacov);
|
|---|
| 438 |
|
|---|
| 439 | cout << "MUnfold::MUnfold : fVacov = " << endl;
|
|---|
| 440 | cout << "==============================" << endl;
|
|---|
| 441 | fVacov.Print();
|
|---|
| 442 |
|
|---|
| 443 | cout << " Number of significant points in fVa = ";
|
|---|
| 444 | cout << fVapoints << endl;
|
|---|
| 445 |
|
|---|
| 446 | cout << " Spur of fVacov = ";
|
|---|
| 447 | cout << fSpurVacov << endl;
|
|---|
| 448 |
|
|---|
| 449 | // ------------------------
|
|---|
| 450 |
|
|---|
| 451 | fVacovInv.ResizeTo(fNa, fNa);
|
|---|
| 452 | fVacovInv = fVacov;
|
|---|
| 453 | fVacovInv.InvertPosDef();
|
|---|
| 454 |
|
|---|
| 455 | cout << "MUnfold::MUnfold : fVacovInv = " << endl;
|
|---|
| 456 | cout << "==================================" << endl;
|
|---|
| 457 | fVacovInv.Print();
|
|---|
| 458 |
|
|---|
| 459 | // ------------------------
|
|---|
| 460 | // fMigrat is the migration matrix to be used in the unfolding;
|
|---|
| 461 | // fMigrat may be overwritten by SmoothMigrationMatrix
|
|---|
| 462 |
|
|---|
| 463 | fMigrat.ResizeTo(fNa, fNb); // row, col
|
|---|
| 464 |
|
|---|
| 465 | CopyH2M(fMigrat, hmig);
|
|---|
| 466 |
|
|---|
| 467 |
|
|---|
| 468 | // ------------------------
|
|---|
| 469 |
|
|---|
| 470 | fMigraterr2.ResizeTo(fNa, fNb); // row, col
|
|---|
| 471 | CopySqr(fMigraterr2, hmig);
|
|---|
| 472 |
|
|---|
| 473 | // normaxlize
|
|---|
| 474 |
|
|---|
| 475 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 476 | {
|
|---|
| 477 | const Double_t sum = GetMatrixSumCol(fMigrat, j);
|
|---|
| 478 |
|
|---|
| 479 | if (sum==0)
|
|---|
| 480 | continue;
|
|---|
| 481 |
|
|---|
| 482 | TMatrixDColumn col1(fMigrat, j);
|
|---|
| 483 | col1 *= 1./sum;
|
|---|
| 484 |
|
|---|
| 485 | TMatrixDColumn col2(fMigraterr2, j);
|
|---|
| 486 | col2 *= 1./(sum*sum);
|
|---|
| 487 | }
|
|---|
| 488 |
|
|---|
| 489 | cout << "MUnfold::MUnfold : fMigrat = " << endl;
|
|---|
| 490 | cout << "===============================" << endl;
|
|---|
| 491 | fMigrat.Print();
|
|---|
| 492 |
|
|---|
| 493 | cout << "MUnfold::MUnfold : fMigraterr2 = " << endl;
|
|---|
| 494 | cout << "===================================" << endl;
|
|---|
| 495 | fMigraterr2.Print();
|
|---|
| 496 |
|
|---|
| 497 | // ------------------------
|
|---|
| 498 | G.ResizeTo(fNa, fNa);
|
|---|
| 499 | EigenValue.ResizeTo(fNa);
|
|---|
| 500 | Eigen.ResizeTo(fNa, fNa);
|
|---|
| 501 |
|
|---|
| 502 | fMigOrig.ResizeTo(fNa, fNb);
|
|---|
| 503 | fMigOrigerr2.ResizeTo(fNa, fNb);
|
|---|
| 504 |
|
|---|
| 505 | fMigSmoo.ResizeTo (fNa, fNb);
|
|---|
| 506 | fMigSmooerr2.ResizeTo(fNa, fNb);
|
|---|
| 507 | fMigChi2.ResizeTo (fNa, fNb);
|
|---|
| 508 |
|
|---|
| 509 | // ------------------------
|
|---|
| 510 |
|
|---|
| 511 | fVEps0 = 1./fNb;
|
|---|
| 512 |
|
|---|
| 513 | cout << "MUnfold::MUnfold : Default prior distribution fVEps = " << endl;
|
|---|
| 514 | cout << "========================================================" << endl;
|
|---|
| 515 | fVEps.Print();
|
|---|
| 516 |
|
|---|
| 517 | // ------------------------
|
|---|
| 518 |
|
|---|
| 519 | fVb.ResizeTo(fNb,1);
|
|---|
| 520 | fVbcov.ResizeTo(fNb,fNb);
|
|---|
| 521 |
|
|---|
| 522 | // ----------------------------------------------------
|
|---|
| 523 | // number and range of weights to be scanned
|
|---|
| 524 | Nix = 30;
|
|---|
| 525 | xmin = 1.e-5;
|
|---|
| 526 | xmax = 1.e5;
|
|---|
| 527 | dlogx = (log10(xmax)-log10(xmin)) / Nix;
|
|---|
| 528 |
|
|---|
| 529 | SpSig.ResizeTo (Nix);
|
|---|
| 530 | SpAR.ResizeTo (Nix);
|
|---|
| 531 | chisq.ResizeTo (Nix);
|
|---|
| 532 | SecDer.ResizeTo(Nix);
|
|---|
| 533 | ZerDer.ResizeTo(Nix);
|
|---|
| 534 | Entrop.ResizeTo(Nix);
|
|---|
| 535 | DAR2.ResizeTo (Nix);
|
|---|
| 536 | Dsqbar.ResizeTo(Nix);
|
|---|
| 537 |
|
|---|
| 538 | //------------------------------------
|
|---|
| 539 | // plots as a function of the iteration number
|
|---|
| 540 |
|
|---|
| 541 | hBchisq = new TH1D("Bchisq", "chisq",
|
|---|
| 542 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 543 |
|
|---|
| 544 | hBSpAR = new TH1D("BSpAR", "SpurAR",
|
|---|
| 545 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 546 |
|
|---|
| 547 | hBDSpAR = new TH1D("BDSpAR", "Delta(SpurAR)",
|
|---|
| 548 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 549 |
|
|---|
| 550 | hBSpSig = new TH1D("BSpSig", "SpurSigma/SpurC",
|
|---|
| 551 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 552 |
|
|---|
| 553 | hBDSpSig = new TH1D("BDSpSig", "Delta(SpurSigma/SpurC)",
|
|---|
| 554 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 555 |
|
|---|
| 556 | hBSecDeriv = new TH1D("BSecDeriv", "Second Derivative squared",
|
|---|
| 557 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 558 |
|
|---|
| 559 | hBDSecDeriv = new TH1D("BDSecDeriv", "Delta(Second Derivative squared)",
|
|---|
| 560 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 561 |
|
|---|
| 562 | hBZerDeriv = new TH1D("BZerDeriv", "Zero Derivative squared",
|
|---|
| 563 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 564 |
|
|---|
| 565 | hBDZerDeriv = new TH1D("BDZerDeriv", "Delta(Zero Derivative squared)",
|
|---|
| 566 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 567 |
|
|---|
| 568 | hBEntropy = new TH1D("BEntrop", "Entropy",
|
|---|
| 569 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 570 |
|
|---|
| 571 | hBDEntropy = new TH1D("BDEntrop", "Delta(Entropy)",
|
|---|
| 572 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 573 |
|
|---|
| 574 | hBDAR2 = new TH1D("BDAR2", "norm(AR-AR+)",
|
|---|
| 575 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 576 |
|
|---|
| 577 | hBD2bar = new TH1D("BD2bar", "(b_unfolded-b_ideal)**2",
|
|---|
| 578 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
|---|
| 579 |
|
|---|
| 580 | //-------------------------------------
|
|---|
| 581 | // original migration matrix
|
|---|
| 582 | fhmig = new TH2D("fMigrat", "Migration matrix",
|
|---|
| 583 | fNa, alow, aup, fNb, blow, bup);
|
|---|
| 584 | fhmig->Sumw2();
|
|---|
| 585 |
|
|---|
| 586 | //-------------------------------------
|
|---|
| 587 | // smoothed migration matrix
|
|---|
| 588 | shmig = new TH2D("sMigrat", "Smoothed migration matrix",
|
|---|
| 589 | fNa, alow, aup, fNb, blow, bup);
|
|---|
| 590 | shmig->Sumw2();
|
|---|
| 591 |
|
|---|
| 592 | //-------------------------------------
|
|---|
| 593 | // chi2 contributions for smoothing of migration matrix
|
|---|
| 594 | shmigChi2 = new TH2D("sMigratChi2", "Chi2 contr. for smoothing",
|
|---|
| 595 | fNa, alow, aup, fNb, blow, bup);
|
|---|
| 596 |
|
|---|
| 597 | //-------------------------------------
|
|---|
| 598 | // eigen values of matrix G = M * M(transposed)
|
|---|
| 599 | hEigen = new TH1D("Eigen", "Eigen values of M*MT",
|
|---|
| 600 | fNa, 0.5, fNa+0.5);
|
|---|
| 601 |
|
|---|
| 602 | //------------------------------------
|
|---|
| 603 | // Ideal distribution
|
|---|
| 604 |
|
|---|
| 605 | fhb0 = new TH1D("fhb0", "Ideal distribution", fNb, blow, bup);
|
|---|
| 606 | fhb0->Sumw2();
|
|---|
| 607 |
|
|---|
| 608 |
|
|---|
| 609 | //------------------------------------
|
|---|
| 610 | // Distribution to be unfolded
|
|---|
| 611 | fha = new TH1D("fha", "Distribution to be unfolded", fNa, alow, aup);
|
|---|
| 612 | fha->Sumw2();
|
|---|
| 613 |
|
|---|
| 614 | //------------------------------------
|
|---|
| 615 | // Prior distribution
|
|---|
| 616 | hprior = new TH1D("Prior", "Prior distribution", fNb, blow, bup);
|
|---|
| 617 |
|
|---|
| 618 | //------------------------------------
|
|---|
| 619 | // Unfolded distribution
|
|---|
| 620 | hb = new TH1D("DataSp", "Unfolded distribution", fNb, blow, bup);
|
|---|
| 621 | hb->Sumw2();
|
|---|
| 622 |
|
|---|
| 623 | }
|
|---|
| 624 |
|
|---|
| 625 | // -----------------------------------------------------------------------
|
|---|
| 626 | //
|
|---|
| 627 | // Define prior distribution to be a constant
|
|---|
| 628 | //
|
|---|
| 629 | void SetPriorConstant()
|
|---|
| 630 | {
|
|---|
| 631 | fVEps0 = 1./fNb;
|
|---|
| 632 |
|
|---|
| 633 | CopyCol(*hprior, fVEps);
|
|---|
| 634 |
|
|---|
| 635 | cout << "SetPriorConstant : Prior distribution fVEps = " << endl;
|
|---|
| 636 | cout << "==============================================" << endl;
|
|---|
| 637 | fVEps.Print();
|
|---|
| 638 | }
|
|---|
| 639 |
|
|---|
| 640 | // -----------------------------------------------------------------------
|
|---|
| 641 | //
|
|---|
| 642 | // Take prior distribution from the histogram 'ha'
|
|---|
| 643 | // which may have a different binning than 'hprior'
|
|---|
| 644 | //
|
|---|
| 645 | Bool_t SetPriorRebin(TH1D &ha)
|
|---|
| 646 | {
|
|---|
| 647 | // ------------------------------------------------------------------
|
|---|
| 648 | //
|
|---|
| 649 | // fill the contents of histogram 'ha' into the histogram 'hrior';
|
|---|
| 650 | // the histograms need not have the same binning;
|
|---|
| 651 | // if the binnings are different, the bin contents of histogram 'ha'
|
|---|
| 652 | // are distributed properly (linearly) over the bins of 'hprior'
|
|---|
| 653 | //
|
|---|
| 654 |
|
|---|
| 655 | const Int_t na = ha.GetNbinsX();
|
|---|
| 656 | const Double_t alow = ha.GetBinLowEdge(1);
|
|---|
| 657 | const Double_t aup = ha.GetBinLowEdge(na+1);
|
|---|
| 658 |
|
|---|
| 659 | const Int_t nb = hprior->GetNbinsX();
|
|---|
| 660 | const Double_t blow = hprior->GetBinLowEdge(1);
|
|---|
| 661 | const Double_t bup = hprior->GetBinLowEdge(nb+1);
|
|---|
| 662 |
|
|---|
| 663 | // check whether there is an overlap
|
|---|
| 664 | // between the x ranges of the 2 histograms
|
|---|
| 665 | if (alow>bup || aup<blow)
|
|---|
| 666 | {
|
|---|
| 667 | cout << "Rebinning not possible because there is no overlap of the x ranges of the two histograms" << endl;
|
|---|
| 668 | return kFALSE;
|
|---|
| 669 | }
|
|---|
| 670 |
|
|---|
| 671 | // there is an overlap
|
|---|
| 672 | //********************
|
|---|
| 673 | Double_t sum = 0;
|
|---|
| 674 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 675 | {
|
|---|
| 676 | const Double_t yl = hprior->GetBinLowEdge(j);
|
|---|
| 677 | const Double_t yh = hprior->GetBinLowEdge(j+1);
|
|---|
| 678 |
|
|---|
| 679 | // search bins of histogram ha which contribute
|
|---|
| 680 | // to bin j of histogram hb
|
|---|
| 681 | //----------------
|
|---|
| 682 | Int_t il=0;
|
|---|
| 683 | Int_t ih=0;
|
|---|
| 684 | for (Int_t i=2; i<=na+1; i++)
|
|---|
| 685 | {
|
|---|
| 686 | const Double_t xl = ha.GetBinLowEdge(i);
|
|---|
| 687 | if (xl>yl)
|
|---|
| 688 | {
|
|---|
| 689 | il = i-1;
|
|---|
| 690 |
|
|---|
| 691 | //.................................
|
|---|
| 692 | ih = 0;
|
|---|
| 693 | for (Int_t k=(il+1); k<=(na+1); k++)
|
|---|
| 694 | {
|
|---|
| 695 | const Double_t xh = ha.GetBinLowEdge(k);
|
|---|
| 696 | if (xh >= yh)
|
|---|
| 697 | {
|
|---|
| 698 | ih = k-1;
|
|---|
| 699 | break;
|
|---|
| 700 | }
|
|---|
| 701 | }
|
|---|
| 702 | //.................................
|
|---|
| 703 | if (ih == 0)
|
|---|
| 704 | ih = na;
|
|---|
| 705 | break;
|
|---|
| 706 | }
|
|---|
| 707 | }
|
|---|
| 708 | //----------------
|
|---|
| 709 | if (il == 0)
|
|---|
| 710 | {
|
|---|
| 711 | cout << "Something is wrong " << endl;
|
|---|
| 712 | cout << " na, alow, aup = " << na << ", " << alow
|
|---|
| 713 | << ", " << aup << endl;
|
|---|
| 714 | cout << " nb, blow, bup = " << nb << ", " << blow
|
|---|
| 715 | << ", " << bup << endl;
|
|---|
| 716 | return kFALSE;
|
|---|
| 717 | }
|
|---|
| 718 |
|
|---|
| 719 | Double_t content=0;
|
|---|
| 720 | // sum up the contribution to bin j
|
|---|
| 721 | for (Int_t i=il; i<=ih; i++)
|
|---|
| 722 | {
|
|---|
| 723 | const Double_t xl = ha.GetBinLowEdge(i);
|
|---|
| 724 | const Double_t xh = ha.GetBinLowEdge(i+1);
|
|---|
| 725 | const Double_t bina = xh-xl;
|
|---|
| 726 |
|
|---|
| 727 | if (xl<yl && xh<yh)
|
|---|
| 728 | content += ha.GetBinContent(i) * (xh-yl) / bina;
|
|---|
| 729 | else
|
|---|
| 730 | if (xl<yl && xh>=yh)
|
|---|
| 731 | content += ha.GetBinContent(i) * (yh-yl) / bina;
|
|---|
| 732 | else
|
|---|
| 733 | if (xl>=yl && xh<yh)
|
|---|
| 734 | content += ha.GetBinContent(i);
|
|---|
| 735 | else if (xl>=yl && xh>=yh)
|
|---|
| 736 | content += ha.GetBinContent(i) * (yh-xl) / bina;
|
|---|
| 737 | }
|
|---|
| 738 | hprior->SetBinContent(j, content);
|
|---|
| 739 | sum += content;
|
|---|
| 740 | }
|
|---|
| 741 |
|
|---|
| 742 | // normalize histogram hb
|
|---|
| 743 | if (sum==0)
|
|---|
| 744 | {
|
|---|
| 745 | cout << "histogram hb is empty; sum of weights in ha = ";
|
|---|
| 746 | cout << ha.GetSumOfWeights() << endl;
|
|---|
| 747 | return kFALSE;
|
|---|
| 748 | }
|
|---|
| 749 |
|
|---|
| 750 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 751 | {
|
|---|
| 752 | const Double_t content = hprior->GetBinContent(j)/sum;
|
|---|
| 753 | hprior->SetBinContent(j, content);
|
|---|
| 754 | fVEps0(j-1) = content;
|
|---|
| 755 | }
|
|---|
| 756 |
|
|---|
| 757 | cout << "SetPriorRebin : Prior distribution fVEps = " << endl;
|
|---|
| 758 | cout << "===========================================" << endl;
|
|---|
| 759 | fVEps.Print();
|
|---|
| 760 |
|
|---|
| 761 | return kTRUE;
|
|---|
| 762 | }
|
|---|
| 763 |
|
|---|
| 764 |
|
|---|
| 765 | // -----------------------------------------------------------------------
|
|---|
| 766 | //
|
|---|
| 767 | // Set prior distribution to a given distribution 'hpr'
|
|---|
| 768 | //
|
|---|
| 769 | Bool_t SetPriorInput(TH1D &hpr)
|
|---|
| 770 | {
|
|---|
| 771 | CopyCol(fVEps, hpr);
|
|---|
| 772 |
|
|---|
| 773 | const Double_t sum = GetMatrixSumCol(fVEps, 0);
|
|---|
| 774 |
|
|---|
| 775 | if (sum<=0)
|
|---|
| 776 | {
|
|---|
| 777 | cout << "MUnfold::SetPriorInput: invalid prior distribution" << endl;
|
|---|
| 778 | return kFALSE;
|
|---|
| 779 | }
|
|---|
| 780 |
|
|---|
| 781 | // normalize prior distribution
|
|---|
| 782 | fVEps0 *= 1./sum;
|
|---|
| 783 |
|
|---|
| 784 | CopyCol(*hprior, fVEps);
|
|---|
| 785 |
|
|---|
| 786 | cout << "SetPriorInput : Prior distribution fVEps = " << endl;
|
|---|
| 787 | cout << "===========================================" << endl;
|
|---|
| 788 | fVEps.Print();
|
|---|
| 789 |
|
|---|
| 790 | return kTRUE;
|
|---|
| 791 | }
|
|---|
| 792 |
|
|---|
| 793 | // -----------------------------------------------------------------------
|
|---|
| 794 | //
|
|---|
| 795 | // Define prior distribution to be a power law
|
|---|
| 796 | // use input distribution 'hprior' only
|
|---|
| 797 | // for defining the histogram parameters
|
|---|
| 798 | //
|
|---|
| 799 | Bool_t SetPriorPower(Double_t gamma)
|
|---|
| 800 | {
|
|---|
| 801 | // generate distribution according to a power law
|
|---|
| 802 | // dN/dE = E^{-gamma}
|
|---|
| 803 | // or with y = lo10(E), E = 10^y :
|
|---|
| 804 | // dN/dy = ln10 * 10^{y*(1-gamma)}
|
|---|
| 805 | TH1D hpower(*hprior);
|
|---|
| 806 |
|
|---|
| 807 | const UInt_t nbin = hprior->GetNbinsX();
|
|---|
| 808 | const Double_t xmin = hprior->GetBinLowEdge(1);
|
|---|
| 809 | const Double_t xmax = hprior->GetBinLowEdge(nbin+1);
|
|---|
| 810 |
|
|---|
| 811 | cout << "nbin, xmin, xmax = " << nbin << ", ";
|
|---|
| 812 | cout << xmin << ", " << xmax << endl;
|
|---|
| 813 |
|
|---|
| 814 | TF1* fpow = new TF1("fpow", "pow(10.0, x*(1.0-[0]))", xmin,xmax);
|
|---|
| 815 | fpow->SetParName (0,"gamma");
|
|---|
| 816 | fpow->SetParameter(0, gamma );
|
|---|
| 817 |
|
|---|
| 818 | hpower.FillRandom("fpow", 100000);
|
|---|
| 819 |
|
|---|
| 820 | // fill prior distribution
|
|---|
| 821 | CopyCol(fVEps, hpower);
|
|---|
| 822 |
|
|---|
| 823 | const Double_t sum = GetMatrixSumCol(fVEps, 0);
|
|---|
| 824 | if (sum <= 0)
|
|---|
| 825 | {
|
|---|
| 826 | cout << "MUnfold::SetPriorPower : invalid prior distribution" << endl;
|
|---|
| 827 | return kFALSE;
|
|---|
| 828 | }
|
|---|
| 829 |
|
|---|
| 830 | // normalize prior distribution
|
|---|
| 831 | fVEps0 *= 1./sum;
|
|---|
| 832 | CopyCol(*hprior, fVEps);
|
|---|
| 833 |
|
|---|
| 834 | cout << "SetPriorPower : Prior distribution fVEps = " << endl;
|
|---|
| 835 | cout << "===========================================" << endl;
|
|---|
| 836 | fVEps.Print();
|
|---|
| 837 |
|
|---|
| 838 | return kTRUE;
|
|---|
| 839 | }
|
|---|
| 840 |
|
|---|
| 841 |
|
|---|
| 842 | // -----------------------------------------------------------------------
|
|---|
| 843 | //
|
|---|
| 844 | // Set the initial weight
|
|---|
| 845 | //
|
|---|
| 846 | Bool_t SetInitialWeight(Double_t &weight)
|
|---|
| 847 | {
|
|---|
| 848 | if (weight == 0.0)
|
|---|
| 849 | {
|
|---|
| 850 | TMatrixD v1(fVa, TMatrixD::kTransposeMult, fVacovInv);
|
|---|
| 851 | TMatrixD v2(v1, TMatrixD::kMult, fVa);
|
|---|
| 852 | weight = 1./sqrt(v2(0,0));
|
|---|
| 853 | }
|
|---|
| 854 |
|
|---|
| 855 | cout << "MUnfold::SetInitialWeight : Initial Weight = "
|
|---|
| 856 | << weight << endl;
|
|---|
| 857 |
|
|---|
| 858 | return kTRUE;
|
|---|
| 859 | }
|
|---|
| 860 |
|
|---|
| 861 | // -----------------------------------------------------------------------
|
|---|
| 862 | //
|
|---|
| 863 | // Print the unfolded distribution
|
|---|
| 864 | //
|
|---|
| 865 | void PrintResults()
|
|---|
| 866 | {
|
|---|
| 867 | cout << "PrintResults : Unfolded distribution fResult " << endl;
|
|---|
| 868 | cout << "=============================================" << endl;
|
|---|
| 869 | cout << "val, eparab, eplus, eminus, gcc = " << endl;
|
|---|
| 870 |
|
|---|
| 871 | for (UInt_t i=0; i<fNb; i++)
|
|---|
| 872 | {
|
|---|
| 873 | cout << fResult(i, 0) << " \t";
|
|---|
| 874 | cout << fResult(i, 1) << " \t";
|
|---|
| 875 | cout << fResult(i, 2) << " \t";
|
|---|
| 876 | cout << fResult(i, 3) << " \t";
|
|---|
| 877 | cout << fResult(i, 4) << endl;
|
|---|
| 878 | }
|
|---|
| 879 | cout << "Chisquared, NDF, chi2 probability, ixbest = "
|
|---|
| 880 | << fChisq << ", "
|
|---|
| 881 | << fNdf << ", " << fProb << ", " << ixbest << endl;
|
|---|
| 882 |
|
|---|
| 883 | }
|
|---|
| 884 |
|
|---|
| 885 |
|
|---|
| 886 | // -----------------------------------------------------------------------
|
|---|
| 887 | //
|
|---|
| 888 | // Schmelling : unfolding by minimizing the function Z
|
|---|
| 889 | // by Gauss-Newton iteration
|
|---|
| 890 | //
|
|---|
| 891 | // the weights are scanned between
|
|---|
| 892 | // 1.e-5*fWinitial and 1.e5*fWinitial
|
|---|
| 893 | //
|
|---|
| 894 | Bool_t Schmelling(TH1D &hb0)
|
|---|
| 895 | {
|
|---|
| 896 |
|
|---|
| 897 | //======================================================================
|
|---|
| 898 | // copy ideal distribution
|
|---|
| 899 | for (UInt_t i=1; i<=fNb; i++)
|
|---|
| 900 | {
|
|---|
| 901 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
|---|
| 902 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
|---|
| 903 | }
|
|---|
| 904 |
|
|---|
| 905 | //-----------------------------------------------------------------------
|
|---|
| 906 | // Initialization
|
|---|
| 907 | // ==============
|
|---|
| 908 |
|
|---|
| 909 | Int_t numGiteration;
|
|---|
| 910 | Int_t MaxGiteration = 1000;
|
|---|
| 911 |
|
|---|
| 912 | TMatrixD alpha;
|
|---|
| 913 | alpha.ResizeTo(fNa, 1);
|
|---|
| 914 |
|
|---|
| 915 |
|
|---|
| 916 | //-----------------------------------------------------------------------
|
|---|
| 917 | // Newton iteration
|
|---|
| 918 | // ================
|
|---|
| 919 |
|
|---|
| 920 | Double_t dga2;
|
|---|
| 921 | Double_t dga2old;
|
|---|
| 922 | Double_t EpsG = 1.e-12;
|
|---|
| 923 |
|
|---|
| 924 | TMatrixD wZdp_inv(fNa, fNa);
|
|---|
| 925 | TMatrixD d(fNb, 1);
|
|---|
| 926 | TMatrixD p(fNb, 1);
|
|---|
| 927 |
|
|---|
| 928 | TMatrixD gamma (fNa, 1);
|
|---|
| 929 | TMatrixD dgamma(fNa, 1);
|
|---|
| 930 |
|
|---|
| 931 | Double_t fWinitial;
|
|---|
| 932 | fWinitial = 0.0;
|
|---|
| 933 | SetInitialWeight(fWinitial);
|
|---|
| 934 | // for my example this fWinitial was not good; therefore :
|
|---|
| 935 | fWinitial = 1.0;
|
|---|
| 936 |
|
|---|
| 937 | Int_t ix;
|
|---|
| 938 | Double_t xiter;
|
|---|
| 939 |
|
|---|
| 940 | //-------- start scanning weights --------------------------
|
|---|
| 941 | // if full == kFALSE only quantities necessary for the Gauss-Newton
|
|---|
| 942 | // iteration are calculated in SchmellCore
|
|---|
| 943 | // if full == kTRUE in addition the unfolded distribution,
|
|---|
| 944 | // its covariance matrix and quantities like
|
|---|
| 945 | // Chisq, SpurAR, etc. are computed in SchmellCore
|
|---|
| 946 | //Bool_t full;
|
|---|
| 947 | //full = kFALSE;
|
|---|
| 948 | Int_t full;
|
|---|
| 949 |
|
|---|
| 950 | dga2 = 1.e20;
|
|---|
| 951 | for (ix=0; ix<Nix; ix++)
|
|---|
| 952 | {
|
|---|
| 953 | xiter = pow(10.0,log10(xmin)+ix*dlogx) * fWinitial;
|
|---|
| 954 |
|
|---|
| 955 | //---------- start Gauss-Newton iteration ----------------------
|
|---|
| 956 | numGiteration = 0;
|
|---|
| 957 |
|
|---|
| 958 | // if there was no convergence and the starting gamma was != 0
|
|---|
| 959 | // redo unfolding for the same weight starting with gamma = 0
|
|---|
| 960 | //
|
|---|
| 961 | Int_t gamma0 = 0;
|
|---|
| 962 | while (1)
|
|---|
| 963 | {
|
|---|
| 964 | if (dga2 > EpsG)
|
|---|
| 965 | {
|
|---|
| 966 | gamma0 = 1;
|
|---|
| 967 | gamma.Zero();
|
|---|
| 968 | }
|
|---|
| 969 |
|
|---|
| 970 | dga2 = 1.e20;
|
|---|
| 971 |
|
|---|
| 972 | while (1)
|
|---|
| 973 | {
|
|---|
| 974 | dga2old = dga2;
|
|---|
| 975 |
|
|---|
| 976 | full = 0;
|
|---|
| 977 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
|---|
| 978 |
|
|---|
| 979 | gamma += dgamma;
|
|---|
| 980 |
|
|---|
| 981 | //cout << "Schmelling : ix, numGiteration, dga2, dga2old = "
|
|---|
| 982 | // << ix << ", " << numGiteration << ", "
|
|---|
| 983 | // << dga2 << ", " << dga2old << endl;
|
|---|
| 984 |
|
|---|
| 985 | numGiteration += 1;
|
|---|
| 986 |
|
|---|
| 987 | // convergence
|
|---|
| 988 | if (dga2 < EpsG)
|
|---|
| 989 | break;
|
|---|
| 990 |
|
|---|
| 991 | // no convergence
|
|---|
| 992 | if (numGiteration > MaxGiteration)
|
|---|
| 993 | break;
|
|---|
| 994 |
|
|---|
| 995 | // gamma doesn't seem to change any more
|
|---|
| 996 | if (fabs(dga2-dga2old) < EpsG/100.)
|
|---|
| 997 | break;
|
|---|
| 998 | }
|
|---|
| 999 | //---------- end Gauss-Newton iteration ------------------------
|
|---|
| 1000 | if (dga2<EpsG || gamma0 != 0) break;
|
|---|
| 1001 | }
|
|---|
| 1002 |
|
|---|
| 1003 | // if Gauss-Newton iteration has not converged
|
|---|
| 1004 | // go to next weight
|
|---|
| 1005 | if (dga2 > EpsG)
|
|---|
| 1006 | {
|
|---|
| 1007 | cout << "Schmelling : Gauss-Newton iteration has not converged;"
|
|---|
| 1008 | << " numGiteration = " << numGiteration << endl;
|
|---|
| 1009 | cout << " ix, dga2, dga2old = " << ix << ", "
|
|---|
| 1010 | << dga2 << ", " << dga2old << endl;
|
|---|
| 1011 | continue;
|
|---|
| 1012 | }
|
|---|
| 1013 |
|
|---|
| 1014 | //cout << "Schmelling : Gauss-Newton iteration has converged;" << endl;
|
|---|
| 1015 | //cout << "==================================================" << endl;
|
|---|
| 1016 | //cout << " numGiteration = " << numGiteration << endl;
|
|---|
| 1017 | //cout << " ix, dga2 = " << ix << ", " << dga2 << endl;
|
|---|
| 1018 |
|
|---|
| 1019 | // calculated quantities which will be useful for determining
|
|---|
| 1020 | // the best weight (Chisq, SpurAR, ...)
|
|---|
| 1021 | //full = kTRUE;
|
|---|
| 1022 | full = 1;
|
|---|
| 1023 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
|---|
| 1024 |
|
|---|
| 1025 | // calculate difference between ideal and unfolded distribution
|
|---|
| 1026 | Double_t D2bar = 0.0;
|
|---|
| 1027 | for (UInt_t i = 0; i<fNb; i++)
|
|---|
| 1028 | {
|
|---|
| 1029 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
|---|
| 1030 | D2bar += temp*temp;
|
|---|
| 1031 | }
|
|---|
| 1032 |
|
|---|
| 1033 | SpAR(ix) = SpurAR;
|
|---|
| 1034 | SpSig(ix) = SpurSigma;
|
|---|
| 1035 | chisq(ix) = Chisq;
|
|---|
| 1036 | SecDer(ix) = SecDeriv;
|
|---|
| 1037 | ZerDer(ix) = ZerDeriv;
|
|---|
| 1038 | Entrop(ix) = Entropy;
|
|---|
| 1039 | DAR2(ix) = DiffAR2;
|
|---|
| 1040 | Dsqbar(ix) = D2bar;
|
|---|
| 1041 |
|
|---|
| 1042 | }
|
|---|
| 1043 | //---------- end of scanning weights -------------------------------
|
|---|
| 1044 |
|
|---|
| 1045 | // plots ------------------------------
|
|---|
| 1046 | for (ix=0; ix<Nix; ix++)
|
|---|
| 1047 | {
|
|---|
| 1048 | Double_t xbin = log10(xmin)+ix*dlogx;
|
|---|
| 1049 | xiter = pow(10.0,xbin) * fWinitial;
|
|---|
| 1050 |
|
|---|
| 1051 | Int_t bin;
|
|---|
| 1052 | bin = hBchisq->FindBin( xbin );
|
|---|
| 1053 | hBchisq->SetBinContent(bin,chisq(ix));
|
|---|
| 1054 | hBSpAR->SetBinContent(bin,SpAR(ix));
|
|---|
| 1055 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
|---|
| 1056 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
|---|
| 1057 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
|---|
| 1058 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
|---|
| 1059 | hBDAR2->SetBinContent(bin,DAR2(ix));
|
|---|
| 1060 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
|---|
| 1061 |
|
|---|
| 1062 | if (ix > 0)
|
|---|
| 1063 | {
|
|---|
| 1064 | Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
|---|
| 1065 | hBDSpAR->SetBinContent(bin,DSpAR);
|
|---|
| 1066 |
|
|---|
| 1067 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
|---|
| 1068 | Double_t DSpSig = diff;
|
|---|
| 1069 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
|---|
| 1070 |
|
|---|
| 1071 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
|---|
| 1072 | hBDEntropy->SetBinContent(bin,DEntrop);
|
|---|
| 1073 |
|
|---|
| 1074 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
|---|
| 1075 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
|---|
| 1076 |
|
|---|
| 1077 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
|---|
| 1078 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
|---|
| 1079 | }
|
|---|
| 1080 | }
|
|---|
| 1081 |
|
|---|
| 1082 | // Select best weight
|
|---|
| 1083 | SelectBestWeight();
|
|---|
| 1084 |
|
|---|
| 1085 | if (ixbest < 0.0)
|
|---|
| 1086 | {
|
|---|
| 1087 | cout << "Schmelling : no solution found; " << endl;
|
|---|
| 1088 | return kFALSE;
|
|---|
| 1089 | }
|
|---|
| 1090 |
|
|---|
| 1091 | // do the unfolding using the best weight
|
|---|
| 1092 | //full = kTRUE;
|
|---|
| 1093 |
|
|---|
| 1094 |
|
|---|
| 1095 | xiter = pow(10.0,log10(xmin)+ixbest*dlogx) * fWinitial;
|
|---|
| 1096 |
|
|---|
| 1097 | //---------- start Gauss-Newton iteration ----------------------
|
|---|
| 1098 | numGiteration = 0;
|
|---|
| 1099 | gamma.Zero();
|
|---|
| 1100 | dga2 = 1.e20;
|
|---|
| 1101 |
|
|---|
| 1102 | while (1)
|
|---|
| 1103 | {
|
|---|
| 1104 | full = 1;
|
|---|
| 1105 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
|---|
| 1106 | gamma += dgamma;
|
|---|
| 1107 |
|
|---|
| 1108 | //cout << "Schmelling : sum(dgamma^2) = " << dga2 << endl;
|
|---|
| 1109 |
|
|---|
| 1110 | numGiteration += 1;
|
|---|
| 1111 |
|
|---|
| 1112 | if (numGiteration > MaxGiteration)
|
|---|
| 1113 | break;
|
|---|
| 1114 |
|
|---|
| 1115 | if (dga2 < EpsG)
|
|---|
| 1116 | break;
|
|---|
| 1117 | }
|
|---|
| 1118 | //---------- end Gauss-Newton iteration ------------------------
|
|---|
| 1119 |
|
|---|
| 1120 |
|
|---|
| 1121 | //-----------------------------------------------------------------------
|
|---|
| 1122 | // termination stage
|
|---|
| 1123 | // =================
|
|---|
| 1124 |
|
|---|
| 1125 | cout << "Schmelling : best solution found; " << endl;
|
|---|
| 1126 | cout << "==================================" << endl;
|
|---|
| 1127 | cout << " xiter, ixbest, numGiteration, Chisq = "
|
|---|
| 1128 | << xiter << ", " << ixbest << ", "
|
|---|
| 1129 | << numGiteration << ", " << Chisq << endl;
|
|---|
| 1130 |
|
|---|
| 1131 | //------------------------------------
|
|---|
| 1132 | //..............................................
|
|---|
| 1133 | // put unfolded distribution into fResult
|
|---|
| 1134 | // fResult(i,0) value in bin i
|
|---|
| 1135 | // fResult(i,1) error of value in bin i
|
|---|
| 1136 |
|
|---|
| 1137 | fNdf = SpurAR;
|
|---|
| 1138 | fChisq = Chisq;
|
|---|
| 1139 |
|
|---|
| 1140 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1141 | {
|
|---|
| 1142 | fChi2(i,0) = Chi2(i,0);
|
|---|
| 1143 | }
|
|---|
| 1144 |
|
|---|
| 1145 | UInt_t iNdf = (UInt_t) (fNdf+0.5);
|
|---|
| 1146 | fProb = iNdf>0 ? TMath::Prob(fChisq, iNdf) : 0;
|
|---|
| 1147 |
|
|---|
| 1148 | fResult.ResizeTo(fNb, 5);
|
|---|
| 1149 | for (UInt_t i=0; i<fNb; i++)
|
|---|
| 1150 | {
|
|---|
| 1151 | fResult(i, 0) = fVb(i,0);
|
|---|
| 1152 | fResult(i, 1) = sqrt(fVbcov(i,i));
|
|---|
| 1153 | fResult(i, 2) = 0.0;
|
|---|
| 1154 | fResult(i, 3) = 0.0;
|
|---|
| 1155 | fResult(i, 4) = 1.0;
|
|---|
| 1156 | }
|
|---|
| 1157 |
|
|---|
| 1158 | //--------------------------------------------------------
|
|---|
| 1159 |
|
|---|
| 1160 | cout << "Schmelling : gamma = " << endl;
|
|---|
| 1161 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1162 | cout << gamma(i,0) << " \t";
|
|---|
| 1163 | cout << endl;
|
|---|
| 1164 |
|
|---|
| 1165 | return kTRUE;
|
|---|
| 1166 | }
|
|---|
| 1167 |
|
|---|
| 1168 |
|
|---|
| 1169 |
|
|---|
| 1170 |
|
|---|
| 1171 | // -----------------------------------------------------------------------
|
|---|
| 1172 | //
|
|---|
| 1173 | // SchmellCore main part of Schmellings calculations
|
|---|
| 1174 | //
|
|---|
| 1175 | void SchmellCore(Int_t full, Double_t &xiter, TMatrixD &gamma,
|
|---|
| 1176 | TMatrixD &dgamma, Double_t &dga2)
|
|---|
| 1177 | {
|
|---|
| 1178 | Double_t norm;
|
|---|
| 1179 | TMatrixD wZdp_inv(fNa, fNa);
|
|---|
| 1180 | TMatrixD d(fNb, 1);
|
|---|
| 1181 | TMatrixD p(fNb, 1);
|
|---|
| 1182 |
|
|---|
| 1183 | //--------------------------------------------------------
|
|---|
| 1184 | //-- determine the probability vector p
|
|---|
| 1185 |
|
|---|
| 1186 |
|
|---|
| 1187 | TMatrixD v3(gamma, TMatrixD::kTransposeMult, fMigrat);
|
|---|
| 1188 | TMatrixD v4(TMatrixD::kTransposed, v3);
|
|---|
| 1189 | d = v4;
|
|---|
| 1190 | Double_t dmax = -1.e10;
|
|---|
| 1191 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1192 | if (d(j,0)>dmax)
|
|---|
| 1193 | dmax = d(j,0);
|
|---|
| 1194 |
|
|---|
| 1195 | Double_t psum = 0.0;
|
|---|
| 1196 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1197 | {
|
|---|
| 1198 | d(j,0) -= dmax;
|
|---|
| 1199 | p(j,0) = fVEps0(j)*exp(xiter*d(j,0));
|
|---|
| 1200 | psum += p(j,0);
|
|---|
| 1201 | }
|
|---|
| 1202 |
|
|---|
| 1203 | p *= 1.0/psum;
|
|---|
| 1204 |
|
|---|
| 1205 | //-- get the vector alpha
|
|---|
| 1206 |
|
|---|
| 1207 | TMatrixD alpha(fMigrat, TMatrixD::kMult, p);
|
|---|
| 1208 |
|
|---|
| 1209 | //-- determine the current normalization
|
|---|
| 1210 |
|
|---|
| 1211 | TMatrixD v2 (alpha, TMatrixD::kTransposeMult, fVacovInv);
|
|---|
| 1212 | TMatrixD normb(v2, TMatrixD::kMult, alpha);
|
|---|
| 1213 |
|
|---|
| 1214 | TMatrixD normc(v2, TMatrixD::kMult, fVa);
|
|---|
| 1215 |
|
|---|
| 1216 | norm = normc(0,0)/normb(0,0);
|
|---|
| 1217 |
|
|---|
| 1218 | //--------------------------------------------------------
|
|---|
| 1219 | //-- determine the scaled slope vector s and Hessian H
|
|---|
| 1220 |
|
|---|
| 1221 | TMatrixD Zp(fNa,1);
|
|---|
| 1222 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1223 | {
|
|---|
| 1224 | Zp(i,0) = norm*alpha(i,0) - fVa(i,0);
|
|---|
| 1225 | for (UInt_t k=0; k<fNa; k++)
|
|---|
| 1226 | Zp(i,0) += gamma(k,0)*fVacov(k,i);
|
|---|
| 1227 | }
|
|---|
| 1228 |
|
|---|
| 1229 |
|
|---|
| 1230 | TMatrixD Q (fNa, fNa);
|
|---|
| 1231 | TMatrixD wZdp(fNa, fNa);
|
|---|
| 1232 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1233 | {
|
|---|
| 1234 | for (UInt_t j=0; j<fNa; j++)
|
|---|
| 1235 | {
|
|---|
| 1236 | Q(i,j) = - alpha(i,0)*alpha(j,0);
|
|---|
| 1237 | for (UInt_t k=0; k<fNb; k++)
|
|---|
| 1238 | Q(i,j) += fMigrat(i,k)*fMigrat(j,k)*p(k,0);
|
|---|
| 1239 | wZdp(i,j) = xiter*norm*Q(i,j) + fVacov(i,j);
|
|---|
| 1240 | }
|
|---|
| 1241 | }
|
|---|
| 1242 |
|
|---|
| 1243 | //-- invert H and calculate the next Newton step
|
|---|
| 1244 |
|
|---|
| 1245 | Double_t determ = 1.0;
|
|---|
| 1246 | wZdp_inv = wZdp;
|
|---|
| 1247 | wZdp_inv.Invert(&determ);
|
|---|
| 1248 |
|
|---|
| 1249 | if(determ == 0.0)
|
|---|
| 1250 | {
|
|---|
| 1251 | cout << "SchmellCore: matrix inversion for H failed" << endl;
|
|---|
| 1252 | return;
|
|---|
| 1253 | }
|
|---|
| 1254 |
|
|---|
| 1255 |
|
|---|
| 1256 | dga2 = 0.0;
|
|---|
| 1257 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1258 | {
|
|---|
| 1259 | dgamma(i,0) = 0.0;
|
|---|
| 1260 | for (UInt_t j=0; j<fNa; j++)
|
|---|
| 1261 | dgamma(i,0) -= wZdp_inv(i,j)*Zp(j,0);
|
|---|
| 1262 | dga2 += dgamma(i,0)*dgamma(i,0);
|
|---|
| 1263 | }
|
|---|
| 1264 |
|
|---|
| 1265 | if (full == 0)
|
|---|
| 1266 | return;
|
|---|
| 1267 |
|
|---|
| 1268 | //--------------------------------------------------------
|
|---|
| 1269 | //-- determine chi2 and dNdf (#measurements ignored)
|
|---|
| 1270 | Double_t dNdf = 0;
|
|---|
| 1271 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1272 | {
|
|---|
| 1273 | Chi2(i,0) = 0;
|
|---|
| 1274 | for (UInt_t j=0; j<fNa; j++)
|
|---|
| 1275 | {
|
|---|
| 1276 | Chi2(i,0) += fVacov(i,j) * gamma(i,0) * gamma(j,0);
|
|---|
| 1277 | dNdf += fVacov(i,j) * wZdp_inv(j,i);
|
|---|
| 1278 | }
|
|---|
| 1279 | }
|
|---|
| 1280 | Chisq = GetMatrixSumCol(Chi2, 0);
|
|---|
| 1281 | SpurAR = fNa - dNdf;
|
|---|
| 1282 |
|
|---|
| 1283 | //-----------------------------------------------------
|
|---|
| 1284 | // calculate the norm |AR - AR+|**2
|
|---|
| 1285 |
|
|---|
| 1286 | TMatrixD AR(fNa, fNa);
|
|---|
| 1287 | DiffAR2 = 0.0;
|
|---|
| 1288 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1289 | {
|
|---|
| 1290 | for (UInt_t j=0; j<fNa; j++)
|
|---|
| 1291 | {
|
|---|
| 1292 | AR(i,j) = 0.0;
|
|---|
| 1293 | for (UInt_t k=0; k<fNa; k++)
|
|---|
| 1294 | AR(i,j) += fVacov(i,k) * wZdp_inv(k,j);
|
|---|
| 1295 | DiffAR2 += AR(i,j) * AR(i,j);
|
|---|
| 1296 | }
|
|---|
| 1297 | }
|
|---|
| 1298 |
|
|---|
| 1299 | //--------------------------------------------------------
|
|---|
| 1300 | //-- fill distribution b(*)
|
|---|
| 1301 | fVb = p;
|
|---|
| 1302 | fVb *= norm;
|
|---|
| 1303 |
|
|---|
| 1304 | //-- determine the covariance matrix of b (very expensive)
|
|---|
| 1305 |
|
|---|
| 1306 | TMatrixD T(fNb,fNa);
|
|---|
| 1307 | for (UInt_t i=0; i<fNb; i++)
|
|---|
| 1308 | {
|
|---|
| 1309 | for (UInt_t j=0; j<fNa; j++)
|
|---|
| 1310 | {
|
|---|
| 1311 | T(i,j) = 0.0;
|
|---|
| 1312 | for (UInt_t k=0; k<fNa; k++)
|
|---|
| 1313 | T(i,j) += xiter*wZdp_inv(k,j)*(fMigrat(k,i)-alpha(k,0))*p(i,0);
|
|---|
| 1314 | }
|
|---|
| 1315 | }
|
|---|
| 1316 |
|
|---|
| 1317 | SpurSigma = CalcSpurSigma(T, norm);
|
|---|
| 1318 |
|
|---|
| 1319 | //--------------------------------------------------------
|
|---|
| 1320 |
|
|---|
| 1321 | //-----------------------------------------------------
|
|---|
| 1322 | // calculate the second derivative squared
|
|---|
| 1323 |
|
|---|
| 1324 | SecDeriv = 0;
|
|---|
| 1325 | for (UInt_t j=1; j<(fNb-1); j++)
|
|---|
| 1326 | {
|
|---|
| 1327 | Double_t temp =
|
|---|
| 1328 | + 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
|---|
| 1329 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
|---|
| 1330 | SecDeriv += temp*temp;
|
|---|
| 1331 | }
|
|---|
| 1332 |
|
|---|
| 1333 | ZerDeriv = 0;
|
|---|
| 1334 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1335 | ZerDeriv += fVb(j,0) * fVb(j,0);
|
|---|
| 1336 |
|
|---|
| 1337 | //-----------------------------------------------------
|
|---|
| 1338 | // calculate the entropy
|
|---|
| 1339 | Entropy = 0;
|
|---|
| 1340 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1341 | if (p(j,0) > 0.0)
|
|---|
| 1342 | Entropy += p(j,0) * log( p(j,0) );
|
|---|
| 1343 |
|
|---|
| 1344 | //--------------------------------------------------------
|
|---|
| 1345 | }
|
|---|
| 1346 |
|
|---|
| 1347 |
|
|---|
| 1348 | // -----------------------------------------------------------------------
|
|---|
| 1349 | //
|
|---|
| 1350 | // Smooth migration matrix
|
|---|
| 1351 | // by fitting a function to the migration matrix
|
|---|
| 1352 | //
|
|---|
| 1353 | Bool_t SmoothMigrationMatrix(TH2D &hmigorig)
|
|---|
| 1354 | {
|
|---|
| 1355 | // copy histograms into matrices; the matrices will be used in fcnSmooth
|
|---|
| 1356 | // ------------------------
|
|---|
| 1357 |
|
|---|
| 1358 | cout << "MUnfold::SmoothMigrationMatrix : fNa, fNb = " << fNa << ", " << fNb << endl;
|
|---|
| 1359 |
|
|---|
| 1360 | cout << "MUnfold::SmoothMigrationMatrix: fMigOrig = " << endl;
|
|---|
| 1361 | cout << "========================================" << endl;
|
|---|
| 1362 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1363 | {
|
|---|
| 1364 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1365 | {
|
|---|
| 1366 | fMigOrig(i, j) = hmigorig.GetBinContent(i+1, j+1);
|
|---|
| 1367 | cout << fMigOrig(i, j) << " \t";
|
|---|
| 1368 | }
|
|---|
| 1369 | cout << endl;
|
|---|
| 1370 | }
|
|---|
| 1371 |
|
|---|
| 1372 | // ------------------------
|
|---|
| 1373 |
|
|---|
| 1374 | cout << "MUnfold::SmoothMigrationMatrix : fMigOrigerr2 = " << endl;
|
|---|
| 1375 | cout << "=============================================" << endl;
|
|---|
| 1376 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1377 | {
|
|---|
| 1378 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1379 | {
|
|---|
| 1380 | fMigOrigerr2(i, j) = hmigorig.GetBinError(i+1, j+1)
|
|---|
| 1381 | * hmigorig.GetBinError(i+1, j+1);
|
|---|
| 1382 |
|
|---|
| 1383 | cout << fMigOrigerr2(i, j) << " \t";
|
|---|
| 1384 | }
|
|---|
| 1385 | cout << endl;
|
|---|
| 1386 | }
|
|---|
| 1387 |
|
|---|
| 1388 | // ------------------------
|
|---|
| 1389 | // the number of free parameters (npar) is equal to 6:
|
|---|
| 1390 | // a0mean, a1mean, a2mean
|
|---|
| 1391 | // <log10(Eest)> = a0 + a1*log10(Etrue) + a2*SQR(log10(Etrue))
|
|---|
| 1392 | // + log10(Etrue)
|
|---|
| 1393 | // b0RMS, b1RMS, b2RMS
|
|---|
| 1394 | // RMS(log10(Eest)) = b0 + b1*log10(Etrue) + b2*SQR(log10(Etrue))
|
|---|
| 1395 | //
|
|---|
| 1396 | UInt_t npar = 6;
|
|---|
| 1397 |
|
|---|
| 1398 | if (npar > 20)
|
|---|
| 1399 | {
|
|---|
| 1400 | cout << "MUnfold::SmoothMigrationMatrix : too many parameters, npar = "
|
|---|
| 1401 | << npar << endl;
|
|---|
| 1402 | return kFALSE;
|
|---|
| 1403 | }
|
|---|
| 1404 |
|
|---|
| 1405 |
|
|---|
| 1406 | //..............................................
|
|---|
| 1407 | // Find reasonable starting values for a0, a1 and b0, b1
|
|---|
| 1408 |
|
|---|
| 1409 | Double_t xbar = 0.0;
|
|---|
| 1410 | Double_t xxbar = 0.0;
|
|---|
| 1411 |
|
|---|
| 1412 | Double_t ybarm = 0.0;
|
|---|
| 1413 | Double_t xybarm = 0.0;
|
|---|
| 1414 |
|
|---|
| 1415 | Double_t ybarR = 0.0;
|
|---|
| 1416 | Double_t xybarR = 0.0;
|
|---|
| 1417 |
|
|---|
| 1418 | Double_t Sum = 0.0;
|
|---|
| 1419 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1420 | {
|
|---|
| 1421 | Double_t x = (double)j + 0.5;
|
|---|
| 1422 |
|
|---|
| 1423 | Double_t meany = 0.0;
|
|---|
| 1424 | Double_t RMSy = 0.0;
|
|---|
| 1425 | Double_t sum = 0.0;
|
|---|
| 1426 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1427 | {
|
|---|
| 1428 | Double_t y = (double)i + 0.5;
|
|---|
| 1429 | meany += y * fMigOrig(i, j);
|
|---|
| 1430 | RMSy += y*y * fMigOrig(i, j);
|
|---|
| 1431 | sum += fMigOrig(i, j);
|
|---|
| 1432 | }
|
|---|
| 1433 | if (sum > 0.0)
|
|---|
| 1434 | {
|
|---|
| 1435 | meany = meany / sum;
|
|---|
| 1436 | RMSy = RMSy / sum - meany*meany;
|
|---|
| 1437 | RMSy = sqrt(RMSy);
|
|---|
| 1438 |
|
|---|
| 1439 | Sum += sum;
|
|---|
| 1440 | xbar += x * sum;
|
|---|
| 1441 | xxbar += x*x * sum;
|
|---|
| 1442 |
|
|---|
| 1443 | ybarm += meany * sum;
|
|---|
| 1444 | xybarm += x*meany * sum;
|
|---|
| 1445 |
|
|---|
| 1446 | ybarR += RMSy * sum;
|
|---|
| 1447 | xybarR += x*RMSy * sum;
|
|---|
| 1448 | }
|
|---|
| 1449 | }
|
|---|
| 1450 |
|
|---|
| 1451 | if (Sum > 0.0)
|
|---|
| 1452 | {
|
|---|
| 1453 | xbar /= Sum;
|
|---|
| 1454 | xxbar /= Sum;
|
|---|
| 1455 |
|
|---|
| 1456 | ybarm /= Sum;
|
|---|
| 1457 | xybarm /= Sum;
|
|---|
| 1458 |
|
|---|
| 1459 | ybarR /= Sum;
|
|---|
| 1460 | xybarR /= Sum;
|
|---|
| 1461 | }
|
|---|
| 1462 |
|
|---|
| 1463 | Double_t a1start = (xybarm - xbar*ybarm) / (xxbar - xbar*xbar);
|
|---|
| 1464 | Double_t a0start = ybarm - a1start*xbar;
|
|---|
| 1465 | a1start = a1start - 1.0;
|
|---|
| 1466 |
|
|---|
| 1467 | Double_t b1start = (xybarR - xbar*ybarR) / (xxbar - xbar*xbar);
|
|---|
| 1468 | Double_t b0start = ybarR - b1start*xbar;
|
|---|
| 1469 |
|
|---|
| 1470 | cout << "MUnfold::SmoothMigrationMatrix : " << endl;
|
|---|
| 1471 | cout << "============================" << endl;
|
|---|
| 1472 | cout << "a0start, a1start = " << a0start << ", " << a1start << endl;
|
|---|
| 1473 | cout << "b0start, b1start = " << b0start << ", " << b1start << endl;
|
|---|
| 1474 |
|
|---|
| 1475 | //..............................................
|
|---|
| 1476 | // Set starting values and step sizes for parameters
|
|---|
| 1477 |
|
|---|
| 1478 | char name[20][100];
|
|---|
| 1479 | Double_t vinit[20];
|
|---|
| 1480 | Double_t step[20];
|
|---|
| 1481 | Double_t limlo[20];
|
|---|
| 1482 | Double_t limup[20];
|
|---|
| 1483 | Int_t fix[20];
|
|---|
| 1484 |
|
|---|
| 1485 | sprintf(&name[0][0], "a0mean");
|
|---|
| 1486 | vinit[0] = a0start;
|
|---|
| 1487 | //vinit[0] = 1.0;
|
|---|
| 1488 | step[0] = 0.1;
|
|---|
| 1489 | limlo[0] = 0.0;
|
|---|
| 1490 | limup[0] = 0.0;
|
|---|
| 1491 | fix[0] = 0;
|
|---|
| 1492 |
|
|---|
| 1493 | sprintf(&name[1][0], "a1mean");
|
|---|
| 1494 | vinit[1] = a1start;
|
|---|
| 1495 | //vinit[1] = 0.0;
|
|---|
| 1496 | step[1] = 0.1;
|
|---|
| 1497 | limlo[1] = 0.0;
|
|---|
| 1498 | limup[1] = 0.0;
|
|---|
| 1499 | fix[1] = 0;
|
|---|
| 1500 |
|
|---|
| 1501 | sprintf(&name[2][0], "a2mean");
|
|---|
| 1502 | vinit[2] = 0.0;
|
|---|
| 1503 | step[2] = 0.1;
|
|---|
| 1504 | limlo[2] = 0.0;
|
|---|
| 1505 | limup[2] = 0.0;
|
|---|
| 1506 | fix[2] = 0;
|
|---|
| 1507 |
|
|---|
| 1508 | sprintf(&name[3][0], "b0RMS");
|
|---|
| 1509 | vinit[3] = b0start;
|
|---|
| 1510 | //vinit[3] = 0.8;
|
|---|
| 1511 | step[3] = 0.1;
|
|---|
| 1512 | limlo[3] = 1.e-20;
|
|---|
| 1513 | limup[3] = 10.0;
|
|---|
| 1514 | fix[3] = 0;
|
|---|
| 1515 |
|
|---|
| 1516 | sprintf(&name[4][0], "b1RMS");
|
|---|
| 1517 | vinit[4] = b1start;
|
|---|
| 1518 | //vinit[4] = 0.0;
|
|---|
| 1519 | step[4] = 0.1;
|
|---|
| 1520 | limlo[4] = 0.0;
|
|---|
| 1521 | limup[4] = 0.0;
|
|---|
| 1522 | fix[4] = 0;
|
|---|
| 1523 |
|
|---|
| 1524 | sprintf(&name[5][0], "b2RMS");
|
|---|
| 1525 | vinit[5] = 0.0;
|
|---|
| 1526 | step[5] = 0.1;
|
|---|
| 1527 | limlo[5] = 0.0;
|
|---|
| 1528 | limup[5] = 0.0;
|
|---|
| 1529 | fix[5] = 0;
|
|---|
| 1530 |
|
|---|
| 1531 |
|
|---|
| 1532 | if ( CallMinuit(fcnSmooth, npar, name, vinit,
|
|---|
| 1533 | step, limlo, limup, fix) )
|
|---|
| 1534 | {
|
|---|
| 1535 |
|
|---|
| 1536 | // ------------------------
|
|---|
| 1537 | // fMigrat is the migration matrix to be used in the unfolding;
|
|---|
| 1538 | // fMigrat, as set by the constructor, is overwritten
|
|---|
| 1539 | // by the smoothed migration matrix
|
|---|
| 1540 |
|
|---|
| 1541 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1542 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1543 | fMigrat(i, j) = fMigSmoo(i, j);
|
|---|
| 1544 |
|
|---|
| 1545 | // ------------------------
|
|---|
| 1546 |
|
|---|
| 1547 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1548 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1549 | fMigraterr2(i, j) = fMigSmooerr2(i, j);
|
|---|
| 1550 |
|
|---|
| 1551 |
|
|---|
| 1552 | // normalize
|
|---|
| 1553 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1554 | {
|
|---|
| 1555 | Double_t sum = 0.0;
|
|---|
| 1556 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1557 | sum += fMigrat(i, j);
|
|---|
| 1558 |
|
|---|
| 1559 | //cout << "SmoothMigrationMatrix : normalization fMigrat; j, sum + "
|
|---|
| 1560 | // << j << ", " << sum << endl;
|
|---|
| 1561 |
|
|---|
| 1562 | if (sum == 0.0)
|
|---|
| 1563 | continue;
|
|---|
| 1564 |
|
|---|
| 1565 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1566 | {
|
|---|
| 1567 | fMigrat(i, j) /= sum;
|
|---|
| 1568 | fMigraterr2(i, j) /= (sum*sum);
|
|---|
| 1569 | }
|
|---|
| 1570 | }
|
|---|
| 1571 |
|
|---|
| 1572 | cout << "MUnfold::SmoothMigrationMatrix : fMigrat = " << endl;
|
|---|
| 1573 | cout << "========================================" << endl;
|
|---|
| 1574 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1575 | {
|
|---|
| 1576 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1577 | cout << fMigrat(i, j) << " \t";
|
|---|
| 1578 | cout << endl;
|
|---|
| 1579 | }
|
|---|
| 1580 |
|
|---|
| 1581 | cout << "MUnfold::SmoothMigrationMatrix : fMigraterr2 = " << endl;
|
|---|
| 1582 | cout << "============================================" << endl;
|
|---|
| 1583 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1584 | {
|
|---|
| 1585 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 1586 | cout << fMigraterr2(i, j) << " \t";
|
|---|
| 1587 | cout << endl;
|
|---|
| 1588 | }
|
|---|
| 1589 |
|
|---|
| 1590 | // ------------------------
|
|---|
| 1591 |
|
|---|
| 1592 | return kTRUE;
|
|---|
| 1593 | }
|
|---|
| 1594 |
|
|---|
| 1595 | return kFALSE;
|
|---|
| 1596 | }
|
|---|
| 1597 |
|
|---|
| 1598 | // -----------------------------------------------------------------------
|
|---|
| 1599 | //
|
|---|
| 1600 | // Prepare the call to MINUIT for the minimization of the function
|
|---|
| 1601 | // f = chi2*w/2 + reg, where reg is the regularization term
|
|---|
| 1602 | // reg is the sum the squared 2nd derivatives
|
|---|
| 1603 | // of the unfolded distribution
|
|---|
| 1604 | //
|
|---|
| 1605 | // the corresponding fcn routine is 'fcnTikhonov2'
|
|---|
| 1606 | //
|
|---|
| 1607 | Bool_t Tikhonov2(TH1D &hb0)
|
|---|
| 1608 | {
|
|---|
| 1609 | // the number of free parameters (npar) is equal to
|
|---|
| 1610 | // the number of bins (fNb) of the unfolded distribution minus 1,
|
|---|
| 1611 | // because of the constraint that the total number of events
|
|---|
| 1612 | // is fixed
|
|---|
| 1613 | UInt_t npar = fNb-1;
|
|---|
| 1614 |
|
|---|
| 1615 | if (npar > 20)
|
|---|
| 1616 | {
|
|---|
| 1617 | cout << "MUnfold::Tikhonov2 : too many parameters, npar = "
|
|---|
| 1618 | << npar << ", fNb = " << fNb << endl;
|
|---|
| 1619 | return kFALSE;
|
|---|
| 1620 | }
|
|---|
| 1621 |
|
|---|
| 1622 | // copy ideal distribution
|
|---|
| 1623 |
|
|---|
| 1624 | for (UInt_t i=1; i<=fNb; i++)
|
|---|
| 1625 | {
|
|---|
| 1626 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
|---|
| 1627 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
|---|
| 1628 | }
|
|---|
| 1629 |
|
|---|
| 1630 |
|
|---|
| 1631 | //--- start w loop -----------------------------------
|
|---|
| 1632 | Int_t ix;
|
|---|
| 1633 | Double_t xiter;
|
|---|
| 1634 |
|
|---|
| 1635 | for (ix=0; ix<Nix; ix++)
|
|---|
| 1636 | {
|
|---|
| 1637 | fW = pow(10.0,log10(xmin)+ix*dlogx);
|
|---|
| 1638 |
|
|---|
| 1639 | //..............................................
|
|---|
| 1640 | // Set starting values and step sizes for parameters
|
|---|
| 1641 |
|
|---|
| 1642 | char name[20][100];
|
|---|
| 1643 | Double_t vinit[20];
|
|---|
| 1644 | Double_t step[20];
|
|---|
| 1645 | Double_t limlo[20];
|
|---|
| 1646 | Double_t limup[20];
|
|---|
| 1647 | Int_t fix[20];
|
|---|
| 1648 |
|
|---|
| 1649 | for (UInt_t i=0; i<npar; i++)
|
|---|
| 1650 | {
|
|---|
| 1651 | sprintf(&name[i][0], "p%d", i+1);
|
|---|
| 1652 | vinit[i] = fVEps0(i);
|
|---|
| 1653 | step[i] = fVEps0(i)/10;
|
|---|
| 1654 |
|
|---|
| 1655 | // lower and upper limits (limlo=limup=0: no limits)
|
|---|
| 1656 | //limlo[i] = 1.e-20;
|
|---|
| 1657 | limlo[i] = -1.0;
|
|---|
| 1658 | limup[i] = 1.0;
|
|---|
| 1659 | fix[i] = 0;
|
|---|
| 1660 | }
|
|---|
| 1661 |
|
|---|
| 1662 | // calculate solution for the weight fW
|
|---|
| 1663 | // flag non-convergence by chisq(ix) = 0.0
|
|---|
| 1664 | chisq(ix) = 0.0;
|
|---|
| 1665 | if ( CallMinuit(fcnTikhonov2, npar, name, vinit,
|
|---|
| 1666 | step, limlo, limup, fix) )
|
|---|
| 1667 | {
|
|---|
| 1668 | // calculate difference between ideal and unfolded distribution
|
|---|
| 1669 | Double_t D2bar = 0.0;
|
|---|
| 1670 | for (UInt_t i = 0; i<fNb; i++)
|
|---|
| 1671 | {
|
|---|
| 1672 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
|---|
| 1673 | D2bar += temp*temp;
|
|---|
| 1674 | }
|
|---|
| 1675 |
|
|---|
| 1676 | SpAR(ix) = SpurAR;
|
|---|
| 1677 | SpSig(ix) = SpurSigma;
|
|---|
| 1678 | chisq(ix) = Chisq;
|
|---|
| 1679 | SecDer(ix) = SecDeriv;
|
|---|
| 1680 | ZerDer(ix) = ZerDeriv;
|
|---|
| 1681 | Entrop(ix) = Entropy;
|
|---|
| 1682 | DAR2(ix) = DiffAR2;
|
|---|
| 1683 | Dsqbar(ix) = D2bar;
|
|---|
| 1684 | }
|
|---|
| 1685 | }
|
|---|
| 1686 |
|
|---|
| 1687 |
|
|---|
| 1688 | // plots ------------------------------
|
|---|
| 1689 | for (ix=0; ix<Nix; ix++)
|
|---|
| 1690 | {
|
|---|
| 1691 | // test whether minimization has converged
|
|---|
| 1692 | if (chisq(ix) != 0.0)
|
|---|
| 1693 | {
|
|---|
| 1694 | xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
|---|
| 1695 |
|
|---|
| 1696 | Int_t bin;
|
|---|
| 1697 | bin = hBchisq->FindBin( log10(xiter) );
|
|---|
| 1698 | hBchisq->SetBinContent(bin,chisq(ix));
|
|---|
| 1699 |
|
|---|
| 1700 | //hBSpAR->SetBinContent(bin,SpAR(ix));
|
|---|
| 1701 | hBSpAR->SetBinContent(bin,0.0);
|
|---|
| 1702 |
|
|---|
| 1703 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
|---|
| 1704 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
|---|
| 1705 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
|---|
| 1706 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
|---|
| 1707 |
|
|---|
| 1708 | //hBDAR2->SetBinContent(bin,DAR2(ix));
|
|---|
| 1709 | hBDAR2->SetBinContent(bin,0.0);
|
|---|
| 1710 |
|
|---|
| 1711 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
|---|
| 1712 |
|
|---|
| 1713 | if (ix > 0)
|
|---|
| 1714 | {
|
|---|
| 1715 | //Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
|---|
| 1716 | //hBDSpAR->SetBinContent(bin,DSpAR);
|
|---|
| 1717 |
|
|---|
| 1718 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
|---|
| 1719 | Double_t DSpSig = diff;
|
|---|
| 1720 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
|---|
| 1721 |
|
|---|
| 1722 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
|---|
| 1723 | hBDEntropy->SetBinContent(bin,DEntrop);
|
|---|
| 1724 |
|
|---|
| 1725 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
|---|
| 1726 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
|---|
| 1727 |
|
|---|
| 1728 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
|---|
| 1729 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
|---|
| 1730 | }
|
|---|
| 1731 | }
|
|---|
| 1732 | }
|
|---|
| 1733 |
|
|---|
| 1734 |
|
|---|
| 1735 | //--- end w loop -----------------------------------
|
|---|
| 1736 |
|
|---|
| 1737 | // Select best weight
|
|---|
| 1738 | SelectBestWeight();
|
|---|
| 1739 |
|
|---|
| 1740 | cout << " Tikhonov2 : after SelectBestWeight" << endl;
|
|---|
| 1741 |
|
|---|
| 1742 | if (ixbest < 0.0)
|
|---|
| 1743 | {
|
|---|
| 1744 | cout << "Tikhonov2 : no result found; " << endl;
|
|---|
| 1745 | return kFALSE;
|
|---|
| 1746 | }
|
|---|
| 1747 |
|
|---|
| 1748 | cout << "Tikhonov2 : best result found; " << endl;
|
|---|
| 1749 | cout << "===============================" << endl;
|
|---|
| 1750 | cout << " ixbest = " << ixbest << endl;
|
|---|
| 1751 |
|
|---|
| 1752 |
|
|---|
| 1753 | // do a final unfolding using the best weight
|
|---|
| 1754 |
|
|---|
| 1755 | fW = pow(10.0,log10(xmin)+ixbest*dlogx);
|
|---|
| 1756 |
|
|---|
| 1757 | //..............................................
|
|---|
| 1758 | // Set starting values and step sizes for parameters
|
|---|
| 1759 |
|
|---|
| 1760 | char name[20][100];
|
|---|
| 1761 | Double_t vinit[20];
|
|---|
| 1762 | Double_t step[20];
|
|---|
| 1763 | Double_t limlo[20];
|
|---|
| 1764 | Double_t limup[20];
|
|---|
| 1765 | Int_t fix[20];
|
|---|
| 1766 |
|
|---|
| 1767 | for (UInt_t i=0; i<npar; i++)
|
|---|
| 1768 | {
|
|---|
| 1769 | sprintf(&name[i][0], "p%d", i+1);
|
|---|
| 1770 | vinit[i] = fVEps0(i);
|
|---|
| 1771 | step[i] = fVEps0(i)/10;
|
|---|
| 1772 |
|
|---|
| 1773 | // lower and upper limits (limlo=limup=0: no limits)
|
|---|
| 1774 | //limlo[i] = 1.e-20;
|
|---|
| 1775 | limlo[i] = -1.0;
|
|---|
| 1776 | limup[i] = 1.0;
|
|---|
| 1777 | fix[i] = 0;
|
|---|
| 1778 | }
|
|---|
| 1779 |
|
|---|
| 1780 | // calculate solution for the best weight
|
|---|
| 1781 | CallMinuit(fcnTikhonov2, npar, name, vinit,
|
|---|
| 1782 | step, limlo, limup, fix);
|
|---|
| 1783 |
|
|---|
| 1784 |
|
|---|
| 1785 | cout << "Tikhonov : Values for best weight " << endl;
|
|---|
| 1786 | cout << "==================================" << endl;
|
|---|
| 1787 | cout << "fW, ixbest, Chisq, SpurAR, SpurSigma, SecDeriv, ZerDeriv, Entrop, DiffAR2, D2bar = " << endl;
|
|---|
| 1788 | cout << " " << fW << ", " << ixbest << ", "
|
|---|
| 1789 | << Chisq << ", " << SpurAR << ", "
|
|---|
| 1790 | << SpurSigma << ", " << SecDeriv << ", " << ZerDeriv << ", "
|
|---|
| 1791 | << Entropy << ", " << DiffAR2 << ", "
|
|---|
| 1792 | << Dsqbar(ixbest) << endl;
|
|---|
| 1793 |
|
|---|
| 1794 | return kTRUE;
|
|---|
| 1795 |
|
|---|
| 1796 | }
|
|---|
| 1797 |
|
|---|
| 1798 |
|
|---|
| 1799 | // -----------------------------------------------------------------------
|
|---|
| 1800 | //
|
|---|
| 1801 | // Bertero :
|
|---|
| 1802 | //
|
|---|
| 1803 | // the unfolded distribution is calculated iteratively;
|
|---|
| 1804 | // the number of iterations after which the iteration is stopped
|
|---|
| 1805 | // corresponds to the 'weight' in other methods
|
|---|
| 1806 | // a small number of iterations corresponds to strong regularization
|
|---|
| 1807 | // a high number to no regularization
|
|---|
| 1808 | //
|
|---|
| 1809 | // see : M.Bertero, INFN/TC-88/2 (1988)
|
|---|
| 1810 | // V.B.Anykeyev et al., NIM A303 (1991) 350
|
|---|
| 1811 | //
|
|---|
| 1812 | Bool_t Bertero(TH1D &hb0)
|
|---|
| 1813 | {
|
|---|
| 1814 | // copy ideal distribution
|
|---|
| 1815 |
|
|---|
| 1816 | for (UInt_t i=1; i<=fNb; i++)
|
|---|
| 1817 | {
|
|---|
| 1818 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
|---|
| 1819 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
|---|
| 1820 | }
|
|---|
| 1821 |
|
|---|
| 1822 |
|
|---|
| 1823 | TMatrixD bold(fNb, 1);
|
|---|
| 1824 | bold.Zero();
|
|---|
| 1825 |
|
|---|
| 1826 | //----------------------------------------------------------
|
|---|
| 1827 |
|
|---|
| 1828 | Double_t db2 = 1.e20;
|
|---|
| 1829 |
|
|---|
| 1830 |
|
|---|
| 1831 | TMatrixD aminusaest(fNa, 1);
|
|---|
| 1832 |
|
|---|
| 1833 | //------- scan number of iterations -----------------
|
|---|
| 1834 |
|
|---|
| 1835 | Int_t ix;
|
|---|
| 1836 |
|
|---|
| 1837 | for (ix=0; ix<Nix; ix++)
|
|---|
| 1838 | {
|
|---|
| 1839 | Double_t xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
|---|
| 1840 |
|
|---|
| 1841 | // calculate solution for the iteration number xiter
|
|---|
| 1842 | BertCore(xiter);
|
|---|
| 1843 |
|
|---|
| 1844 | // calculate difference between ideal and unfolded distribution
|
|---|
| 1845 | Double_t D2bar = 0.0;
|
|---|
| 1846 | for (UInt_t i = 0; i<fNb; i++)
|
|---|
| 1847 | {
|
|---|
| 1848 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
|---|
| 1849 | D2bar += temp*temp;
|
|---|
| 1850 | }
|
|---|
| 1851 |
|
|---|
| 1852 | SpAR(ix) = SpurAR;
|
|---|
| 1853 | SpSig(ix) = SpurSigma;
|
|---|
| 1854 | chisq(ix) = Chisq;
|
|---|
| 1855 | SecDer(ix) = SecDeriv;
|
|---|
| 1856 | ZerDer(ix) = ZerDeriv;
|
|---|
| 1857 | Entrop(ix) = Entropy;
|
|---|
| 1858 | DAR2(ix) = DiffAR2;
|
|---|
| 1859 | Dsqbar(ix) = D2bar;
|
|---|
| 1860 |
|
|---|
| 1861 | db2 = 0.0;
|
|---|
| 1862 | for (UInt_t i = 0; i<fNb; i++)
|
|---|
| 1863 | {
|
|---|
| 1864 | Double_t temp = fVb(i,0)-bold(i,0);
|
|---|
| 1865 | db2 += temp*temp;
|
|---|
| 1866 | }
|
|---|
| 1867 | bold = fVb;
|
|---|
| 1868 |
|
|---|
| 1869 | //if (db2 < Epsdb2) break;
|
|---|
| 1870 |
|
|---|
| 1871 | }
|
|---|
| 1872 |
|
|---|
| 1873 | // plots ------------------------------
|
|---|
| 1874 | for (ix=0; ix<Nix; ix++)
|
|---|
| 1875 | {
|
|---|
| 1876 | Double_t xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
|---|
| 1877 |
|
|---|
| 1878 | Int_t bin;
|
|---|
| 1879 | bin = hBchisq->FindBin( log10(xiter) );
|
|---|
| 1880 | hBchisq->SetBinContent(bin,chisq(ix));
|
|---|
| 1881 | hBSpAR->SetBinContent(bin,SpAR(ix));
|
|---|
| 1882 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
|---|
| 1883 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
|---|
| 1884 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
|---|
| 1885 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
|---|
| 1886 | hBDAR2->SetBinContent(bin,DAR2(ix));
|
|---|
| 1887 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
|---|
| 1888 |
|
|---|
| 1889 | if (ix > 0)
|
|---|
| 1890 | {
|
|---|
| 1891 | Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
|---|
| 1892 | hBDSpAR->SetBinContent(bin,DSpAR);
|
|---|
| 1893 |
|
|---|
| 1894 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
|---|
| 1895 | Double_t DSpSig = diff;
|
|---|
| 1896 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
|---|
| 1897 |
|
|---|
| 1898 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
|---|
| 1899 | hBDEntropy->SetBinContent(bin,DEntrop);
|
|---|
| 1900 |
|
|---|
| 1901 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
|---|
| 1902 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
|---|
| 1903 |
|
|---|
| 1904 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
|---|
| 1905 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
|---|
| 1906 | }
|
|---|
| 1907 | }
|
|---|
| 1908 | //------- end of scan of number of iterations -----------------
|
|---|
| 1909 |
|
|---|
| 1910 | // Select best weight
|
|---|
| 1911 | SelectBestWeight();
|
|---|
| 1912 |
|
|---|
| 1913 |
|
|---|
| 1914 | if (ixbest < 0.0)
|
|---|
| 1915 | {
|
|---|
| 1916 | cout << "Bertero : weight iteration has NOT converged; " << endl;
|
|---|
| 1917 | return kFALSE;
|
|---|
| 1918 | }
|
|---|
| 1919 |
|
|---|
| 1920 | cout << "Bertero : weight iteration has converged; " << endl;
|
|---|
| 1921 | cout << " ixbest = " << ixbest << endl;
|
|---|
| 1922 |
|
|---|
| 1923 |
|
|---|
| 1924 | // do a final unfolding using the best weight
|
|---|
| 1925 |
|
|---|
| 1926 | // calculate solution for the iteration number xiter
|
|---|
| 1927 | Double_t xiter = pow(10.0,log10(xmin)+ixbest*dlogx);
|
|---|
| 1928 | BertCore(xiter);
|
|---|
| 1929 |
|
|---|
| 1930 | cout << "Bertero : Values for best weight " << endl;
|
|---|
| 1931 | cout << "=================================" << endl;
|
|---|
| 1932 | cout << "fW, ixbest, Chisq, SpurAR, SpurSigma, SecDeriv, ZerDeriv, Entrop, DiffAR2, D2bar = " << endl;
|
|---|
| 1933 | cout << " " << fW << ", " << ixbest << ", "
|
|---|
| 1934 | << Chisq << ", " << SpurAR << ", "
|
|---|
| 1935 | << SpurSigma << ", " << SecDeriv << ", " << ZerDeriv << ", "
|
|---|
| 1936 | << Entropy << ", " << DiffAR2 << ", "
|
|---|
| 1937 | << Dsqbar(ixbest) << endl;
|
|---|
| 1938 |
|
|---|
| 1939 | //----------------
|
|---|
| 1940 |
|
|---|
| 1941 | fNdf = SpurAR;
|
|---|
| 1942 | fChisq = Chisq;
|
|---|
| 1943 |
|
|---|
| 1944 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 1945 | {
|
|---|
| 1946 | fChi2(i,0) = Chi2(i,0);
|
|---|
| 1947 | }
|
|---|
| 1948 |
|
|---|
| 1949 | UInt_t iNdf = (UInt_t) (fNdf+0.5);
|
|---|
| 1950 | fProb = iNdf>0 ? TMath::Prob(fChisq, iNdf) : 0;
|
|---|
| 1951 |
|
|---|
| 1952 |
|
|---|
| 1953 | fResult.ResizeTo(fNb, 5);
|
|---|
| 1954 | for (UInt_t i=0; i<fNb; i++)
|
|---|
| 1955 | {
|
|---|
| 1956 | fResult(i, 0) = fVb(i,0);
|
|---|
| 1957 | fResult(i, 1) = sqrt(fVbcov(i,i));
|
|---|
| 1958 | fResult(i, 2) = 0.0;
|
|---|
| 1959 | fResult(i, 3) = 0.0;
|
|---|
| 1960 | fResult(i, 4) = 1.0;
|
|---|
| 1961 | }
|
|---|
| 1962 |
|
|---|
| 1963 | return kTRUE;
|
|---|
| 1964 | }
|
|---|
| 1965 |
|
|---|
| 1966 | // -----------------------------------------------------------------------
|
|---|
| 1967 | //
|
|---|
| 1968 | // main part of Bertero's calculations
|
|---|
| 1969 | //
|
|---|
| 1970 | Bool_t BertCore(Double_t &xiter)
|
|---|
| 1971 | {
|
|---|
| 1972 | // ignore eigen values which are smaller than EpsLambda
|
|---|
| 1973 | TMatrixD G_inv(fNa, fNa);
|
|---|
| 1974 | TMatrixD Gtil_inv(fNa, fNa);
|
|---|
| 1975 | TMatrixD atil(fNb, fNa);
|
|---|
| 1976 | TMatrixD aminusaest(fNa, 1);
|
|---|
| 1977 |
|
|---|
| 1978 | G_inv.Zero();
|
|---|
| 1979 | Gtil_inv.Zero();
|
|---|
| 1980 | SpurAR = 0.0;
|
|---|
| 1981 |
|
|---|
| 1982 | // ----- loop over eigen values ------------------
|
|---|
| 1983 | // calculate the approximate inverse of the matrix G
|
|---|
| 1984 | //cout << "flaml = " << endl;
|
|---|
| 1985 |
|
|---|
| 1986 | UInt_t flagstart = 2;
|
|---|
| 1987 | Double_t flaml=0;
|
|---|
| 1988 |
|
|---|
| 1989 | for (UInt_t l=0; l<fNa; l++)
|
|---|
| 1990 | {
|
|---|
| 1991 | if (EigenValue(l) < EpsLambda)
|
|---|
| 1992 | continue;
|
|---|
| 1993 |
|
|---|
| 1994 | switch (flagstart)
|
|---|
| 1995 | {
|
|---|
| 1996 | case 1 :
|
|---|
| 1997 | // This is the expression for f(lambda) if the initial C^(0)
|
|---|
| 1998 | // is chosen to be zero
|
|---|
| 1999 | flaml = 1.0 - pow(1.0-tau*EigenValue(l),xiter);
|
|---|
| 2000 | break;
|
|---|
| 2001 |
|
|---|
| 2002 | case 2 :
|
|---|
| 2003 | // This is the expression for f(lambda) if the initial C^(0)
|
|---|
| 2004 | // is chosen to be equal to the measured distribution
|
|---|
| 2005 | flaml = 1.0 - pow(1.0-tau*EigenValue(l),xiter)
|
|---|
| 2006 | + EigenValue(l) * pow(1.0-tau*EigenValue(l),xiter);
|
|---|
| 2007 | break;
|
|---|
| 2008 | }
|
|---|
| 2009 |
|
|---|
| 2010 | // cout << flaml << ", ";
|
|---|
| 2011 |
|
|---|
| 2012 | for (UInt_t m=0; m<fNa; m++)
|
|---|
| 2013 | {
|
|---|
| 2014 | for (UInt_t n=0; n<fNa; n++)
|
|---|
| 2015 | {
|
|---|
| 2016 | G_inv(m,n) += 1.0 /EigenValue(l) * Eigen(m,l)*Eigen(n,l);
|
|---|
| 2017 | Gtil_inv(m,n) += flaml/EigenValue(l) * Eigen(m,l)*Eigen(n,l);
|
|---|
| 2018 | }
|
|---|
| 2019 | }
|
|---|
| 2020 | SpurAR += flaml;
|
|---|
| 2021 | }
|
|---|
| 2022 | //cout << endl;
|
|---|
| 2023 |
|
|---|
| 2024 |
|
|---|
| 2025 | //cout << "Gtil_inv =" << endl;
|
|---|
| 2026 | //for (Int_t m=0; m<fNa; m++)
|
|---|
| 2027 | //{
|
|---|
| 2028 | // for (Int_t n=0; n<fNa; n++)
|
|---|
| 2029 | // {
|
|---|
| 2030 | // cout << Gtil_inv(m,n) << ", ";
|
|---|
| 2031 | // }
|
|---|
| 2032 | // cout << endl;
|
|---|
| 2033 | //}
|
|---|
| 2034 |
|
|---|
| 2035 | //-----------------------------------------------------
|
|---|
| 2036 | // calculate the unfolded distribution b
|
|---|
| 2037 | TMatrixD v2(fMigrat, TMatrixD::kTransposeMult, Gtil_inv);
|
|---|
| 2038 | atil = v2;
|
|---|
| 2039 | TMatrixD v4(atil, TMatrixD::kMult, fVa);
|
|---|
| 2040 | fVb = v4;
|
|---|
| 2041 |
|
|---|
| 2042 | //-----------------------------------------------------
|
|---|
| 2043 | // calculate AR and AR+
|
|---|
| 2044 | TMatrixD AR(v2, TMatrixD::kMult, fMigrat);
|
|---|
| 2045 |
|
|---|
| 2046 | TMatrixD v3(fMigrat, TMatrixD::kTransposeMult, G_inv);
|
|---|
| 2047 | TMatrixD ARplus(v3, TMatrixD::kMult, fMigrat);
|
|---|
| 2048 |
|
|---|
| 2049 |
|
|---|
| 2050 | //-----------------------------------------------------
|
|---|
| 2051 | // calculate the norm |AR - AR+|**2
|
|---|
| 2052 |
|
|---|
| 2053 | DiffAR2 = 0.0;
|
|---|
| 2054 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 2055 | {
|
|---|
| 2056 | for (UInt_t k=0; k<fNb; k++)
|
|---|
| 2057 | {
|
|---|
| 2058 | Double_t tempo = AR(j,k) - ARplus(j,k);
|
|---|
| 2059 | DiffAR2 += tempo*tempo;
|
|---|
| 2060 | }
|
|---|
| 2061 | }
|
|---|
| 2062 |
|
|---|
| 2063 | //-----------------------------------------------------
|
|---|
| 2064 | // calculate the second derivative squared
|
|---|
| 2065 |
|
|---|
| 2066 | SecDeriv = 0;
|
|---|
| 2067 | for (UInt_t j=1; j<(fNb-1); j++)
|
|---|
| 2068 | {
|
|---|
| 2069 | // temp = ( 2.0*fVb(j,0)-fVb(j-1,0)-fVb(j+1,0) ) / ( 2.0*fVb(j,0) );
|
|---|
| 2070 | Double_t temp = 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
|---|
| 2071 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
|---|
| 2072 | SecDeriv += temp*temp;
|
|---|
| 2073 | }
|
|---|
| 2074 |
|
|---|
| 2075 | ZerDeriv = 0;
|
|---|
| 2076 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 2077 | ZerDeriv += fVb(j,0) * fVb(j,0);
|
|---|
| 2078 |
|
|---|
| 2079 | //-----------------------------------------------------
|
|---|
| 2080 | // calculate the entropy
|
|---|
| 2081 |
|
|---|
| 2082 | Double_t sumb = 0.0;
|
|---|
| 2083 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 2084 | sumb += fVb(j,0);
|
|---|
| 2085 |
|
|---|
| 2086 | TMatrixD p(fNb,1);
|
|---|
| 2087 | p = fVb;
|
|---|
| 2088 | if (sumb > 0.0)
|
|---|
| 2089 | p *= 1.0/sumb;
|
|---|
| 2090 |
|
|---|
| 2091 | Entropy = 0;
|
|---|
| 2092 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 2093 | if (p(j,0) > 0.0)
|
|---|
| 2094 | Entropy += p(j,0) * log( p(j,0) );
|
|---|
| 2095 |
|
|---|
| 2096 | //-----------------------------------------------------
|
|---|
| 2097 |
|
|---|
| 2098 | TMatrixD Gb(fMigrat, TMatrixD::kMult, fVb);
|
|---|
| 2099 | aminusaest = fVa;
|
|---|
| 2100 | aminusaest -= Gb;
|
|---|
| 2101 |
|
|---|
| 2102 | TMatrixD v1(1,fNa);
|
|---|
| 2103 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 2104 | {
|
|---|
| 2105 | v1(0,i) = 0.0;
|
|---|
| 2106 | for (UInt_t j=0; j<fNa; j++)
|
|---|
| 2107 | v1(0,i) += aminusaest(j,0) * fVacovInv(j,i) ;
|
|---|
| 2108 | }
|
|---|
| 2109 |
|
|---|
| 2110 | //-----------------------------------------------------
|
|---|
| 2111 | // calculate error matrix fVbcov of unfolded distribution
|
|---|
| 2112 | SpurSigma = CalcSpurSigma(atil);
|
|---|
| 2113 |
|
|---|
| 2114 | //-----------------------------------------------------
|
|---|
| 2115 | // calculate the chi squared
|
|---|
| 2116 | for (UInt_t i = 0; i<fNa; i++)
|
|---|
| 2117 | Chi2(i,0) = v1(0,i) * aminusaest(i,0);
|
|---|
| 2118 |
|
|---|
| 2119 | Chisq = GetMatrixSumCol(Chi2,0);
|
|---|
| 2120 | return kTRUE;
|
|---|
| 2121 | }
|
|---|
| 2122 |
|
|---|
| 2123 |
|
|---|
| 2124 | // -----------------------------------------------------------------------
|
|---|
| 2125 | //
|
|---|
| 2126 | // Calculate the matrix G = M * M(transposed)
|
|---|
| 2127 | // and its eigen values and eigen vectors
|
|---|
| 2128 | //
|
|---|
| 2129 | Bool_t CalculateG()
|
|---|
| 2130 | {
|
|---|
| 2131 | // Calculate matrix G = M*M(transposed) (M = migration matrix)
|
|---|
| 2132 | // the matrix Eigen of the eigen vectors of G
|
|---|
| 2133 | // the vector EigenValues of the eigen values of G
|
|---|
| 2134 | // the parameter tau = 1/lambda_max
|
|---|
| 2135 | //
|
|---|
| 2136 | TMatrixD v5(TMatrixD::kTransposed, fMigrat);
|
|---|
| 2137 | //TMatrixD G(fMigrat, TMatrixD::kMult, v5);
|
|---|
| 2138 | G.Mult(fMigrat, v5);
|
|---|
| 2139 |
|
|---|
| 2140 | Eigen = G.EigenVectors(EigenValue);
|
|---|
| 2141 |
|
|---|
| 2142 | RankG = 0.0;
|
|---|
| 2143 | for (UInt_t l=0; l<fNa; l++)
|
|---|
| 2144 | {
|
|---|
| 2145 | if (EigenValue(l) < EpsLambda) continue;
|
|---|
| 2146 | RankG += 1.0;
|
|---|
| 2147 | }
|
|---|
| 2148 |
|
|---|
| 2149 | tau = 1.0 / EigenValue(0);
|
|---|
| 2150 |
|
|---|
| 2151 | // cout << "eigen values : " << endl;
|
|---|
| 2152 | // for (Int_t i=0; i<fNa; i++)
|
|---|
| 2153 | // {
|
|---|
| 2154 | // cout << EigenValue(i) << ", ";
|
|---|
| 2155 | // }
|
|---|
| 2156 | // cout << endl;
|
|---|
| 2157 |
|
|---|
| 2158 | //cout << "eigen vectors : " << endl;
|
|---|
| 2159 | //for (Int_t i=0; i<fNa; i++)
|
|---|
| 2160 | //{
|
|---|
| 2161 | // cout << " vector " << i << endl;
|
|---|
| 2162 | // for (Int_t j=0; j<fNa; j++)
|
|---|
| 2163 | // {
|
|---|
| 2164 | // cout << Eigen(j,i) << ", ";
|
|---|
| 2165 | // }
|
|---|
| 2166 | // cout << endl;
|
|---|
| 2167 | //}
|
|---|
| 2168 | //cout << endl;
|
|---|
| 2169 |
|
|---|
| 2170 | //cout << "G =" << endl;
|
|---|
| 2171 | //for (Int_t m=0; m<fNa; m++)
|
|---|
| 2172 | //{
|
|---|
| 2173 | // for (Int_t n=0; n<fNa; n++)
|
|---|
| 2174 | // {
|
|---|
| 2175 | // cout << G(m,n) << ", ";
|
|---|
| 2176 | // }
|
|---|
| 2177 | // cout << endl;
|
|---|
| 2178 | //}
|
|---|
| 2179 |
|
|---|
| 2180 | return kTRUE;
|
|---|
| 2181 | }
|
|---|
| 2182 |
|
|---|
| 2183 | // -----------------------------------------------------------------------
|
|---|
| 2184 | //
|
|---|
| 2185 | // Select the best weight
|
|---|
| 2186 | //
|
|---|
| 2187 | Bool_t SelectBestWeight()
|
|---|
| 2188 | {
|
|---|
| 2189 | //-------------------------------
|
|---|
| 2190 | // select 'best' weight according to some criterion
|
|---|
| 2191 |
|
|---|
| 2192 | Int_t ix;
|
|---|
| 2193 |
|
|---|
| 2194 | Double_t DiffSpSigmax = -1.e10;
|
|---|
| 2195 | Int_t ixDiffSpSigmax = -1;
|
|---|
| 2196 |
|
|---|
| 2197 | Double_t DiffSigpointsmin = 1.e10;
|
|---|
| 2198 | Int_t ixDiffSigpointsmin = -1;
|
|---|
| 2199 |
|
|---|
| 2200 | Double_t DiffRankGmin = 1.e10;
|
|---|
| 2201 | Int_t ixDiffRankGmin = -1;
|
|---|
| 2202 |
|
|---|
| 2203 | Double_t D2barmin = 1.e10;
|
|---|
| 2204 | Int_t ixD2barmin = -1;
|
|---|
| 2205 |
|
|---|
| 2206 | Double_t DiffSpSig1min = 1.e10;
|
|---|
| 2207 | Int_t ixDiffSpSig1min = -1;
|
|---|
| 2208 |
|
|---|
| 2209 |
|
|---|
| 2210 | Int_t ixmax = -1;
|
|---|
| 2211 |
|
|---|
| 2212 | // first loop over all weights :
|
|---|
| 2213 | // find smallest chi2
|
|---|
| 2214 | Double_t chisqmin = 1.e20;
|
|---|
| 2215 | for (ix=0; ix<Nix; ix++)
|
|---|
| 2216 | {
|
|---|
| 2217 | // consider only weights for which
|
|---|
| 2218 | // - unfolding was successful
|
|---|
| 2219 | if (chisq(ix) != 0.0)
|
|---|
| 2220 | {
|
|---|
| 2221 | if (chisq(ix) < chisqmin)
|
|---|
| 2222 | chisqmin = chisq(ix);
|
|---|
| 2223 | }
|
|---|
| 2224 | }
|
|---|
| 2225 | Double_t chisq0 = chisqmin > fVapoints ? chisqmin : fVapoints/2.0;
|
|---|
| 2226 |
|
|---|
| 2227 | // second loop over all weights :
|
|---|
| 2228 | // consider only weights for which chisq(ix) < chisq0
|
|---|
| 2229 | ixbest = -1;
|
|---|
| 2230 | for (ix=0; ix<Nix; ix++)
|
|---|
| 2231 | {
|
|---|
| 2232 | if (chisq(ix) != 0.0 && chisq(ix) < 2.0*chisq0)
|
|---|
| 2233 | {
|
|---|
| 2234 | // ixmax = highest weight with successful unfolding
|
|---|
| 2235 | // (Least squares solution)
|
|---|
| 2236 | ixmax = ix;
|
|---|
| 2237 |
|
|---|
| 2238 | SpurSigma = SpSig(ix);
|
|---|
| 2239 | SpurAR = SpAR(ix);
|
|---|
| 2240 | Chisq = chisq(ix);
|
|---|
| 2241 | D2bar = Dsqbar(ix);
|
|---|
| 2242 |
|
|---|
| 2243 | //----------------------------------
|
|---|
| 2244 | // search weight where SpurSigma changes most
|
|---|
| 2245 | // (as a function of the weight)
|
|---|
| 2246 | if (ix > 0 && chisq(ix-1) != 0.0)
|
|---|
| 2247 | {
|
|---|
| 2248 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
|---|
| 2249 | if (diff > DiffSpSigmax)
|
|---|
| 2250 | {
|
|---|
| 2251 | DiffSpSigmax = diff;
|
|---|
| 2252 | ixDiffSpSigmax = ix;
|
|---|
| 2253 | }
|
|---|
| 2254 | }
|
|---|
| 2255 |
|
|---|
| 2256 | //----------------------------------
|
|---|
| 2257 | // search weight where Chisq is close
|
|---|
| 2258 | // to the number of significant measurements
|
|---|
| 2259 | Double_t DiffSigpoints = fabs(Chisq-fVapoints);
|
|---|
| 2260 |
|
|---|
| 2261 | if (DiffSigpoints < DiffSigpointsmin)
|
|---|
| 2262 | {
|
|---|
| 2263 | DiffSigpointsmin = DiffSigpoints;
|
|---|
| 2264 | ixDiffSigpointsmin = ix;
|
|---|
| 2265 | }
|
|---|
| 2266 |
|
|---|
| 2267 | //----------------------------------
|
|---|
| 2268 | // search weight where Chisq is close
|
|---|
| 2269 | // to the rank of matrix G
|
|---|
| 2270 | Double_t DiffRankG = fabs(Chisq-RankG);
|
|---|
| 2271 |
|
|---|
| 2272 | if (DiffRankG < DiffRankGmin)
|
|---|
| 2273 | {
|
|---|
| 2274 | DiffRankGmin = DiffRankG;
|
|---|
| 2275 | ixDiffRankGmin = ix;
|
|---|
| 2276 | }
|
|---|
| 2277 |
|
|---|
| 2278 | //----------------------------------
|
|---|
| 2279 | // search weight where SpurSigma is close to 1.0
|
|---|
| 2280 | Double_t DiffSpSig1 = fabs(SpurSigma/fSpurVacov-1.0);
|
|---|
| 2281 |
|
|---|
| 2282 | if (DiffSpSig1 < DiffSpSig1min)
|
|---|
| 2283 | {
|
|---|
| 2284 | DiffSpSig1min = DiffSpSig1;
|
|---|
| 2285 | ixDiffSpSig1min = ix;
|
|---|
| 2286 | }
|
|---|
| 2287 |
|
|---|
| 2288 | //----------------------------------
|
|---|
| 2289 | // search weight where D2bar is minimal
|
|---|
| 2290 |
|
|---|
| 2291 | if (D2bar < D2barmin)
|
|---|
| 2292 | {
|
|---|
| 2293 | D2barmin = D2bar;
|
|---|
| 2294 | ixD2barmin = ix;
|
|---|
| 2295 | }
|
|---|
| 2296 |
|
|---|
| 2297 | //----------------------------------
|
|---|
| 2298 | }
|
|---|
| 2299 | }
|
|---|
| 2300 |
|
|---|
| 2301 |
|
|---|
| 2302 | // choose solution where increase of SpurSigma is biggest
|
|---|
| 2303 | //if ( DiffSpSigmax > 0.0)
|
|---|
| 2304 | // ixbest = ixDiffSpSigmax;
|
|---|
| 2305 | //else
|
|---|
| 2306 | // ixbest = ixDiffSigpointsmin;
|
|---|
| 2307 |
|
|---|
| 2308 | // choose Least Squares Solution
|
|---|
| 2309 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
|---|
| 2310 | // ixbest = ixmax;
|
|---|
| 2311 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
|---|
| 2312 |
|
|---|
| 2313 | // choose weight where chi2 is close to the number of significant
|
|---|
| 2314 | // measurements
|
|---|
| 2315 | // ixbest = ixDiffSigpointsmin;
|
|---|
| 2316 |
|
|---|
| 2317 | // choose weight where chi2 is close to the rank of matrix G
|
|---|
| 2318 | // ixbest = ixDiffRankGmin;
|
|---|
| 2319 |
|
|---|
| 2320 | // choose weight where chi2 is close to the rank of matrix G
|
|---|
| 2321 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
|---|
| 2322 | ixbest = ixDiffSpSig1min;
|
|---|
| 2323 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
|---|
| 2324 |
|
|---|
| 2325 | cout << "SelectBestWeight : ixDiffSpSigmax, DiffSpSigmax = "
|
|---|
| 2326 | << ixDiffSpSigmax << ", " << DiffSpSigmax << endl;
|
|---|
| 2327 | cout << "================== ixDiffSigpointsmin, DiffSigpointsmin = "
|
|---|
| 2328 | << ixDiffSigpointsmin << ", " << DiffSigpointsmin << endl;
|
|---|
| 2329 |
|
|---|
| 2330 | cout << " ixDiffRankGmin, DiffRankGmin = "
|
|---|
| 2331 | << ixDiffRankGmin << ", " << DiffRankGmin << endl;
|
|---|
| 2332 |
|
|---|
| 2333 | cout << " ixDiffSpSig1min, DiffSpSig1min = "
|
|---|
| 2334 | << ixDiffSpSig1min << ", " << DiffSpSig1min << endl;
|
|---|
| 2335 |
|
|---|
| 2336 | cout << " ixD2barmin, D2barmin = "
|
|---|
| 2337 | << ixD2barmin << ", " << D2barmin << endl;
|
|---|
| 2338 | cout << " ixmax = " << ixmax << endl;
|
|---|
| 2339 | cout << " ixbest = " << ixbest << endl;
|
|---|
| 2340 |
|
|---|
| 2341 |
|
|---|
| 2342 | return kTRUE;
|
|---|
| 2343 | }
|
|---|
| 2344 |
|
|---|
| 2345 | // -----------------------------------------------------------------------
|
|---|
| 2346 | //
|
|---|
| 2347 | // Draw the plots
|
|---|
| 2348 | //
|
|---|
| 2349 | Bool_t DrawPlots()
|
|---|
| 2350 | {
|
|---|
| 2351 |
|
|---|
| 2352 | // in the plots, mark the weight which has been selected
|
|---|
| 2353 | Double_t xbin = log10(xmin)+ixbest*dlogx;
|
|---|
| 2354 |
|
|---|
| 2355 | TMarker *m = new TMarker();
|
|---|
| 2356 | m->SetMarkerSize(1);
|
|---|
| 2357 | m->SetMarkerStyle(20);
|
|---|
| 2358 |
|
|---|
| 2359 | //-------------------------------------
|
|---|
| 2360 | // draw the iteration plots
|
|---|
| 2361 | TCanvas *c = new TCanvas("iter", "Plots versus weight", 900, 600);
|
|---|
| 2362 | c->Divide(3,2);
|
|---|
| 2363 |
|
|---|
| 2364 | c->cd(1);
|
|---|
| 2365 | hBchisq->Draw();
|
|---|
| 2366 | gPad->SetLogy();
|
|---|
| 2367 | hBchisq->SetXTitle("log10(iteration number)");
|
|---|
| 2368 | hBchisq->SetYTitle("chisq");
|
|---|
| 2369 | m->DrawMarker(xbin, log10(chisq(ixbest)));
|
|---|
| 2370 |
|
|---|
| 2371 | c->cd(2);
|
|---|
| 2372 | hBD2bar->Draw();
|
|---|
| 2373 | gPad->SetLogy();
|
|---|
| 2374 | hBD2bar->SetXTitle("log10(iteration number)");
|
|---|
| 2375 | hBD2bar->SetYTitle("(b_unfolded-b_ideal)**2");
|
|---|
| 2376 | m->DrawMarker(xbin, log10(Dsqbar(ixbest)));
|
|---|
| 2377 |
|
|---|
| 2378 | /*
|
|---|
| 2379 | c->cd(3);
|
|---|
| 2380 | hBDAR2->Draw();
|
|---|
| 2381 | gPad->SetLogy();
|
|---|
| 2382 | strgx = "log10(iteration number)";
|
|---|
| 2383 | strgy = "norm(AR-AR+)";
|
|---|
| 2384 | hBDAR2->SetXTitle(strgx);
|
|---|
| 2385 | hBDAR2->SetYTitle(strgy);
|
|---|
| 2386 | m->DrawMarker(xbin, log10(DAR2(ixbest)));
|
|---|
| 2387 | */
|
|---|
| 2388 |
|
|---|
| 2389 | c->cd(3);
|
|---|
| 2390 | hBSecDeriv->Draw();
|
|---|
| 2391 | hBSecDeriv->SetXTitle("log10(iteration number)");
|
|---|
| 2392 | hBSecDeriv->SetYTitle("Second Derivative squared");
|
|---|
| 2393 | m->DrawMarker(xbin, SecDer(ixbest));
|
|---|
| 2394 |
|
|---|
| 2395 | /*
|
|---|
| 2396 | c->cd(8);
|
|---|
| 2397 | hBDSecDeriv->Draw();
|
|---|
| 2398 | strgx = "log10(iteration number)";
|
|---|
| 2399 | strgy = "Delta(Second Derivative squared)";
|
|---|
| 2400 | hBDSecDeriv->SetXTitle(strgx);
|
|---|
| 2401 | hBDSecDeriv->SetYTitle(strgy);
|
|---|
| 2402 | */
|
|---|
| 2403 |
|
|---|
| 2404 | /*
|
|---|
| 2405 | c->cd(4);
|
|---|
| 2406 | hBZerDeriv->Draw();
|
|---|
| 2407 | strgx = "log10(iteration number)";
|
|---|
| 2408 | strgy = "Zero Derivative squared";
|
|---|
| 2409 | hBZerDeriv->SetXTitle(strgx);
|
|---|
| 2410 | hBZerDeriv->SetYTitle(strgy);
|
|---|
| 2411 | m->DrawMarker(xbin, ZerDer(ixbest));
|
|---|
| 2412 | */
|
|---|
| 2413 |
|
|---|
| 2414 | /*
|
|---|
| 2415 | c->cd(5);
|
|---|
| 2416 | hBDZerDeriv->Draw();
|
|---|
| 2417 | strgx = "log10(iteration number)";
|
|---|
| 2418 | strgy = "Delta(Zero Derivative squared)";
|
|---|
| 2419 | hBDZerDeriv->SetXTitle(strgx);
|
|---|
| 2420 | hBDZerDeriv->SetYTitle(strgy);
|
|---|
| 2421 | */
|
|---|
| 2422 |
|
|---|
| 2423 | c->cd(4);
|
|---|
| 2424 | hBSpAR->Draw();
|
|---|
| 2425 | hBSpAR->SetXTitle("log10(iteration number)");
|
|---|
| 2426 | hBSpAR->SetYTitle("SpurAR");
|
|---|
| 2427 | m->DrawMarker(xbin, SpAR(ixbest));
|
|---|
| 2428 |
|
|---|
| 2429 |
|
|---|
| 2430 | /*
|
|---|
| 2431 | c->cd(11);
|
|---|
| 2432 | hBDSpAR->Draw();
|
|---|
| 2433 | strgx = "log10(iteration number)";
|
|---|
| 2434 | strgy = "Delta(SpurAR)";
|
|---|
| 2435 | hBDSpAR->SetXTitle(strgx);
|
|---|
| 2436 | hBDSpAR->SetYTitle(strgy);
|
|---|
| 2437 | */
|
|---|
| 2438 |
|
|---|
| 2439 | c->cd(5);
|
|---|
| 2440 | hBSpSig->Draw();
|
|---|
| 2441 | hBSpSig->SetXTitle("log10(iteration number)");
|
|---|
| 2442 | hBSpSig->SetYTitle("SpurSig/SpurC");
|
|---|
| 2443 | m->DrawMarker(xbin, SpSig(ixbest)/fSpurVacov);
|
|---|
| 2444 |
|
|---|
| 2445 | /*
|
|---|
| 2446 | c->cd(14);
|
|---|
| 2447 | hBDSpSig->Draw();
|
|---|
| 2448 | strgx = "log10(iteration number)";
|
|---|
| 2449 | strgy = "Delta(SpurSig/SpurC)";
|
|---|
| 2450 | hBDSpSig->SetXTitle(strgx);
|
|---|
| 2451 | hBDSpSig->SetYTitle(strgy);
|
|---|
| 2452 | */
|
|---|
| 2453 |
|
|---|
| 2454 | c->cd(6);
|
|---|
| 2455 | hBEntropy->Draw();
|
|---|
| 2456 | hBEntropy->SetXTitle("log10(iteration number)");
|
|---|
| 2457 | hBEntropy->SetYTitle("Entropy");
|
|---|
| 2458 | m->DrawMarker(xbin, Entrop(ixbest));
|
|---|
| 2459 |
|
|---|
| 2460 | /*
|
|---|
| 2461 | c->cd(17);
|
|---|
| 2462 | hBDEntropy->Draw();
|
|---|
| 2463 | strgx = "log10(iteration number)";
|
|---|
| 2464 | strgy = "Delta(Entropy)";
|
|---|
| 2465 | hBDEntropy->SetXTitle(strgx);
|
|---|
| 2466 | hBDEntropy->SetYTitle(strgy);
|
|---|
| 2467 | */
|
|---|
| 2468 |
|
|---|
| 2469 | //-------------------------------------
|
|---|
| 2470 |
|
|---|
| 2471 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 2472 | {
|
|---|
| 2473 | fha->SetBinContent(i+1, fVa(i, 0) );
|
|---|
| 2474 | fha->SetBinError (i+1, sqrt(fVacov(i, i)));
|
|---|
| 2475 |
|
|---|
| 2476 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 2477 | {
|
|---|
| 2478 | fhmig->SetBinContent(i+1, j+1, fMigOrig(i, j) );
|
|---|
| 2479 | fhmig->SetBinError (i+1, j+1, sqrt(fMigOrigerr2(i, j)) );
|
|---|
| 2480 |
|
|---|
| 2481 | shmig->SetBinContent(i+1, j+1, fMigrat(i, j) );
|
|---|
| 2482 | shmig->SetBinError (i+1, j+1, sqrt(fMigraterr2(i, j)) );
|
|---|
| 2483 | shmigChi2->SetBinContent(i+1, j+1, fMigChi2(i, j) );
|
|---|
| 2484 | }
|
|---|
| 2485 | }
|
|---|
| 2486 |
|
|---|
| 2487 | PrintTH2Content(*shmig);
|
|---|
| 2488 | PrintTH2Content(*shmigChi2);
|
|---|
| 2489 |
|
|---|
| 2490 | //-------------------------------------
|
|---|
| 2491 | CopyCol(*hprior, fVEps);
|
|---|
| 2492 | CopyCol(*hb, fVb);
|
|---|
| 2493 | for (UInt_t i=0; i<fNb; i++)
|
|---|
| 2494 | hb->SetBinError(i+1, sqrt(fVbcov(i, i)));
|
|---|
| 2495 |
|
|---|
| 2496 | PrintTH1Content(*hb);
|
|---|
| 2497 | PrintTH1Error(*hb);
|
|---|
| 2498 |
|
|---|
| 2499 | //..............................................
|
|---|
| 2500 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 2501 | hEigen->SetBinContent(i+1, EigenValue(i));
|
|---|
| 2502 |
|
|---|
| 2503 | //..............................................
|
|---|
| 2504 | // draw the plots
|
|---|
| 2505 | TCanvas *cc = new TCanvas("input", "Unfolding input", 900, 600);
|
|---|
| 2506 | cc->Divide(3, 2);
|
|---|
| 2507 |
|
|---|
| 2508 | // distribution to be unfolded
|
|---|
| 2509 | cc->cd(1);
|
|---|
| 2510 | fha->Draw();
|
|---|
| 2511 | gPad->SetLogy();
|
|---|
| 2512 | fha->SetXTitle("log10(E-est/GeV)");
|
|---|
| 2513 | fha->SetYTitle("Counts");
|
|---|
| 2514 |
|
|---|
| 2515 | // superimpose unfolded distribution
|
|---|
| 2516 | // hb->Draw("*HSAME");
|
|---|
| 2517 |
|
|---|
| 2518 | // prior distribution
|
|---|
| 2519 | cc->cd(2);
|
|---|
| 2520 | hprior->Draw();
|
|---|
| 2521 | gPad->SetLogy();
|
|---|
| 2522 | hprior->SetXTitle("log10(E-true/GeV)");
|
|---|
| 2523 | hprior->SetYTitle("Counts");
|
|---|
| 2524 |
|
|---|
| 2525 | // migration matrix
|
|---|
| 2526 | cc->cd(3);
|
|---|
| 2527 | fhmig->Draw("box");
|
|---|
| 2528 | fhmig->SetXTitle("log10(E-est/GeV)");
|
|---|
| 2529 | fhmig->SetYTitle("log10(E-true/GeV)");
|
|---|
| 2530 |
|
|---|
| 2531 | // smoothed migration matrix
|
|---|
| 2532 | cc->cd(4);
|
|---|
| 2533 | shmig->Draw("box");
|
|---|
| 2534 | shmig->SetXTitle("log10(E-est/GeV)");
|
|---|
| 2535 | shmig->SetYTitle("log10(E-true/GeV)");
|
|---|
| 2536 |
|
|---|
| 2537 | // chi2 contributions for smoothing
|
|---|
| 2538 | cc->cd(5);
|
|---|
| 2539 | shmigChi2->Draw("box");
|
|---|
| 2540 | shmigChi2->SetXTitle("log10(E-est/GeV)");
|
|---|
| 2541 | shmigChi2->SetYTitle("log10(E-true/GeV)");
|
|---|
| 2542 |
|
|---|
| 2543 | // Eigenvalues of matrix M*M(transposed)
|
|---|
| 2544 | cc->cd(6);
|
|---|
| 2545 | hEigen->Draw();
|
|---|
| 2546 | hEigen->SetXTitle("l");
|
|---|
| 2547 | hEigen->SetYTitle("Eigen values Lambda_l of M*M(transposed)");
|
|---|
| 2548 |
|
|---|
| 2549 |
|
|---|
| 2550 | //..............................................
|
|---|
| 2551 | // draw the results
|
|---|
| 2552 | TCanvas *cr = new TCanvas("results", "Unfolding results", 600, 600);
|
|---|
| 2553 | cr->Divide(2, 2);
|
|---|
| 2554 |
|
|---|
| 2555 | // unfolded distribution
|
|---|
| 2556 | cr->cd(1);
|
|---|
| 2557 | hb->Draw();
|
|---|
| 2558 | gPad->SetLogy();
|
|---|
| 2559 | hb->SetXTitle("log10(E-true/GeV)");
|
|---|
| 2560 | hb->SetYTitle("Counts");
|
|---|
| 2561 |
|
|---|
| 2562 |
|
|---|
| 2563 | // covariance matrix of unfolded distribution
|
|---|
| 2564 | cr->cd(2);
|
|---|
| 2565 | TH1 *hbcov=DrawMatrixClone(fVbcov, "lego");
|
|---|
| 2566 | hbcov->SetBins(fNb, hb->GetBinLowEdge(1), hb->GetBinLowEdge(fNb+1),
|
|---|
| 2567 | fNb, hb->GetBinLowEdge(1), hb->GetBinLowEdge(fNb+1));
|
|---|
| 2568 |
|
|---|
| 2569 | hbcov->SetName("hbcov");
|
|---|
| 2570 | hbcov->SetTitle("Error matrix of distribution hb");
|
|---|
| 2571 | hbcov->SetXTitle("log10(E-true/GeV)");
|
|---|
| 2572 | hbcov->SetYTitle("log10(E-true/GeV)");
|
|---|
| 2573 |
|
|---|
| 2574 |
|
|---|
| 2575 | // chi2 contributions
|
|---|
| 2576 | cr->cd(3);
|
|---|
| 2577 | TH1 *hchi2=DrawMatrixColClone(fChi2);
|
|---|
| 2578 | hchi2->SetBins(fNa, fha->GetBinLowEdge(1), fha->GetBinLowEdge(fNa+1));
|
|---|
| 2579 |
|
|---|
| 2580 | hchi2->SetName("Chi2");
|
|---|
| 2581 | hchi2->SetTitle("chi2 contributions");
|
|---|
| 2582 | hchi2->SetXTitle("log10(E-est/GeV)");
|
|---|
| 2583 | hchi2->SetYTitle("Chisquared");
|
|---|
| 2584 |
|
|---|
| 2585 |
|
|---|
| 2586 | // ideal distribution
|
|---|
| 2587 |
|
|---|
| 2588 | cr->cd(4);
|
|---|
| 2589 | fhb0->Draw();
|
|---|
| 2590 | gPad->SetLogy();
|
|---|
| 2591 | fhb0->SetXTitle("log10(E-true/GeV)");
|
|---|
| 2592 | fhb0->SetYTitle("Counts");
|
|---|
| 2593 |
|
|---|
| 2594 |
|
|---|
| 2595 | // superimpose unfolded distribution
|
|---|
| 2596 | hb->Draw("*Hsame");
|
|---|
| 2597 |
|
|---|
| 2598 |
|
|---|
| 2599 | return kTRUE;
|
|---|
| 2600 | }
|
|---|
| 2601 |
|
|---|
| 2602 |
|
|---|
| 2603 | // -----------------------------------------------------------------------
|
|---|
| 2604 | //
|
|---|
| 2605 | // Interface to MINUIT
|
|---|
| 2606 | //
|
|---|
| 2607 | //
|
|---|
| 2608 | Bool_t CallMinuit(
|
|---|
| 2609 | void (*fcnx)(Int_t &, Double_t *, Double_t &, Double_t *, Int_t),
|
|---|
| 2610 | UInt_t npar, char name[20][100],
|
|---|
| 2611 | Double_t vinit[20], Double_t step[20],
|
|---|
| 2612 | Double_t limlo[20], Double_t limup[20], Int_t fix[20])
|
|---|
| 2613 | {
|
|---|
| 2614 | //
|
|---|
| 2615 | // Be carefull: This is not thread safe
|
|---|
| 2616 | //
|
|---|
| 2617 | UInt_t maxpar = 100;
|
|---|
| 2618 |
|
|---|
| 2619 | if (npar > maxpar)
|
|---|
| 2620 | {
|
|---|
| 2621 | cout << "MUnfold::CallMinuit : too many parameters, npar = " << fNb
|
|---|
| 2622 | << ", maxpar = " << maxpar << endl;
|
|---|
| 2623 | return kFALSE;
|
|---|
| 2624 | }
|
|---|
| 2625 |
|
|---|
| 2626 | //..............................................
|
|---|
| 2627 | // Set the maximum number of parameters
|
|---|
| 2628 | TMinuit minuit(maxpar);
|
|---|
| 2629 |
|
|---|
| 2630 |
|
|---|
| 2631 | //..............................................
|
|---|
| 2632 | // Set the print level
|
|---|
| 2633 | // -1 no output except SHOW comands
|
|---|
| 2634 | // 0 minimum output
|
|---|
| 2635 | // 1 normal output (default)
|
|---|
| 2636 | // 2 additional ouput giving intermediate results
|
|---|
| 2637 | // 3 maximum output, showing progress of minimizations
|
|---|
| 2638 | //
|
|---|
| 2639 | Int_t printLevel = -1;
|
|---|
| 2640 | minuit.SetPrintLevel(printLevel);
|
|---|
| 2641 |
|
|---|
| 2642 | //..............................................
|
|---|
| 2643 | // Printout for warnings
|
|---|
| 2644 | // SET WAR print warnings
|
|---|
| 2645 | // SET NOW suppress warnings
|
|---|
| 2646 | Int_t errWarn;
|
|---|
| 2647 | Double_t tmpwar = 0;
|
|---|
| 2648 | minuit.mnexcm("SET NOW", &tmpwar, 0, errWarn);
|
|---|
| 2649 |
|
|---|
| 2650 | //..............................................
|
|---|
| 2651 | // Set the address of the minimization function
|
|---|
| 2652 | minuit.SetFCN(fcnx);
|
|---|
| 2653 |
|
|---|
| 2654 | //..............................................
|
|---|
| 2655 | // Set starting values and step sizes for parameters
|
|---|
| 2656 | for (UInt_t i=0; i<npar; i++)
|
|---|
| 2657 | {
|
|---|
| 2658 | if (minuit.DefineParameter(i, &name[i][0], vinit[i], step[i],
|
|---|
| 2659 | limlo[i], limup[i]))
|
|---|
| 2660 | {
|
|---|
| 2661 | cout << "MUnfold::CallMinuit: Error in defining parameter "
|
|---|
| 2662 | << name << endl;
|
|---|
| 2663 | return kFALSE;
|
|---|
| 2664 | }
|
|---|
| 2665 | }
|
|---|
| 2666 |
|
|---|
| 2667 | //..............................................
|
|---|
| 2668 | //Int_t NumPars = minuit.GetNumPars();
|
|---|
| 2669 | //cout << "MUnfold::CallMinuit : number of free parameters = "
|
|---|
| 2670 | // << NumPars << endl;
|
|---|
| 2671 |
|
|---|
| 2672 | //..............................................
|
|---|
| 2673 | // Minimization
|
|---|
| 2674 | minuit.SetObjectFit(this);
|
|---|
| 2675 |
|
|---|
| 2676 | //..............................................
|
|---|
| 2677 | // Error definition :
|
|---|
| 2678 | //
|
|---|
| 2679 | // for chisquare function :
|
|---|
| 2680 | // up = 1.0 means calculate 1-standard deviation error
|
|---|
| 2681 | // = 4.0 means calculate 2-standard deviation error
|
|---|
| 2682 | //
|
|---|
| 2683 | // for log(likelihood) function :
|
|---|
| 2684 | // up = 0.5 means calculate 1-standard deviation error
|
|---|
| 2685 | // = 2.0 means calculate 2-standard deviation error
|
|---|
| 2686 | Double_t up = 1.0;
|
|---|
| 2687 | minuit.SetErrorDef(up);
|
|---|
| 2688 |
|
|---|
| 2689 |
|
|---|
| 2690 |
|
|---|
| 2691 | // Int_t errMigrad;
|
|---|
| 2692 | // Double_t tmp = 0;
|
|---|
| 2693 | // minuit.mnexcm("MIGRAD", &tmp, 0, errMigrad);
|
|---|
| 2694 |
|
|---|
| 2695 |
|
|---|
| 2696 | //..............................................
|
|---|
| 2697 | // fix a parameter
|
|---|
| 2698 | for (UInt_t i=0; i<npar; i++)
|
|---|
| 2699 | {
|
|---|
| 2700 | if (fix[i] > 0)
|
|---|
| 2701 | {
|
|---|
| 2702 | Int_t parNo = i;
|
|---|
| 2703 | minuit.FixParameter(parNo);
|
|---|
| 2704 | }
|
|---|
| 2705 | }
|
|---|
| 2706 |
|
|---|
| 2707 | //..............................................
|
|---|
| 2708 | // Set maximum number of iterations (default = 500)
|
|---|
| 2709 | Int_t maxiter = 100000;
|
|---|
| 2710 | minuit.SetMaxIterations(maxiter);
|
|---|
| 2711 |
|
|---|
| 2712 | //..............................................
|
|---|
| 2713 | // minimization by the method of Migrad
|
|---|
| 2714 | // Int_t errMigrad;
|
|---|
| 2715 | // Double_t tmp = 0;
|
|---|
| 2716 | // minuit.mnexcm("MIGRAD", &tmp, 0, errMigrad);
|
|---|
| 2717 |
|
|---|
| 2718 | //..............................................
|
|---|
| 2719 | // same minimization as by Migrad
|
|---|
| 2720 | // but switches to the SIMPLEX method if MIGRAD fails to converge
|
|---|
| 2721 | Int_t errMinimize;
|
|---|
| 2722 | Double_t tmp = 0;
|
|---|
| 2723 | minuit.mnexcm("MINIMIZE", &tmp, 0, errMinimize);
|
|---|
| 2724 |
|
|---|
| 2725 | //..............................................
|
|---|
| 2726 | // check quality of minimization
|
|---|
| 2727 | // istat = 0 covariance matrix not calculated
|
|---|
| 2728 | // 1 diagonal approximation only (not accurate)
|
|---|
| 2729 | // 2 full matrix, but forced positive-definite
|
|---|
| 2730 | // 3 full accurate covariance matrix
|
|---|
| 2731 | // (indication of normal convergence)
|
|---|
| 2732 | Double_t fmin, fedm, errdef;
|
|---|
| 2733 | Int_t npari, nparx, istat;
|
|---|
| 2734 | minuit.mnstat(fmin, fedm, errdef, npari, nparx, istat);
|
|---|
| 2735 |
|
|---|
| 2736 | if (errMinimize || istat < 3)
|
|---|
| 2737 | {
|
|---|
| 2738 | cout << "MUnfold::CallMinuit : Minimization failed" << endl;
|
|---|
| 2739 | cout << " fmin = " << fmin << ", fedm = " << fedm
|
|---|
| 2740 | << ", errdef = " << errdef << ", istat = " << istat
|
|---|
| 2741 | << endl;
|
|---|
| 2742 | return kFALSE;
|
|---|
| 2743 | }
|
|---|
| 2744 |
|
|---|
| 2745 | //..............................................
|
|---|
| 2746 | // Minos error analysis
|
|---|
| 2747 | // minuit.mnmnos();
|
|---|
| 2748 |
|
|---|
| 2749 | //..............................................
|
|---|
| 2750 | // Print current status of minimization
|
|---|
| 2751 | // if nkode = 0 only function value
|
|---|
| 2752 | // 1 parameter values, errors, limits
|
|---|
| 2753 | // 2 values, errors, step sizes, internal values
|
|---|
| 2754 | // 3 values, errors, step sizes, 1st derivatives
|
|---|
| 2755 | // 4 values, paraboloc errors, MINOS errors
|
|---|
| 2756 |
|
|---|
| 2757 | //Int_t nkode = 4;
|
|---|
| 2758 | //minuit.mnprin(nkode, fmin);
|
|---|
| 2759 |
|
|---|
| 2760 | //..............................................
|
|---|
| 2761 | // call fcn with IFLAG = 3 (final calculation : calculate p(chi2))
|
|---|
| 2762 | // iflag = 1 initial calculations only
|
|---|
| 2763 | // 2 calculate 1st derivatives and function
|
|---|
| 2764 | // 3 calculate function only
|
|---|
| 2765 | // 4 calculate function + final calculations
|
|---|
| 2766 | const char *command = "CALL";
|
|---|
| 2767 | Double_t iflag = 3;
|
|---|
| 2768 | Int_t errfcn3;
|
|---|
| 2769 | minuit.mnexcm(command, &iflag, 1, errfcn3);
|
|---|
| 2770 |
|
|---|
| 2771 | return kTRUE;
|
|---|
| 2772 | }
|
|---|
| 2773 |
|
|---|
| 2774 | // -----------------------------------------------------------------------
|
|---|
| 2775 | //
|
|---|
| 2776 | // Return the unfolded distribution
|
|---|
| 2777 | //
|
|---|
| 2778 | TMatrixD &GetVb() { return fVb; }
|
|---|
| 2779 |
|
|---|
| 2780 | // -----------------------------------------------------------------------
|
|---|
| 2781 | //
|
|---|
| 2782 | // Return the covariance matrix of the unfolded distribution
|
|---|
| 2783 | //
|
|---|
| 2784 | TMatrixD &GetVbcov() { return fVbcov; }
|
|---|
| 2785 |
|
|---|
| 2786 | // -----------------------------------------------------------------------
|
|---|
| 2787 | //
|
|---|
| 2788 | // Return the unfolded distribution + various errors
|
|---|
| 2789 | //
|
|---|
| 2790 | TMatrixD &GetResult() { return fResult; }
|
|---|
| 2791 |
|
|---|
| 2792 | // -----------------------------------------------------------------------
|
|---|
| 2793 | //
|
|---|
| 2794 | // Return the chisquared contributions
|
|---|
| 2795 | //
|
|---|
| 2796 | TMatrixD &GetChi2() { return fChi2; }
|
|---|
| 2797 |
|
|---|
| 2798 | // -----------------------------------------------------------------------
|
|---|
| 2799 | //
|
|---|
| 2800 | // Return the total chisquared
|
|---|
| 2801 | //
|
|---|
| 2802 | Double_t &GetChisq() { return fChisq; }
|
|---|
| 2803 |
|
|---|
| 2804 | // -----------------------------------------------------------------------
|
|---|
| 2805 | //
|
|---|
| 2806 | // Return the number of degrees of freedom
|
|---|
| 2807 | //
|
|---|
| 2808 | Double_t &GetNdf() { return fNdf; }
|
|---|
| 2809 |
|
|---|
| 2810 | // -----------------------------------------------------------------------
|
|---|
| 2811 | //
|
|---|
| 2812 | // Return the chisquared probability
|
|---|
| 2813 | //
|
|---|
| 2814 | Double_t &GetProb() { return fProb; }
|
|---|
| 2815 |
|
|---|
| 2816 | // -----------------------------------------------------------------------
|
|---|
| 2817 | //
|
|---|
| 2818 | // Return the smoothed migration matrix
|
|---|
| 2819 | //
|
|---|
| 2820 | TMatrixD &GetMigSmoo() { return fMigSmoo; }
|
|---|
| 2821 |
|
|---|
| 2822 | // -----------------------------------------------------------------------
|
|---|
| 2823 | //
|
|---|
| 2824 | // Return the error2 of the smoothed migration matrix
|
|---|
| 2825 | //
|
|---|
| 2826 | TMatrixD &GetMigSmooerr2() { return fMigSmooerr2; }
|
|---|
| 2827 |
|
|---|
| 2828 | // -----------------------------------------------------------------------
|
|---|
| 2829 | //
|
|---|
| 2830 | // Return the chi2 contributions for the smoothing
|
|---|
| 2831 | //
|
|---|
| 2832 | TMatrixD &GetMigChi2() { return fMigChi2; }
|
|---|
| 2833 | };
|
|---|
| 2834 | // end of definition of class MUnfold
|
|---|
| 2835 | ///////////////////////////////////////////////////
|
|---|
| 2836 |
|
|---|
| 2837 |
|
|---|
| 2838 | // -----------------------------------------------------------------------
|
|---|
| 2839 | //
|
|---|
| 2840 | // fcnSmooth (used by SmoothMigrationMatrix)
|
|---|
| 2841 | //
|
|---|
| 2842 | // is called by MINUIT
|
|---|
| 2843 | // for given values of the parameters it calculates the function
|
|---|
| 2844 | // to be minimized
|
|---|
| 2845 | //
|
|---|
| 2846 | void fcnSmooth(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 2847 | Double_t *par, Int_t iflag)
|
|---|
| 2848 | {
|
|---|
| 2849 | MUnfold &gUnfold = *(MUnfold*)gMinuit->GetObjectFit();
|
|---|
| 2850 |
|
|---|
| 2851 | Double_t a0 = par[0];
|
|---|
| 2852 | Double_t a1 = par[1];
|
|---|
| 2853 | Double_t a2 = par[2];
|
|---|
| 2854 |
|
|---|
| 2855 | Double_t b0 = par[3];
|
|---|
| 2856 | Double_t b1 = par[4];
|
|---|
| 2857 | Double_t b2 = par[5];
|
|---|
| 2858 |
|
|---|
| 2859 | // loop over bins of log10(E-true)
|
|---|
| 2860 | Double_t chi2 = 0.0;
|
|---|
| 2861 | Int_t npoints = 0;
|
|---|
| 2862 | Double_t func[20];
|
|---|
| 2863 |
|
|---|
| 2864 | for (UInt_t j=0; j<gUnfold.fNb; j++)
|
|---|
| 2865 | {
|
|---|
| 2866 | Double_t yj = ((double)j) + 0.5;
|
|---|
| 2867 | Double_t mean = a0 + a1*yj + a2*yj*yj + yj;
|
|---|
| 2868 | Double_t RMS = b0 + b1*yj + b2*yj*yj;
|
|---|
| 2869 |
|
|---|
| 2870 | if (RMS <= 0.0)
|
|---|
| 2871 | {
|
|---|
| 2872 | chi2 = 1.e20;
|
|---|
| 2873 | break;
|
|---|
| 2874 | }
|
|---|
| 2875 |
|
|---|
| 2876 | // loop over bins of log10(E-est)
|
|---|
| 2877 |
|
|---|
| 2878 | //.......................................
|
|---|
| 2879 | Double_t function;
|
|---|
| 2880 | Double_t sum=0.0;
|
|---|
| 2881 | for (UInt_t i=0; i<gUnfold.fNa; i++)
|
|---|
| 2882 | {
|
|---|
| 2883 | Double_t xlow = (double)i;
|
|---|
| 2884 | Double_t xup = xlow + 1.0;
|
|---|
| 2885 | Double_t xl = (xlow- mean) / RMS;
|
|---|
| 2886 | Double_t xu = (xup - mean) / RMS;
|
|---|
| 2887 | function = (TMath::Freq(xu) - TMath::Freq(xl));
|
|---|
| 2888 |
|
|---|
| 2889 | //cout << "i, xl, xu, function = " << i << ", " << xl << ", "
|
|---|
| 2890 | // << xu << ", " << function << endl;
|
|---|
| 2891 |
|
|---|
| 2892 | if (function < 1.e-10)
|
|---|
| 2893 | function = 0.0;
|
|---|
| 2894 |
|
|---|
| 2895 | func[i] = function;
|
|---|
| 2896 | sum += function;
|
|---|
| 2897 | }
|
|---|
| 2898 |
|
|---|
| 2899 | // cout << "mean, RMS = " << mean << ", " << RMS
|
|---|
| 2900 | // << ", j , sum of function = " << j << ", " << sum << endl;
|
|---|
| 2901 |
|
|---|
| 2902 | //.......................................
|
|---|
| 2903 |
|
|---|
| 2904 | for (UInt_t i=0; i<gUnfold.fNa; i++)
|
|---|
| 2905 | {
|
|---|
| 2906 | if (sum != 0.0)
|
|---|
| 2907 | func[i] /= sum;
|
|---|
| 2908 |
|
|---|
| 2909 | gUnfold.fMigSmoo(i,j) = func[i];
|
|---|
| 2910 | gUnfold.fMigChi2(i,j) = 0.0;
|
|---|
| 2911 |
|
|---|
| 2912 | // if relative error is greater than 30 % ignore the point
|
|---|
| 2913 |
|
|---|
| 2914 | if (gUnfold.fMigOrig(i,j) != 0 &&
|
|---|
| 2915 | gUnfold.fMigOrigerr2(i,j) != 0 &&
|
|---|
| 2916 | func[i] != 0 )
|
|---|
| 2917 | {
|
|---|
| 2918 | if (gUnfold.fMigOrigerr2(i,j)/
|
|---|
| 2919 | (gUnfold.fMigOrig(i,j)*gUnfold.fMigOrig(i,j)) <= 0.09)
|
|---|
| 2920 | {
|
|---|
| 2921 | gUnfold.fMigChi2(i,j) = ( gUnfold.fMigOrig(i,j) - func[i] )
|
|---|
| 2922 | * ( gUnfold.fMigOrig(i,j) - func[i] )
|
|---|
| 2923 | / gUnfold.fMigOrigerr2(i,j);
|
|---|
| 2924 | chi2 += gUnfold.fMigChi2(i,j);
|
|---|
| 2925 | npoints += 1;
|
|---|
| 2926 | }
|
|---|
| 2927 | }
|
|---|
| 2928 | }
|
|---|
| 2929 | //.......................................
|
|---|
| 2930 |
|
|---|
| 2931 | }
|
|---|
| 2932 | f = chi2;
|
|---|
| 2933 |
|
|---|
| 2934 | //cout << "fcnSmooth : f = " << f << endl;
|
|---|
| 2935 |
|
|---|
| 2936 | //--------------------------------------------------------------------
|
|---|
| 2937 | // final calculations
|
|---|
| 2938 | if (iflag == 3)
|
|---|
| 2939 | {
|
|---|
| 2940 | Int_t NDF = npoints - npar;
|
|---|
| 2941 | Double_t prob = TMath::Prob(chi2, NDF);
|
|---|
| 2942 |
|
|---|
| 2943 | cout << "fcnSmooth : npoints, chi2, NDF, prob = " << npoints << ", ";
|
|---|
| 2944 | cout << chi2 << ", " << NDF << ", " << prob << endl;
|
|---|
| 2945 | cout << "=======================================" << endl;
|
|---|
| 2946 | }
|
|---|
| 2947 | }
|
|---|
| 2948 |
|
|---|
| 2949 | // -----------------------------------------------------------------------
|
|---|
| 2950 | //
|
|---|
| 2951 | // fcnTikhonov2 (used by Tikhonov2)
|
|---|
| 2952 | //
|
|---|
| 2953 | // is called by MINUIT
|
|---|
| 2954 | // for given values of the parameters it calculates the function F
|
|---|
| 2955 | // the free parameters are the first (fNb-1) elements
|
|---|
| 2956 | // of the normalized unfolded distribution
|
|---|
| 2957 | //
|
|---|
| 2958 | void fcnTikhonov2(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 2959 | Double_t *par, Int_t iflag)
|
|---|
| 2960 | {
|
|---|
| 2961 | MUnfold &gUnfold = *(MUnfold*)gMinuit->GetObjectFit();
|
|---|
| 2962 |
|
|---|
| 2963 | // (npar+1) is the number of bins of the unfolded distribuition (fNb)
|
|---|
| 2964 | // npar is the number of free parameters (fNb-1)
|
|---|
| 2965 |
|
|---|
| 2966 | UInt_t npar1 = npar + 1;
|
|---|
| 2967 |
|
|---|
| 2968 | UInt_t fNa = gUnfold.fNa;
|
|---|
| 2969 | UInt_t fNb = gUnfold.fNb;
|
|---|
| 2970 | if (npar1 != fNb)
|
|---|
| 2971 | {
|
|---|
| 2972 | cout << "fcnTikhonov2 : inconsistency in number of parameters; npar, fNb = ";
|
|---|
| 2973 | cout << npar << ", " << fNb << endl;
|
|---|
| 2974 | //return;
|
|---|
| 2975 | }
|
|---|
| 2976 | npar1 = fNb;
|
|---|
| 2977 |
|
|---|
| 2978 | TMatrixD p(npar1, 1);
|
|---|
| 2979 | TMatrixD &fVb = gUnfold.fVb;
|
|---|
| 2980 |
|
|---|
| 2981 | // p is the normalized unfolded distribution
|
|---|
| 2982 | // sum(p(i,0)) from i=0 to npar is equal to 1
|
|---|
| 2983 | Double_t sum = 0.0;
|
|---|
| 2984 | for (Int_t i=0; i<npar; i++)
|
|---|
| 2985 | {
|
|---|
| 2986 | p(i,0) = par[i];
|
|---|
| 2987 | sum += par[i];
|
|---|
| 2988 | }
|
|---|
| 2989 | p(npar,0) = 1.0 - sum;
|
|---|
| 2990 |
|
|---|
| 2991 |
|
|---|
| 2992 | // all p(i,0) have to be greater than zero
|
|---|
| 2993 | for (UInt_t i=0; i<npar1; i++)
|
|---|
| 2994 | if (p(i,0) <= 0.0)
|
|---|
| 2995 | {
|
|---|
| 2996 | f = 1.e20;
|
|---|
| 2997 | return;
|
|---|
| 2998 | }
|
|---|
| 2999 |
|
|---|
| 3000 | //.......................
|
|---|
| 3001 | // take least squares result for the normaliztion
|
|---|
| 3002 | TMatrixD alpha(gUnfold.fMigrat, TMatrixD::kMult, p);
|
|---|
| 3003 |
|
|---|
| 3004 | //TMatrixD v4 (gUnfold.fVa, TMatrixD::kTransposeMult,
|
|---|
| 3005 | // gUnfold.fVacovInv);
|
|---|
| 3006 | //TMatrixD norma(v4, TMatrixD::kMult, gUnfold.fVa);
|
|---|
| 3007 |
|
|---|
| 3008 | TMatrixD v5 (alpha, TMatrixD::kTransposeMult, gUnfold.fVacovInv);
|
|---|
| 3009 | TMatrixD normb(v5, TMatrixD::kMult, alpha);
|
|---|
| 3010 |
|
|---|
| 3011 | TMatrixD normc(v5, TMatrixD::kMult, gUnfold.fVa);
|
|---|
| 3012 |
|
|---|
| 3013 | Double_t norm = normc(0,0)/normb(0,0);
|
|---|
| 3014 |
|
|---|
| 3015 | //.......................
|
|---|
| 3016 |
|
|---|
| 3017 | // b is the unnormalized unfolded distribution
|
|---|
| 3018 | // sum(b(i,0)) from i=0 to npar is equal to norm
|
|---|
| 3019 | // (the total number of events)
|
|---|
| 3020 | for (UInt_t i=0; i<npar1; i++)
|
|---|
| 3021 | fVb(i,0) = p(i,0) * norm;
|
|---|
| 3022 |
|
|---|
| 3023 | TMatrixD Gb(gUnfold.fMigrat, TMatrixD::kMult, fVb);
|
|---|
| 3024 | TMatrixD v3(fNa, 1);
|
|---|
| 3025 | v3 = gUnfold.fVa;
|
|---|
| 3026 | v3 -= Gb;
|
|---|
| 3027 |
|
|---|
| 3028 | TMatrixD v1(1,fNa);
|
|---|
| 3029 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 3030 | {
|
|---|
| 3031 | v1(0,i) = 0;
|
|---|
| 3032 | for (UInt_t j=0; j<fNa; j++)
|
|---|
| 3033 | v1(0,i) += v3(j,0) * gUnfold.fVacovInv(j,i) ;
|
|---|
| 3034 | }
|
|---|
| 3035 |
|
|---|
| 3036 | for (UInt_t i = 0; i<fNa; i++)
|
|---|
| 3037 | gUnfold.Chi2(i,0) = v1(0,i) * v3(i,0);
|
|---|
| 3038 |
|
|---|
| 3039 | gUnfold.Chisq = GetMatrixSumCol(gUnfold.Chi2,0);
|
|---|
| 3040 |
|
|---|
| 3041 | //-----------------------------------------------------
|
|---|
| 3042 | // calculate 2nd derivative squared
|
|---|
| 3043 | // regularization term (second derivative squared)
|
|---|
| 3044 | gUnfold.SecDeriv = 0;
|
|---|
| 3045 | for (UInt_t j=1; j<(fNb-1); j++)
|
|---|
| 3046 | {
|
|---|
| 3047 | const Double_t temp =
|
|---|
| 3048 | + 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
|---|
| 3049 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
|---|
| 3050 |
|
|---|
| 3051 | gUnfold.SecDeriv += temp*temp;
|
|---|
| 3052 | }
|
|---|
| 3053 |
|
|---|
| 3054 | gUnfold.ZerDeriv = 0;
|
|---|
| 3055 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 3056 | gUnfold.ZerDeriv += fVb(j,0) * fVb(j,0);
|
|---|
| 3057 |
|
|---|
| 3058 | f = gUnfold.Chisq/2 * gUnfold.fW + gUnfold.SecDeriv;
|
|---|
| 3059 |
|
|---|
| 3060 | //cout << "F=" << f << " \tSecDeriv=" << gUnfold.SecDeriv
|
|---|
| 3061 | // << " \tchi2="
|
|---|
| 3062 | // << gUnfold.Chisq << " \tfW=" << gUnfold.fW << endl;
|
|---|
| 3063 |
|
|---|
| 3064 | //--------------------------------------------------------------------
|
|---|
| 3065 | // final calculations
|
|---|
| 3066 | if (iflag == 3)
|
|---|
| 3067 | {
|
|---|
| 3068 | //..............................................
|
|---|
| 3069 | // calculate external error matrix of the fitted parameters 'val'
|
|---|
| 3070 | // extend it with the covariances for y=1-sum(val)
|
|---|
| 3071 | Double_t emat[20][20];
|
|---|
| 3072 | Int_t ndim = 20;
|
|---|
| 3073 | gMinuit->mnemat(&emat[0][0], ndim);
|
|---|
| 3074 |
|
|---|
| 3075 | Double_t covv = 0;
|
|---|
| 3076 | for (UInt_t i=0; i<(gUnfold.fNb-1); i++)
|
|---|
| 3077 | {
|
|---|
| 3078 | Double_t cov = 0;
|
|---|
| 3079 | for (UInt_t k=0; k<(gUnfold.fNb-1); k++)
|
|---|
| 3080 | cov += emat[i][k];
|
|---|
| 3081 |
|
|---|
| 3082 | emat[i][gUnfold.fNb-1] = -cov;
|
|---|
| 3083 | emat[gUnfold.fNb-1][i] = -cov;
|
|---|
| 3084 |
|
|---|
| 3085 | covv += cov;
|
|---|
| 3086 | }
|
|---|
| 3087 | emat[gUnfold.fNb-1][gUnfold.fNb-1] = covv;
|
|---|
| 3088 |
|
|---|
| 3089 | for (UInt_t i=0; i<gUnfold.fNb; i++)
|
|---|
| 3090 | for (UInt_t k=0; k<gUnfold.fNb; k++)
|
|---|
| 3091 | gUnfold.fVbcov(i,k) = emat[i][k] *norm*norm;
|
|---|
| 3092 |
|
|---|
| 3093 | //-----------------------------------------------------
|
|---|
| 3094 | //..............................................
|
|---|
| 3095 | // put unfolded distribution into fResult
|
|---|
| 3096 | // fResult(i,0) value in bin i
|
|---|
| 3097 | // fResult(i,1) error of value in bin i
|
|---|
| 3098 |
|
|---|
| 3099 | gUnfold.fResult.ResizeTo(gUnfold.fNb, 5);
|
|---|
| 3100 |
|
|---|
| 3101 | Double_t sum = 0;
|
|---|
| 3102 | for (UInt_t i=0; i<(gUnfold.fNb-1); i++)
|
|---|
| 3103 | {
|
|---|
| 3104 | Double_t val;
|
|---|
| 3105 | Double_t err;
|
|---|
| 3106 | if (!gMinuit->GetParameter(i, val, err))
|
|---|
| 3107 | {
|
|---|
| 3108 | cout << "Error getting parameter #" << i << endl;
|
|---|
| 3109 | return;
|
|---|
| 3110 | }
|
|---|
| 3111 |
|
|---|
| 3112 | Double_t eplus;
|
|---|
| 3113 | Double_t eminus;
|
|---|
| 3114 | Double_t eparab;
|
|---|
| 3115 | Double_t gcc;
|
|---|
| 3116 | gMinuit->mnerrs(i, eplus, eminus, eparab, gcc);
|
|---|
| 3117 |
|
|---|
| 3118 | gUnfold.fVb(i, 0) = val * norm;
|
|---|
| 3119 |
|
|---|
| 3120 | gUnfold.fResult(i, 0) = val * norm;
|
|---|
| 3121 | gUnfold.fResult(i, 1) = eparab * norm;
|
|---|
| 3122 | gUnfold.fResult(i, 2) = eplus * norm;
|
|---|
| 3123 | gUnfold.fResult(i, 3) = eminus * norm;
|
|---|
| 3124 | gUnfold.fResult(i, 4) = gcc;
|
|---|
| 3125 | sum += val;
|
|---|
| 3126 | }
|
|---|
| 3127 | gUnfold.fVb(gUnfold.fNb-1, 0) = (1.0-sum) * norm;
|
|---|
| 3128 |
|
|---|
| 3129 | gUnfold.fResult(gUnfold.fNb-1, 0) = (1.0-sum) * norm;
|
|---|
| 3130 | gUnfold.fResult(gUnfold.fNb-1, 1) =
|
|---|
| 3131 | sqrt(gUnfold.fVbcov(gUnfold.fNb-1,gUnfold.fNb-1));
|
|---|
| 3132 | gUnfold.fResult(gUnfold.fNb-1, 2) = 0;
|
|---|
| 3133 | gUnfold.fResult(gUnfold.fNb-1, 3) = 0;
|
|---|
| 3134 | gUnfold.fResult(gUnfold.fNb-1, 4) = 1;
|
|---|
| 3135 | //..............................................
|
|---|
| 3136 |
|
|---|
| 3137 | //-----------------------------------------------------
|
|---|
| 3138 | // calculate 0th derivative squared
|
|---|
| 3139 | gUnfold.ZerDeriv = 0;
|
|---|
| 3140 | for (UInt_t j=0; j<fNb; j++)
|
|---|
| 3141 | gUnfold.ZerDeriv += fVb(j,0) * fVb(j,0);
|
|---|
| 3142 |
|
|---|
| 3143 | //-----------------------------------------------------
|
|---|
| 3144 | // calculate the entropy
|
|---|
| 3145 |
|
|---|
| 3146 | gUnfold.Entropy = 0;
|
|---|
| 3147 | for (UInt_t j=0; j<gUnfold.fNb; j++)
|
|---|
| 3148 | if (p(j,0) > 0)
|
|---|
| 3149 | gUnfold.Entropy += p(j,0) * log( p(j,0) );
|
|---|
| 3150 |
|
|---|
| 3151 |
|
|---|
| 3152 | //-----------------------------------------------------
|
|---|
| 3153 | // calculate SpurSigma
|
|---|
| 3154 | gUnfold.SpurSigma = 0.0;
|
|---|
| 3155 | for (UInt_t m=0; m<fNb; m++)
|
|---|
| 3156 | gUnfold.SpurSigma += gUnfold.fVbcov(m,m);
|
|---|
| 3157 | // cout << "SpurSigma =" << SpurSigma << endl;
|
|---|
| 3158 |
|
|---|
| 3159 | //-----------------------------------------------------
|
|---|
| 3160 | gUnfold.SpurAR = 0;
|
|---|
| 3161 | gUnfold.DiffAR2 = 0;
|
|---|
| 3162 |
|
|---|
| 3163 | //-----------------------------------------------------
|
|---|
| 3164 | gUnfold.fNdf = gUnfold.fNa;
|
|---|
| 3165 | gUnfold.fChisq = gUnfold.Chisq;
|
|---|
| 3166 |
|
|---|
| 3167 | for (UInt_t i=0; i<fNa; i++)
|
|---|
| 3168 | {
|
|---|
| 3169 | gUnfold.fChi2(i,0) = gUnfold.Chi2(i,0);
|
|---|
| 3170 | }
|
|---|
| 3171 |
|
|---|
| 3172 |
|
|---|
| 3173 | UInt_t iNdf = (UInt_t) (gUnfold.fNdf+0.5);
|
|---|
| 3174 |
|
|---|
| 3175 | //cout << "fcnTikhonov2 : fW, chisq (from fcnF) = "
|
|---|
| 3176 | // << gUnfold.fW << ", " << gUnfold.fChisq << endl;
|
|---|
| 3177 |
|
|---|
| 3178 | gUnfold.fProb = iNdf>0 ? TMath::Prob(gUnfold.fChisq, iNdf) : 0;
|
|---|
| 3179 | }
|
|---|
| 3180 | }
|
|---|
| 3181 |
|
|---|
| 3182 |
|
|---|
| 3183 | // ======================================================
|
|---|
| 3184 | //
|
|---|
| 3185 | // SteerUnfold
|
|---|
| 3186 | //
|
|---|
| 3187 | void SteerUnfold(TH1D &ha, TH2D &hacov, TH2D &hmig,
|
|---|
| 3188 | TH2D &hmigor, TH1D &hb0, TH1D *hpr=NULL)
|
|---|
| 3189 | {
|
|---|
| 3190 | // ha is the distribution to be unfolded
|
|---|
| 3191 | // hacov is the covariance matrix of the distribution ha
|
|---|
| 3192 | // hmig is the migration matrix;
|
|---|
| 3193 | // it is used in the unfolding unless it is overwritten
|
|---|
| 3194 | // by SmoothMigrationMatrix by the smoothed migration matrix
|
|---|
| 3195 | // hmigor is the migration matrix to be smoothed;
|
|---|
| 3196 | // the smoothed migration matrix will be used in the unfolding
|
|---|
| 3197 | // hpr the prior distribution
|
|---|
| 3198 | // it is only used if SetPriorInput(*hpr) is called
|
|---|
| 3199 |
|
|---|
| 3200 | //..............................................
|
|---|
| 3201 | // create an MUnfold object;
|
|---|
| 3202 | // fill histograms into vectors and matrices
|
|---|
| 3203 |
|
|---|
| 3204 | MUnfold unfold(ha, hacov, hmig);
|
|---|
| 3205 |
|
|---|
| 3206 | //..............................................
|
|---|
| 3207 | // smooth the migration matrix;
|
|---|
| 3208 | // the smoothed migration matrix will be used in the unfolding
|
|---|
| 3209 | // hmig is the original (unsmoothed) migration matrix
|
|---|
| 3210 |
|
|---|
| 3211 | unfold.SmoothMigrationMatrix(hmigor);
|
|---|
| 3212 |
|
|---|
| 3213 | //..............................................
|
|---|
| 3214 | // define prior distribution (has always to be defined)
|
|---|
| 3215 | // the alternatives are :
|
|---|
| 3216 |
|
|---|
| 3217 | // 1 SetPriorConstant() : isotropic distribution
|
|---|
| 3218 | // 2 SetPriorPower(gamma) : dN/dE = E^{-gamma}
|
|---|
| 3219 | // 3 SetPriorInput(*hpr): the distribution *hpr is used
|
|---|
| 3220 | // 4 SetPriorRebin(*ha) : use rebinned histogram ha
|
|---|
| 3221 |
|
|---|
| 3222 | UInt_t flagprior = 4;
|
|---|
| 3223 | cout << "SteerUnfold : flagprior = " << flagprior << endl;
|
|---|
| 3224 | cout << "=========================="<< endl;
|
|---|
| 3225 |
|
|---|
| 3226 | Bool_t errorprior=kTRUE;
|
|---|
| 3227 | switch (flagprior)
|
|---|
| 3228 | {
|
|---|
| 3229 | case 1:
|
|---|
| 3230 | unfold.SetPriorConstant();
|
|---|
| 3231 | break;
|
|---|
| 3232 | case 2:
|
|---|
| 3233 | errorprior = unfold.SetPriorPower(1.5);
|
|---|
| 3234 | break;
|
|---|
| 3235 | case 3:
|
|---|
| 3236 | if (!hpr)
|
|---|
| 3237 | {
|
|---|
| 3238 | cout << "Error: No hpr!" << endl;
|
|---|
| 3239 | return;
|
|---|
| 3240 | }
|
|---|
| 3241 | errorprior = unfold.SetPriorInput(*hpr);
|
|---|
| 3242 | break;
|
|---|
| 3243 | case 4:
|
|---|
| 3244 | errorprior = unfold.SetPriorRebin(ha);
|
|---|
| 3245 | break;
|
|---|
| 3246 | }
|
|---|
| 3247 | if (!errorprior)
|
|---|
| 3248 | {
|
|---|
| 3249 | cout << "MUnfold::SetPrior... : failed. flagprior = " ;
|
|---|
| 3250 | cout << flagprior << endl;
|
|---|
| 3251 | return;
|
|---|
| 3252 | }
|
|---|
| 3253 |
|
|---|
| 3254 | //..............................................
|
|---|
| 3255 | // calculate the matrix G = M * M(transposed)
|
|---|
| 3256 | // M being the migration matrix
|
|---|
| 3257 |
|
|---|
| 3258 | unfold.CalculateG();
|
|---|
| 3259 |
|
|---|
| 3260 | //..............................................
|
|---|
| 3261 | // call steering routine for the actual unfolding;
|
|---|
| 3262 | // the alternatives are :
|
|---|
| 3263 |
|
|---|
| 3264 | // 1 Schmelling : minimize the function Z by Gauss-Newton iteration;
|
|---|
| 3265 | // the parameters to be fitted are gamma(i) = lambda(i)/w;
|
|---|
| 3266 |
|
|---|
| 3267 | // 2 Tikhonov2 : regularization term is sum of (2nd deriv.)**2 ;
|
|---|
| 3268 | // minimization by using MINUIT;
|
|---|
| 3269 | // the parameters to be fitted are
|
|---|
| 3270 | // the bin contents of the unfolded distribution
|
|---|
| 3271 |
|
|---|
| 3272 | // 3 Bertero: minimization by iteration
|
|---|
| 3273 | //
|
|---|
| 3274 |
|
|---|
| 3275 | UInt_t flagunfold = 1;
|
|---|
| 3276 | cout << "SteerUnfold : flagunfold = " << flagunfold << endl;
|
|---|
| 3277 | cout << "===========================" << endl;
|
|---|
| 3278 |
|
|---|
| 3279 |
|
|---|
| 3280 |
|
|---|
| 3281 | switch (flagunfold)
|
|---|
| 3282 | {
|
|---|
| 3283 | case 1: // Schmelling
|
|---|
| 3284 | cout << "" << endl;
|
|---|
| 3285 | cout << "Unfolding algorithm : Schmelling" << endl;
|
|---|
| 3286 | cout << "================================" << endl;
|
|---|
| 3287 | if (!unfold.Schmelling(hb0))
|
|---|
| 3288 | cout << "MUnfold::Schmelling : failed." << endl;
|
|---|
| 3289 | break;
|
|---|
| 3290 |
|
|---|
| 3291 | case 2: // Tikhonov2
|
|---|
| 3292 | cout << "" << endl;
|
|---|
| 3293 | cout << "Unfolding algorithm : Tikhonov" << endl;
|
|---|
| 3294 | cout << "================================" << endl;
|
|---|
| 3295 | if (!unfold.Tikhonov2(hb0))
|
|---|
| 3296 | cout << "MUnfold::Tikhonov2 : failed." << endl;
|
|---|
| 3297 | break;
|
|---|
| 3298 |
|
|---|
| 3299 | case 3: // Bertero
|
|---|
| 3300 | cout << "" << endl;
|
|---|
| 3301 | cout << "Unfolding algorithm : Bertero" << endl;
|
|---|
| 3302 | cout << "================================" << endl;
|
|---|
| 3303 | if (!unfold.Bertero(hb0))
|
|---|
| 3304 | cout << "MUnfold::Bertero : failed." << endl;
|
|---|
| 3305 | break;
|
|---|
| 3306 | }
|
|---|
| 3307 |
|
|---|
| 3308 |
|
|---|
| 3309 | //..............................................
|
|---|
| 3310 | // Print fResult
|
|---|
| 3311 | unfold.PrintResults();
|
|---|
| 3312 |
|
|---|
| 3313 |
|
|---|
| 3314 | //..............................................
|
|---|
| 3315 | // Draw the plots
|
|---|
| 3316 | unfold.DrawPlots();
|
|---|
| 3317 |
|
|---|
| 3318 | //..............................................
|
|---|
| 3319 | // get unfolded distribution
|
|---|
| 3320 | //TMatrixD &Vb = unfold.GetVb();
|
|---|
| 3321 | //TMatrixD &Vbcov = unfold.GetVbcov();
|
|---|
| 3322 |
|
|---|
| 3323 | }
|
|---|
| 3324 |
|
|---|
| 3325 | //__________________________________________________________________________
|
|---|
| 3326 |
|
|---|
| 3327 |
|
|---|
| 3328 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 3329 | // //
|
|---|
| 3330 | // Main program //
|
|---|
| 3331 | // defines the ideal distribution (hb0) //
|
|---|
| 3332 | // defines the migration matrix (hMigrat) //
|
|---|
| 3333 | // defines the distribution to be unfolded (hVa) //
|
|---|
| 3334 | // //
|
|---|
| 3335 | // calls member functions of the class MUnfold //
|
|---|
| 3336 | // to do the unfolding //
|
|---|
| 3337 | // //
|
|---|
| 3338 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 3339 | void unfold()
|
|---|
| 3340 | {
|
|---|
| 3341 | // -----------------------------------------
|
|---|
| 3342 | // migration matrix :
|
|---|
| 3343 | // x corresponds to measured quantity
|
|---|
| 3344 | // y corresponds to true quantity
|
|---|
| 3345 |
|
|---|
| 3346 | //const Int_t na = 13;
|
|---|
| 3347 | const Int_t na = 18;
|
|---|
| 3348 | const Axis_t alow = 0.25;
|
|---|
| 3349 | const Axis_t aup = 3.50;
|
|---|
| 3350 |
|
|---|
| 3351 | //const Int_t nb = 11;
|
|---|
| 3352 | const Int_t nb = 22;
|
|---|
| 3353 | const Axis_t blow = 0.50;
|
|---|
| 3354 | const Axis_t bup = 3.25;
|
|---|
| 3355 |
|
|---|
| 3356 | TH2D hmig("Migrat", "Migration Matrix", na, alow, aup, nb, blow, bup);
|
|---|
| 3357 | hmig.Sumw2();
|
|---|
| 3358 |
|
|---|
| 3359 | // parametrize migration matrix as
|
|---|
| 3360 | // <log10(Eest)> = a0 + a1*log10(Etrue) + a2*log10(Etrue)**2
|
|---|
| 3361 | // + log10(Etrue)
|
|---|
| 3362 | // RMS( log10(Eest) ) = b0 + b1*log10(Etrue) + b2*log10(Etrue)**2
|
|---|
| 3363 | Double_t a0 = 0.0;
|
|---|
| 3364 | Double_t a1 = 0.0;
|
|---|
| 3365 | Double_t a2 = 0.0;
|
|---|
| 3366 |
|
|---|
| 3367 | Double_t b0 = 0.26;
|
|---|
| 3368 | Double_t b1 =-0.054;
|
|---|
| 3369 | Double_t b2 = 0.0;
|
|---|
| 3370 |
|
|---|
| 3371 | TF1 f2("f2", "gaus(0)", alow, aup);
|
|---|
| 3372 | f2.SetParName(0, "ampl");
|
|---|
| 3373 | f2.SetParName(1, "mean");
|
|---|
| 3374 | f2.SetParName(2, "sigma");
|
|---|
| 3375 |
|
|---|
| 3376 | // loop over log10(Etrue) bins
|
|---|
| 3377 | TAxis &yaxis = *hmig.GetYaxis();
|
|---|
| 3378 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 3379 | {
|
|---|
| 3380 | Double_t yvalue = yaxis.GetBinCenter(j);
|
|---|
| 3381 |
|
|---|
| 3382 | const Double_t mean = a0 + a1*yvalue + a2*yvalue*yvalue + yvalue;
|
|---|
| 3383 | const Double_t sigma = b0 + b1*yvalue + b2*yvalue*yvalue;
|
|---|
| 3384 | const Double_t ampl = 1./ ( sigma*TMath::Sqrt(2.0*TMath::Pi()));
|
|---|
| 3385 |
|
|---|
| 3386 | // gaus(0) is a substitute for [0]*exp( -0.5*( (x-[1])/[2] )**2 )
|
|---|
| 3387 | f2.SetParameter(0, ampl);
|
|---|
| 3388 | f2.SetParameter(1, mean);
|
|---|
| 3389 | f2.SetParameter(2, sigma);
|
|---|
| 3390 |
|
|---|
| 3391 | // fill temporary 1-dim histogram with the function
|
|---|
| 3392 | // fill the histogram using
|
|---|
| 3393 | // - either FillRandom
|
|---|
| 3394 | // - or using Freq
|
|---|
| 3395 | TH1D htemp("temp", "temp", na, alow, aup);
|
|---|
| 3396 | htemp.Sumw2();
|
|---|
| 3397 |
|
|---|
| 3398 | for (Int_t k=0; k<1000000; k++)
|
|---|
| 3399 | htemp.Fill(f2.GetRandom());
|
|---|
| 3400 |
|
|---|
| 3401 | // copy it into the migration matrix
|
|---|
| 3402 | Double_t sum = 0;
|
|---|
| 3403 | for (Int_t i=1; i<=na; i++)
|
|---|
| 3404 | {
|
|---|
| 3405 | const Stat_t content = htemp.GetBinContent(i);
|
|---|
| 3406 | hmig.SetBinContent(i, j, content);
|
|---|
| 3407 | sum += content;
|
|---|
| 3408 | }
|
|---|
| 3409 |
|
|---|
| 3410 | // normalize migration matrix
|
|---|
| 3411 | if (sum==0)
|
|---|
| 3412 | continue;
|
|---|
| 3413 |
|
|---|
| 3414 | for (Int_t i=1; i<=na; i++)
|
|---|
| 3415 | {
|
|---|
| 3416 | const Stat_t content = hmig.GetBinContent(i,j);
|
|---|
| 3417 | hmig.SetBinContent(i,j, content/sum);
|
|---|
| 3418 | hmig.SetBinError (i,j,sqrt(content)/sum);
|
|---|
| 3419 | }
|
|---|
| 3420 | }
|
|---|
| 3421 |
|
|---|
| 3422 | PrintTH2Content(hmig);
|
|---|
| 3423 | PrintTH2Error(hmig);
|
|---|
| 3424 |
|
|---|
| 3425 | // -----------------------------------------
|
|---|
| 3426 | // ideal distribution
|
|---|
| 3427 |
|
|---|
| 3428 | TH1D hb0("hb0", "Ideal distribution", nb, blow, bup);
|
|---|
| 3429 | hb0.Sumw2();
|
|---|
| 3430 |
|
|---|
| 3431 | // fill histogram with random numbers according to
|
|---|
| 3432 | // an exponential function dN/dE = E^{-gamma}
|
|---|
| 3433 | // or with y = log10(E), E = 10^y :
|
|---|
| 3434 | // dN/dy = ln10 * 10^{y*(1-gamma)}
|
|---|
| 3435 | TF1 f1("f1", "pow(10.0, x*(1.0-[0]))", blow, bup);
|
|---|
| 3436 | f1.SetParName(0,"gamma");
|
|---|
| 3437 | f1.SetParameter(0, 2.7);
|
|---|
| 3438 |
|
|---|
| 3439 | // ntimes is the number of entries
|
|---|
| 3440 | for (Int_t k=0; k<10000; k++)
|
|---|
| 3441 | hb0.Fill(f1.GetRandom());
|
|---|
| 3442 |
|
|---|
| 3443 | // introduce energy threshold at 50 GeV
|
|---|
| 3444 |
|
|---|
| 3445 | const Double_t lgEth = 1.70;
|
|---|
| 3446 | const Double_t dlgEth = 0.09;
|
|---|
| 3447 |
|
|---|
| 3448 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 3449 | {
|
|---|
| 3450 | const Double_t lgE = hb0.GetBinCenter(j);
|
|---|
| 3451 | const Double_t c = hb0.GetBinContent(j);
|
|---|
| 3452 | const Double_t dc = hb0.GetBinError(j);
|
|---|
| 3453 | const Double_t f = 1.0 / (1.0 + exp( -(lgE-lgEth)/dlgEth ));
|
|---|
| 3454 |
|
|---|
| 3455 | hb0.SetBinContent(j, f* c);
|
|---|
| 3456 | hb0.SetBinError (j, f*dc);
|
|---|
| 3457 | }
|
|---|
| 3458 |
|
|---|
| 3459 | PrintTH1Content(hb0);
|
|---|
| 3460 |
|
|---|
| 3461 | // -----------------------------------------
|
|---|
| 3462 | // here the prior distribution can be defined for the call
|
|---|
| 3463 | // to SetPriorInput(*hpr)
|
|---|
| 3464 | TH1D hpr("hpr", "Prior distribution" , nb, blow, bup);
|
|---|
| 3465 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 3466 | hpr.SetBinContent(j, 1.0/nb);
|
|---|
| 3467 |
|
|---|
| 3468 | PrintTH1Content(hpr);
|
|---|
| 3469 |
|
|---|
| 3470 | // -----------------------------------------
|
|---|
| 3471 | // generate distribution to be unfolded (ha)
|
|---|
| 3472 | // by smearing the ideal distribution (hb0)
|
|---|
| 3473 | //
|
|---|
| 3474 | TH1D ha("ha", "Distribution to be unfolded", na, alow, aup);
|
|---|
| 3475 | ha.Sumw2();
|
|---|
| 3476 |
|
|---|
| 3477 | for (Int_t i=1; i<=na; i++)
|
|---|
| 3478 | {
|
|---|
| 3479 | Double_t cont = 0;
|
|---|
| 3480 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 3481 | cont += hmig.GetBinContent(i, j) * hb0.GetBinContent(j);
|
|---|
| 3482 |
|
|---|
| 3483 | ha.SetBinContent(i, cont);
|
|---|
| 3484 | ha.SetBinError(i, sqrt(cont));
|
|---|
| 3485 | }
|
|---|
| 3486 |
|
|---|
| 3487 | PrintTH1Content(ha);
|
|---|
| 3488 | PrintTH1Error(ha);
|
|---|
| 3489 |
|
|---|
| 3490 | // -----------------------------------------
|
|---|
| 3491 | // covariance matrix of the distribution ha
|
|---|
| 3492 | TH2D hacov("hacov", "Error matrix of distribution ha",
|
|---|
| 3493 | na, alow, aup, na, alow, aup);
|
|---|
| 3494 |
|
|---|
| 3495 | for (Int_t i=1; i<=na; i++)
|
|---|
| 3496 | {
|
|---|
| 3497 | const Double_t content = ha.GetBinContent(i);
|
|---|
| 3498 | hacov.SetBinContent(i, i, content<3 ? 3.0 : content);
|
|---|
| 3499 | }
|
|---|
| 3500 |
|
|---|
| 3501 | PrintTH2Content(hacov);
|
|---|
| 3502 |
|
|---|
| 3503 | SteerUnfold(ha, hacov, hmig, hmig, hb0, &hpr);
|
|---|
| 3504 | }
|
|---|
| 3505 | //========================================================================//
|
|---|