| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@alwa02.physik.uni-siegen.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2003
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | // //
|
|---|
| 27 | // MRanForest //
|
|---|
| 28 | // //
|
|---|
| 29 | // ParameterContainer for Forest structure //
|
|---|
| 30 | // //
|
|---|
| 31 | // A random forest can be grown by calling GrowForest. //
|
|---|
| 32 | // In advance SetupGrow must be called in order to initialize arrays and //
|
|---|
| 33 | // do some preprocessing. //
|
|---|
| 34 | // GrowForest() provides the training data for a single tree (bootstrap //
|
|---|
| 35 | // aggregate procedure) //
|
|---|
| 36 | // //
|
|---|
| 37 | // Essentially two random elements serve to provide a "random" forest, //
|
|---|
| 38 | // namely bootstrap aggregating (which is done in GrowForest()) and random //
|
|---|
| 39 | // split selection (which is subject to MRanTree::GrowTree()) //
|
|---|
| 40 | // //
|
|---|
| 41 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 42 | #include "MRanForest.h"
|
|---|
| 43 |
|
|---|
| 44 | #include <TMatrix.h>
|
|---|
| 45 | #include <TRandom3.h>
|
|---|
| 46 |
|
|---|
| 47 | #include "MHMatrix.h"
|
|---|
| 48 | #include "MRanTree.h"
|
|---|
| 49 |
|
|---|
| 50 | #include "MLog.h"
|
|---|
| 51 | #include "MLogManip.h"
|
|---|
| 52 |
|
|---|
| 53 | ClassImp(MRanForest);
|
|---|
| 54 |
|
|---|
| 55 | // --------------------------------------------------------------------------
|
|---|
| 56 | //
|
|---|
| 57 | // Default constructor.
|
|---|
| 58 | //
|
|---|
| 59 | MRanForest::MRanForest(const char *name, const char *title) : fNumTrees(100), fRanTree(NULL),fUsePriors(kFALSE)
|
|---|
| 60 | {
|
|---|
| 61 | fName = name ? name : "MRanForest";
|
|---|
| 62 | fTitle = title ? title : "Storage container for Random Forest";
|
|---|
| 63 |
|
|---|
| 64 | fForest=new TObjArray();
|
|---|
| 65 | fForest->SetOwner(kTRUE);
|
|---|
| 66 | }
|
|---|
| 67 |
|
|---|
| 68 | // --------------------------------------------------------------------------
|
|---|
| 69 | //
|
|---|
| 70 | // Destructor.
|
|---|
| 71 | //
|
|---|
| 72 | MRanForest::~MRanForest()
|
|---|
| 73 | {
|
|---|
| 74 | delete fForest;
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | void MRanForest::SetNumTrees(Int_t n)
|
|---|
| 78 | {
|
|---|
| 79 | //at least 1 tree
|
|---|
| 80 | fNumTrees=TMath::Max(n,1);
|
|---|
| 81 | fTreeHad.Set(fNumTrees);
|
|---|
| 82 | fTreeHad.Reset();
|
|---|
| 83 | }
|
|---|
| 84 |
|
|---|
| 85 | void MRanForest::SetPriors(Float_t prior_had, Float_t prior_gam)
|
|---|
| 86 | {
|
|---|
| 87 | Float_t sum;
|
|---|
| 88 |
|
|---|
| 89 | sum=prior_gam+prior_had;
|
|---|
| 90 |
|
|---|
| 91 | prior_gam/=sum;
|
|---|
| 92 | prior_had/=sum;
|
|---|
| 93 |
|
|---|
| 94 | fPrior[0]=prior_had;
|
|---|
| 95 | fPrior[1]=prior_gam;
|
|---|
| 96 |
|
|---|
| 97 | fUsePriors=kTRUE;
|
|---|
| 98 | }
|
|---|
| 99 |
|
|---|
| 100 | Double_t MRanForest::CalcHadroness(TVector &event)
|
|---|
| 101 | {
|
|---|
| 102 | Double_t hadroness=0;
|
|---|
| 103 | Int_t ntree=0;
|
|---|
| 104 | MRanTree *tree;
|
|---|
| 105 |
|
|---|
| 106 | TIter forest(fForest);
|
|---|
| 107 | forest.Reset();
|
|---|
| 108 |
|
|---|
| 109 | while ((tree=(MRanTree*)forest.Next()))
|
|---|
| 110 | {
|
|---|
| 111 | fTreeHad[ntree]=tree->TreeHad(event);
|
|---|
| 112 | hadroness+=fTreeHad[ntree];
|
|---|
| 113 | ntree++;
|
|---|
| 114 | }
|
|---|
| 115 | return hadroness/Double_t(ntree);
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | Bool_t MRanForest::AddTree(MRanTree *rantree=NULL)
|
|---|
| 119 | {
|
|---|
| 120 | if (rantree)
|
|---|
| 121 | fRanTree=rantree;
|
|---|
| 122 | if (!fRanTree)
|
|---|
| 123 | return kFALSE;
|
|---|
| 124 |
|
|---|
| 125 | fForest->Add((MRanTree*)fRanTree->Clone());
|
|---|
| 126 |
|
|---|
| 127 | return kTRUE;
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | Bool_t MRanForest::SetupGrow(MHMatrix *mhad,MHMatrix *mgam)
|
|---|
| 131 | {
|
|---|
| 132 | // pointer to training data
|
|---|
| 133 | fHadrons=mhad;
|
|---|
| 134 | fGammas=mgam;
|
|---|
| 135 |
|
|---|
| 136 | // determine data entries and dimension of Hillas-parameter space
|
|---|
| 137 | fNumHad=fHadrons->GetM().GetNrows();
|
|---|
| 138 | fNumGam=fGammas->GetM().GetNrows();
|
|---|
| 139 | fNumDim=fHadrons->GetM().GetNcols();
|
|---|
| 140 |
|
|---|
| 141 | if (fNumDim!=fHadrons->GetM().GetNcols()) return kFALSE;
|
|---|
| 142 |
|
|---|
| 143 | fNumData=fNumHad+fNumGam;
|
|---|
| 144 |
|
|---|
| 145 | // allocating and initializing arrays
|
|---|
| 146 | fHadTrue.Set(fNumData);
|
|---|
| 147 | fHadTrue.Reset();
|
|---|
| 148 | fHadEst.Set(fNumData);
|
|---|
| 149 |
|
|---|
| 150 | fPrior.Set(2);
|
|---|
| 151 | fClassPop.Set(2);
|
|---|
| 152 | fWeight.Set(fNumData);
|
|---|
| 153 | fNTimesOutBag.Set(fNumData);
|
|---|
| 154 | fNTimesOutBag.Reset();
|
|---|
| 155 |
|
|---|
| 156 | fDataSort.Set(fNumDim*fNumData);
|
|---|
| 157 | fDataRang.Set(fNumDim*fNumData);
|
|---|
| 158 |
|
|---|
| 159 | // calculating class populations (= no. of gammas and hadrons)
|
|---|
| 160 | fClassPop.Reset();
|
|---|
| 161 | for(Int_t n=0;n<fNumData;n++)
|
|---|
| 162 | fClassPop[fHadTrue[n]]++;
|
|---|
| 163 |
|
|---|
| 164 | // setting weights taking into account priors
|
|---|
| 165 | if (!fUsePriors)
|
|---|
| 166 | {
|
|---|
| 167 | fWeight.Reset(1.);
|
|---|
| 168 | }else{
|
|---|
| 169 | for(Int_t j=0;j<2;j++)
|
|---|
| 170 | fPrior[j] *= (fClassPop[j]>=1) ?
|
|---|
| 171 | Float_t(fNumData)/Float_t(fClassPop[j]):0;
|
|---|
| 172 |
|
|---|
| 173 | for(Int_t n=0;n<fNumData;n++)
|
|---|
| 174 | fWeight[n]=fPrior[fHadTrue[n]];
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 | // create fDataSort
|
|---|
| 178 | CreateDataSort();
|
|---|
| 179 |
|
|---|
| 180 | if(!fRanTree)
|
|---|
| 181 | {
|
|---|
| 182 | *fLog << err << dbginf << "MRanForest, fRanTree not initialized... aborting." << endl;
|
|---|
| 183 | return kFALSE;
|
|---|
| 184 | }
|
|---|
| 185 | fRanTree->SetRules(fGammas->GetColumns());
|
|---|
| 186 | fTreeNo=0;
|
|---|
| 187 |
|
|---|
| 188 | return kTRUE;
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | Bool_t MRanForest::GrowForest()
|
|---|
| 192 | {
|
|---|
| 193 | Int_t ninbag=0;
|
|---|
| 194 | TArrayI datsortinbag;
|
|---|
| 195 | TArrayF classpopw;
|
|---|
| 196 | TArrayI jinbag;
|
|---|
| 197 | TArrayF winbag;
|
|---|
| 198 |
|
|---|
| 199 | jinbag.Set(fNumData);
|
|---|
| 200 | winbag.Set(fNumData);
|
|---|
| 201 | classpopw.Set(2);
|
|---|
| 202 |
|
|---|
| 203 | TMatrix hadrons=fHadrons->GetM();
|
|---|
| 204 | TMatrix gammas=fGammas->GetM();
|
|---|
| 205 |
|
|---|
| 206 | fTreeNo++;
|
|---|
| 207 |
|
|---|
| 208 | // initialize running output
|
|---|
| 209 | if(fTreeNo==1)
|
|---|
| 210 | {
|
|---|
| 211 | cout<<endl<<endl<<"1st col.: no. of tree"<<endl;
|
|---|
| 212 | cout<<"2nd col.: error in % (calulated using oob-data -> overestim. of error)"<<endl;
|
|---|
| 213 | }
|
|---|
| 214 |
|
|---|
| 215 | jinbag.Reset();
|
|---|
| 216 | classpopw.Reset();
|
|---|
| 217 | winbag.Reset();
|
|---|
| 218 |
|
|---|
| 219 | // bootstrap aggregating (bagging) -> sampling with replacement:
|
|---|
| 220 | //
|
|---|
| 221 | // The integer k is randomly (uniformly) chosen from the set
|
|---|
| 222 | // {0,1,...,fNumData-1}, which is the set of the index numbers of
|
|---|
| 223 | // all events in the training sample
|
|---|
| 224 |
|
|---|
| 225 | for (Int_t n=0;n<fNumData;n++)
|
|---|
| 226 | {
|
|---|
| 227 | if(!gRandom)
|
|---|
| 228 | {
|
|---|
| 229 | *fLog << err << dbginf << "gRandom not initialized... aborting." << endl;
|
|---|
| 230 | return kFALSE;
|
|---|
| 231 | }
|
|---|
| 232 |
|
|---|
| 233 | Int_t k=Int_t(fNumData*gRandom->Rndm());
|
|---|
| 234 |
|
|---|
| 235 | classpopw[fHadTrue[k]]+=fWeight[k];
|
|---|
| 236 | winbag[k]+=fWeight[k];
|
|---|
| 237 | jinbag[k]=1;
|
|---|
| 238 | }
|
|---|
| 239 |
|
|---|
| 240 | // modifying sorted-data array for in-bag data:
|
|---|
| 241 | //
|
|---|
| 242 | // In bagging procedure ca. 2/3 of all elements in the original
|
|---|
| 243 | // training sample are used to build the in-bag data
|
|---|
| 244 | datsortinbag=fDataSort;
|
|---|
| 245 |
|
|---|
| 246 | ModifyDataSort(datsortinbag,ninbag,jinbag);
|
|---|
| 247 |
|
|---|
| 248 | // growing single tree
|
|---|
| 249 | fRanTree->GrowTree(hadrons,gammas,fNumData,fNumDim,fHadTrue,datsortinbag,
|
|---|
| 250 | fDataRang,classpopw,jinbag,winbag,fWeight);
|
|---|
| 251 |
|
|---|
| 252 | // error-estimates from out-of-bag data (oob data):
|
|---|
| 253 | //
|
|---|
| 254 | // For a single tree the events not(!) contained in the bootstrap sample of
|
|---|
| 255 | // this tree can be used to obtain estimates for the classification error of
|
|---|
| 256 | // this tree.
|
|---|
| 257 | // If you take a certain event, it is contained in the oob-data of 1/3 of
|
|---|
| 258 | // the trees (see comment to ModifyData). This means that the classification error
|
|---|
| 259 | // determined from oob-data is underestimated, but can still be taken as upper limit.
|
|---|
| 260 |
|
|---|
| 261 | TVector event(fNumDim);
|
|---|
| 262 | for(Int_t ievt=0;ievt<fNumHad;ievt++)
|
|---|
| 263 | {
|
|---|
| 264 | if(jinbag[ievt]>0)continue;
|
|---|
| 265 | event=TMatrixRow(hadrons,ievt);
|
|---|
| 266 | fHadEst[ievt]+=fRanTree->TreeHad(event);
|
|---|
| 267 | fNTimesOutBag[ievt]++;
|
|---|
| 268 | }
|
|---|
| 269 | for(Int_t ievt=0;ievt<fNumGam;ievt++)
|
|---|
| 270 | {
|
|---|
| 271 | if(jinbag[fNumHad+ievt]>0)continue;
|
|---|
| 272 | event=TMatrixRow(gammas,ievt);
|
|---|
| 273 | fHadEst[fNumHad+ievt]+=fRanTree->TreeHad(event);
|
|---|
| 274 | fNTimesOutBag[fNumHad+ievt]++;
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | Int_t n=0;
|
|---|
| 278 | fErr=0;
|
|---|
| 279 | for(Int_t ievt=0;ievt<fNumData;ievt++)
|
|---|
| 280 | if(fNTimesOutBag[ievt]!=0)
|
|---|
| 281 | {
|
|---|
| 282 | fErr+=TMath::Power(fHadEst[ievt]/fNTimesOutBag[ievt]-fHadTrue[ievt],2.);
|
|---|
| 283 | n++;
|
|---|
| 284 | }
|
|---|
| 285 |
|
|---|
| 286 | fErr/=Float_t(n);
|
|---|
| 287 | fErr=TMath::Sqrt(fErr);
|
|---|
| 288 |
|
|---|
| 289 | // give running output
|
|---|
| 290 | cout << setw(5) << fTreeNo << setw(15) << Form("%.2f",100.*fErr) << endl;
|
|---|
| 291 |
|
|---|
| 292 | // adding tree to forest
|
|---|
| 293 | AddTree();
|
|---|
| 294 |
|
|---|
| 295 | return(fTreeNo<fNumTrees);
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 | void MRanForest::CreateDataSort()
|
|---|
| 299 | {
|
|---|
| 300 | // The values of concatenated data arrays fHadrons and fGammas (denoted in the following by fData,
|
|---|
| 301 | // which does actually not exist) are sorted from lowest to highest.
|
|---|
| 302 | //
|
|---|
| 303 | //
|
|---|
| 304 | // fHadrons(0,0) ... fHadrons(0,nhad-1) fGammas(0,0) ... fGammas(0,ngam-1)
|
|---|
| 305 | // . . . .
|
|---|
| 306 | // fData(m,n) = . . . .
|
|---|
| 307 | // . . . .
|
|---|
| 308 | // fHadrons(m-1,0)...fHadrons(m-1,nhad-1) fGammas(m-1,0)...fGammas(m-1,ngam-1)
|
|---|
| 309 | //
|
|---|
| 310 | //
|
|---|
| 311 | // Then fDataSort(m,n) is the event number in which fData(m,n) occurs.
|
|---|
| 312 | // fDataRang(m,n) is the rang of fData(m,n), i.e. if rang = r, fData(m,n) is the r-th highest
|
|---|
| 313 | // value of all fData(m,.). There may be more then 1 event with rang r (due to bagging).
|
|---|
| 314 |
|
|---|
| 315 | TArrayF v(fNumData);
|
|---|
| 316 | TArrayI isort(fNumData);
|
|---|
| 317 |
|
|---|
| 318 | TMatrix hadrons=fHadrons->GetM();
|
|---|
| 319 | TMatrix gammas=fGammas->GetM();
|
|---|
| 320 |
|
|---|
| 321 | for (Int_t j=0;j<fNumHad;j++)
|
|---|
| 322 | fHadTrue[j]=1;
|
|---|
| 323 |
|
|---|
| 324 | for (Int_t j=0;j<fNumGam;j++)
|
|---|
| 325 | fHadTrue[j+fNumHad]=0;
|
|---|
| 326 |
|
|---|
| 327 | for (Int_t mvar=0;mvar<fNumDim;mvar++)
|
|---|
| 328 | {
|
|---|
| 329 | for(Int_t n=0;n<fNumHad;n++)
|
|---|
| 330 | {
|
|---|
| 331 | v[n]=hadrons(n,mvar);
|
|---|
| 332 | isort[n]=n;
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 | for(Int_t n=0;n<fNumGam;n++)
|
|---|
| 336 | {
|
|---|
| 337 | v[n+fNumHad]=gammas(n,mvar);
|
|---|
| 338 | isort[n+fNumHad]=n;
|
|---|
| 339 | }
|
|---|
| 340 |
|
|---|
| 341 | TMath::Sort(fNumData,v.GetArray(),isort.GetArray(),kFALSE);
|
|---|
| 342 |
|
|---|
| 343 | // this sorts the v[n] in ascending order. isort[n] is the event number
|
|---|
| 344 | // of that v[n], which is the n-th from the lowest (assume the original
|
|---|
| 345 | // event numbers are 0,1,...).
|
|---|
| 346 |
|
|---|
| 347 | for(Int_t n=0;n<fNumData-1;n++)
|
|---|
| 348 | {
|
|---|
| 349 | Int_t n1=isort[n];
|
|---|
| 350 | Int_t n2=isort[n+1];
|
|---|
| 351 | fDataSort[mvar*fNumData+n]=n1;
|
|---|
| 352 | if(n==0) fDataRang[mvar*fNumData+n1]=0;
|
|---|
| 353 | if(v[n]<v[n+1])
|
|---|
| 354 | {
|
|---|
| 355 | fDataRang[mvar*fNumData+n2]=fDataRang[mvar*fNumData+n1]+1;
|
|---|
| 356 | }else{
|
|---|
| 357 | fDataRang[mvar*fNumData+n2]=fDataRang[mvar*fNumData+n1];
|
|---|
| 358 | }
|
|---|
| 359 | }
|
|---|
| 360 | fDataSort[(mvar+1)*fNumData-1]=isort[fNumData-1];
|
|---|
| 361 | }
|
|---|
| 362 |
|
|---|
| 363 | return;
|
|---|
| 364 | }
|
|---|
| 365 |
|
|---|
| 366 | void MRanForest::ModifyDataSort(TArrayI &datsortinbag,Int_t ninbag,TArrayI &jinbag)
|
|---|
| 367 | {
|
|---|
| 368 | ninbag=0;
|
|---|
| 369 | for (Int_t n=0;n<fNumData;n++)
|
|---|
| 370 | if(jinbag[n]==1) ninbag++;
|
|---|
| 371 |
|
|---|
| 372 | for(Int_t m=0;m<fNumDim;m++)
|
|---|
| 373 | {
|
|---|
| 374 | Int_t k=0;
|
|---|
| 375 | Int_t nt=0;
|
|---|
| 376 | for(Int_t n=0;n<fNumData;n++)
|
|---|
| 377 | {
|
|---|
| 378 | if(jinbag[datsortinbag[m*fNumData+k]]==1)
|
|---|
| 379 | {
|
|---|
| 380 | datsortinbag[m*fNumData+nt]=datsortinbag[m*fNumData+k];
|
|---|
| 381 | k++;
|
|---|
| 382 | }else{
|
|---|
| 383 | for(Int_t j=1;j<fNumData-k;j++)
|
|---|
| 384 | {
|
|---|
| 385 | if(jinbag[datsortinbag[m*fNumData+k+j]]==1)
|
|---|
| 386 | {
|
|---|
| 387 | datsortinbag[m*fNumData+nt]=datsortinbag[m*fNumData+k+j];
|
|---|
| 388 | k+=j+1;
|
|---|
| 389 | break;
|
|---|
| 390 | }
|
|---|
| 391 | }
|
|---|
| 392 | }
|
|---|
| 393 | nt++;
|
|---|
| 394 | if(nt>=ninbag) break;
|
|---|
| 395 | }
|
|---|
| 396 | }
|
|---|
| 397 | return;
|
|---|
| 398 | }
|
|---|
| 399 |
|
|---|
| 400 | Bool_t MRanForest::AsciiWrite(ostream &out) const
|
|---|
| 401 | {
|
|---|
| 402 | Int_t n=0;
|
|---|
| 403 | MRanTree *tree;
|
|---|
| 404 | TIter forest(fForest);
|
|---|
| 405 |
|
|---|
| 406 | while ((tree=(MRanTree*)forest.Next()))
|
|---|
| 407 | {
|
|---|
| 408 | tree->AsciiWrite(out);
|
|---|
| 409 | n++;
|
|---|
| 410 | }
|
|---|
| 411 |
|
|---|
| 412 | return n==fNumTrees;
|
|---|
| 413 | }
|
|---|