/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Sebastian Raducci 12/2003 ! ! Copyright: MAGIC Software Development, 2002-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MArrivalTimeCalc // // This is a task that calculates the arrival times of photons. // It returns the absolute maximum of the spline that interpolates // the FADC slices // // Input Containers: // MRawEvtData // // Output Containers: // MArrivalTime // MRawEvtData // ////////////////////////////////////////////////////////////////////////////// #include "MArrivalTimeCalc.h" #include #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MGeomCam.h" #include "MArrivalTime.h" #include "MRawEvtData.h" #include "MRawEvtPixelIter.h" ClassImp(MArrivalTimeCalc); using namespace std; // -------------------------------------------------------------------------- // // Default constructor. // MArrivalTimeCalc::MArrivalTimeCalc(const char *name, const char *title) : fStepSize(0.1) { fName = name ? name : "MArrivalTimeCalc"; fTitle = title ? title : "Calculate photons arrival time"; } // -------------------------------------------------------------------------- // // The PreProcess searches for the following input containers: // - MRawEvtData // - MArrivalTime // // The following output containers are also searched and created if // they were not found: // - MArrivalTime // Int_t MArrivalTimeCalc::PreProcess(MParList *pList) { fRawEvt = (MRawEvtData*)pList->FindObject(AddSerialNumber("MRawEvtData")); if (!fRawEvt) { *fLog << err << "MRawEvtData not found... aborting." << endl; return kFALSE; } fArrTime = (MArrivalTime*)pList->FindCreateObj(AddSerialNumber("MArrivalTime")); if (!fArrTime) return kFALSE; return kTRUE; } // -------------------------------------------------------------------------- // // The ReInit searches for the following input containers: // - MGeomCam // Bool_t MArrivalTimeCalc::ReInit(MParList *pList) { MGeomCam *cam = (MGeomCam*)pList->FindObject(AddSerialNumber("MGeomCam")); if (!cam) { *fLog << err << GetDescriptor() << ": No MGeomCam found... aborting." << endl; return kFALSE; } return kTRUE; } // -------------------------------------------------------------------------- // // Evaluation of the mean arrival times (spline interpolation) // per pixel and store them in the MArrivalTime container. // Int_t MArrivalTimeCalc::Process() { MRawEvtPixelIter pixel(fRawEvt); while (pixel.Next()) { const UInt_t idx = pixel.GetPixelId(); Float_t max = 0.; // // If pixel is saturated we use LoGains // if (pixel.GetMaxHiGainSample() == 0xff && pixel.HasLoGain()) { const Short_t nslices = fRawEvt->GetNumLoGainSamples(); max = Calc(pixel.GetLoGainSamples(),nslices); } // // Use HiGains // else if (pixel.HasLoGain()) { const Short_t nslices = fRawEvt->GetNumHiGainSamples(); max = Calc(pixel.GetHiGainSamples(),nslices); } // // If pixel is saturated and hasn't lo gains we do nothing, it's value remains -1 // fArrTime->SetTime(idx,max); } fArrTime->SetReadyToSave(); return kTRUE; } // -------------------------------------------------------------------------- // // Calculates the arrival time for each pixel // Possible Methods // Case 1: Spline5 (From TSpline5 Root Class) // Float_t MArrivalTimeCalc::Calc(const Byte_t *fadcSamples, const Short_t nslices) { // // Initialize a double pointer with filled FADC slices // Double_t ptr[nslices]; // // Initialize the spline // for (Int_t i=0; i maxOrd) { maxOrd = swap; maxAb = abscissa; } abscissa += fStepSize; } return (Float_t)maxAb; }