1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@alwa02.physik.uni-siegen.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // MRanTree //
|
---|
28 | // //
|
---|
29 | // ParameterContainer for Tree structure //
|
---|
30 | // //
|
---|
31 | // //
|
---|
32 | /////////////////////////////////////////////////////////////////////////////
|
---|
33 | #include "MRanTree.h"
|
---|
34 |
|
---|
35 | #include <ostream.h>
|
---|
36 |
|
---|
37 | #include <TVector.h>
|
---|
38 | #include <TMatrix.h>
|
---|
39 | #include <TRandom.h>
|
---|
40 |
|
---|
41 | #include "MDataArray.h"
|
---|
42 |
|
---|
43 | #include "MLog.h"
|
---|
44 | #include "MLogManip.h"
|
---|
45 |
|
---|
46 | ClassImp(MRanTree);
|
---|
47 |
|
---|
48 | // --------------------------------------------------------------------------
|
---|
49 | //
|
---|
50 | // Default constructor.
|
---|
51 | //
|
---|
52 | MRanTree::MRanTree(const char *name, const char *title):fNdSize(0), fNumTry(3), fData(NULL)
|
---|
53 | {
|
---|
54 |
|
---|
55 | fName = name ? name : "MRanTree";
|
---|
56 | fTitle = title ? title : "Storage container for structure of a single tree";
|
---|
57 | }
|
---|
58 |
|
---|
59 | void MRanTree::SetNdSize(Int_t n)
|
---|
60 | {
|
---|
61 | // threshold nodesize of terminal nodes, i.e. the training data is splitted
|
---|
62 | // until there is only pure date in the subsets(=terminal nodes) or the
|
---|
63 | // subset size is LE n
|
---|
64 |
|
---|
65 | fNdSize=TMath::Max(1,n);//at least 1 event per node
|
---|
66 | }
|
---|
67 |
|
---|
68 | void MRanTree::SetNumTry(Int_t n)
|
---|
69 | {
|
---|
70 | // number of trials in random split selection:
|
---|
71 | // choose at least 1 variable to split in
|
---|
72 |
|
---|
73 | fNumTry=TMath::Max(1,n);
|
---|
74 | }
|
---|
75 |
|
---|
76 | void MRanTree::GrowTree(TMatrix &mhad,TMatrix &mgam,Int_t numdata, Int_t numdim,TArrayI &hadtrue,
|
---|
77 | TArrayI &datasort,TArrayI &datarang,TArrayF &tclasspop,TArrayI &jinbag,
|
---|
78 | TArrayF &winbag,TArrayF &weight)
|
---|
79 | {
|
---|
80 | // arrays have to be initialized with generous size, so number of total nodes (nrnodes)
|
---|
81 | // is estimated for worst case
|
---|
82 | Int_t nrnodes=2*numdata+1;
|
---|
83 |
|
---|
84 | // number of events in bootstrap sample
|
---|
85 | Int_t ninbag=0;
|
---|
86 | for (Int_t n=0;n<numdata;n++)
|
---|
87 | if(jinbag[n]==1) ninbag++;
|
---|
88 |
|
---|
89 | // weighted class populations after split
|
---|
90 | TArrayF wl(2); // left node
|
---|
91 | TArrayF wc(2);
|
---|
92 | TArrayF wr(2); // right node
|
---|
93 | TArrayI nc(2);
|
---|
94 |
|
---|
95 | TArrayI bestsplit(nrnodes);
|
---|
96 | TArrayI bestsplitnext(nrnodes);
|
---|
97 | TArrayI nodepop(nrnodes);
|
---|
98 | TArrayI parent(nrnodes);
|
---|
99 | TArrayI nodex(numdata);
|
---|
100 | TArrayI nodestart(nrnodes);
|
---|
101 |
|
---|
102 | TArrayI ncase(numdata);
|
---|
103 | TArrayI iv(numdim);
|
---|
104 | TArrayI idmove(numdata);
|
---|
105 |
|
---|
106 | idmove.Reset();
|
---|
107 |
|
---|
108 | fBestVar.Set(nrnodes);
|
---|
109 | fTreeMap1.Set(nrnodes);
|
---|
110 | fTreeMap2.Set(nrnodes);
|
---|
111 | fBestSplit.Set(nrnodes);
|
---|
112 |
|
---|
113 | fTreeMap1.Reset();
|
---|
114 | fTreeMap2.Reset();
|
---|
115 | fBestSplit.Reset();
|
---|
116 |
|
---|
117 | fGiniDec.Set(numdim);
|
---|
118 | fGiniDec.Reset();
|
---|
119 |
|
---|
120 | // tree growing
|
---|
121 | BuildTree(datasort,datarang,hadtrue,numdim,numdata,bestsplit,
|
---|
122 | bestsplitnext,nodepop,nodestart,tclasspop,nrnodes,
|
---|
123 | idmove,ncase,parent,jinbag,iv,winbag,wr,wc,wl,ninbag);
|
---|
124 |
|
---|
125 | // post processing, determine cut (or split) values fBestSplit
|
---|
126 | Int_t nhad=mhad.GetNrows();
|
---|
127 |
|
---|
128 | for(Int_t k=0;k<nrnodes;k++)
|
---|
129 | {
|
---|
130 | Int_t bsp=bestsplit[k];
|
---|
131 | Int_t bspn=bestsplitnext[k];
|
---|
132 | Int_t msp=fBestVar[k];
|
---|
133 |
|
---|
134 | if (GetNodeStatus(k)!=-1)
|
---|
135 | {
|
---|
136 | fBestSplit[k] = bsp<nhad ? mhad(bsp,msp):mgam(bsp-nhad,msp);
|
---|
137 | fBestSplit[k] += bspn<nhad ? mhad(bspn,msp):mgam(bspn-nhad,msp);
|
---|
138 | fBestSplit[k] /=2.;
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | // resizing arrays to save memory
|
---|
143 | fBestVar.Set(fNumNodes);
|
---|
144 | fTreeMap1.Set(fNumNodes);
|
---|
145 | fTreeMap2.Set(fNumNodes);
|
---|
146 | fBestSplit.Set(fNumNodes);
|
---|
147 | }
|
---|
148 |
|
---|
149 | Int_t MRanTree::FindBestSplit(TArrayI &datasort,TArrayI &datarang,TArrayI &hadtrue,Int_t mdim,
|
---|
150 | Int_t numdata,Int_t ndstart,Int_t ndend,TArrayF &tclasspop,
|
---|
151 | Int_t &msplit,Float_t &decsplit,Int_t &nbest,TArrayI &ncase,
|
---|
152 | TArrayI &jinbag,TArrayI &iv,TArrayF &winbag,TArrayF &wr,
|
---|
153 | TArrayF &wc,TArrayF &wl,Int_t kbuild)
|
---|
154 | {
|
---|
155 | // For the best split, msplit is the index of the variable (e.g Hillas par., zenith angle ,...)
|
---|
156 | // split on. decsplit is the decreae in impurity measured by Gini-index.
|
---|
157 | // nsplit is the case number of value of msplit split on,
|
---|
158 | // and nsplitnext is the case number of the next larger value of msplit.
|
---|
159 |
|
---|
160 | Int_t mvar,nc,nbestvar=0,jstat,k;
|
---|
161 | Float_t crit,crit0,critmax,critvar=0;
|
---|
162 | Float_t rrn, rrd, rln, rld, u;
|
---|
163 |
|
---|
164 | // compute initial values of numerator and denominator of Gini-index,
|
---|
165 | // Gini index= pno/dno
|
---|
166 | Float_t pno=0;
|
---|
167 | Float_t pdo=0;
|
---|
168 |
|
---|
169 | for (Int_t j=0;j<2;j++)
|
---|
170 | {
|
---|
171 | pno+=tclasspop[j]*tclasspop[j];
|
---|
172 | pdo+=tclasspop[j];
|
---|
173 | }
|
---|
174 | crit0=pno/pdo;
|
---|
175 | jstat=0;
|
---|
176 |
|
---|
177 | // start main loop through variables to find best split,
|
---|
178 | // (Gini-index as criterium crit)
|
---|
179 |
|
---|
180 | critmax=-1.0e20;
|
---|
181 |
|
---|
182 | // random split selection, number of trials = fNumTry
|
---|
183 | if(!gRandom)
|
---|
184 | {
|
---|
185 | *fLog << err << dbginf << "gRandom not initialized... aborting." << endl;
|
---|
186 | return kFALSE;
|
---|
187 | }
|
---|
188 | for(Int_t mt=0;mt<fNumTry;mt++)
|
---|
189 | {
|
---|
190 | mvar=Int_t(mdim*gRandom->Rndm());
|
---|
191 |
|
---|
192 | // Gini index = rrn/rrd+rln/rld
|
---|
193 | rrn=pno;
|
---|
194 | rrd=pdo;
|
---|
195 | rln=0;
|
---|
196 | rld=0;
|
---|
197 | wl.Reset();
|
---|
198 |
|
---|
199 | for (Int_t j=0;j<2;j++)
|
---|
200 | {
|
---|
201 | wr[j]=tclasspop[j];
|
---|
202 | }
|
---|
203 |
|
---|
204 | critvar=-1.0e20;
|
---|
205 |
|
---|
206 | for(Int_t nsp=ndstart;nsp<=ndend-1;nsp++)
|
---|
207 | {
|
---|
208 | nc=datasort[mvar*numdata+nsp];
|
---|
209 |
|
---|
210 | u=winbag[nc];
|
---|
211 | k=hadtrue[nc];
|
---|
212 |
|
---|
213 | rln=rln+u*(2*wl[k]+u);
|
---|
214 | rrn=rrn+u*(-2*wr[k]+u);
|
---|
215 | rld=rld+u;
|
---|
216 | rrd=rrd-u;
|
---|
217 |
|
---|
218 | wl[k]=wl[k]+u;
|
---|
219 | wr[k]=wr[k]-u;
|
---|
220 |
|
---|
221 | if (datarang[mvar*numdata+nc]<datarang[mvar*numdata+datasort[mvar*numdata+nsp+1]])
|
---|
222 | {
|
---|
223 | if(TMath::Min(rrd,rld)>1.0e-5)
|
---|
224 | {
|
---|
225 | crit=(rln/rld)+(rrn/rrd);
|
---|
226 | if (crit>critvar)
|
---|
227 | {
|
---|
228 | nbestvar=nsp;
|
---|
229 | critvar=crit;
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|
233 | }
|
---|
234 |
|
---|
235 | if (critvar>critmax) {
|
---|
236 | msplit=mvar;
|
---|
237 | nbest=nbestvar;
|
---|
238 | critmax=critvar;
|
---|
239 | }
|
---|
240 | }
|
---|
241 |
|
---|
242 | decsplit=critmax-crit0;
|
---|
243 | if (critmax<-1.0e10) jstat=1;
|
---|
244 |
|
---|
245 | return jstat;
|
---|
246 | }
|
---|
247 |
|
---|
248 | void MRanTree::MoveData(TArrayI &datasort,Int_t mdim,Int_t numdata,Int_t ndstart,
|
---|
249 | Int_t ndend,TArrayI &idmove,TArrayI &ncase,Int_t msplit,
|
---|
250 | Int_t nbest,Int_t &ndendl)
|
---|
251 | {
|
---|
252 | // This is the heart of the BuildTree construction. Based on the best split
|
---|
253 | // the data in the part of datasort corresponding to the current node is moved to the
|
---|
254 | // left if it belongs to the left child and right if it belongs to the right child-node.
|
---|
255 |
|
---|
256 | Int_t nc,k,ih;
|
---|
257 | TArrayI tdatasort(numdata);
|
---|
258 |
|
---|
259 | // compute idmove = indicator of case nos. going left
|
---|
260 |
|
---|
261 | for (Int_t nsp=ndstart;nsp<=nbest;nsp++)
|
---|
262 | {
|
---|
263 | nc=datasort[msplit*numdata+nsp];
|
---|
264 | idmove[nc]=1;
|
---|
265 | }
|
---|
266 | for (Int_t nsp=nbest+1;nsp<=ndend;nsp++)
|
---|
267 | {
|
---|
268 | nc=datasort[msplit*numdata+nsp];
|
---|
269 | idmove[nc]=0;
|
---|
270 | }
|
---|
271 | ndendl=nbest;
|
---|
272 |
|
---|
273 | // shift case. nos. right and left for numerical variables.
|
---|
274 |
|
---|
275 | for(Int_t msh=0;msh<mdim;msh++)
|
---|
276 | {
|
---|
277 | k=ndstart-1;
|
---|
278 | for (Int_t n=ndstart;n<=ndend;n++)
|
---|
279 | {
|
---|
280 | ih=datasort[msh*numdata+n];
|
---|
281 | if (idmove[ih]==1) {
|
---|
282 | k++;
|
---|
283 | tdatasort[k]=datasort[msh*numdata+n];
|
---|
284 | }
|
---|
285 | }
|
---|
286 |
|
---|
287 | for (Int_t n=ndstart;n<=ndend;n++)
|
---|
288 | {
|
---|
289 | ih=datasort[msh*numdata+n];
|
---|
290 | if (idmove[ih]==0){
|
---|
291 | k++;
|
---|
292 | tdatasort[k]=datasort[msh*numdata+n];
|
---|
293 | }
|
---|
294 | }
|
---|
295 | for(Int_t k=ndstart;k<=ndend;k++)
|
---|
296 | datasort[msh*numdata+k]=tdatasort[k];
|
---|
297 | }
|
---|
298 |
|
---|
299 | // compute case nos. for right and left nodes.
|
---|
300 |
|
---|
301 | for(Int_t n=ndstart;n<=ndend;n++)
|
---|
302 | ncase[n]=datasort[msplit*numdata+n];
|
---|
303 |
|
---|
304 | return;
|
---|
305 | }
|
---|
306 |
|
---|
307 | void MRanTree::BuildTree(TArrayI &datasort,TArrayI &datarang,TArrayI &hadtrue,Int_t mdim,
|
---|
308 | Int_t numdata,TArrayI &bestsplit,TArrayI &bestsplitnext,
|
---|
309 | TArrayI &nodepop,TArrayI &nodestart,TArrayF &tclasspop,
|
---|
310 | Int_t nrnodes,TArrayI &idmove,TArrayI &ncase,TArrayI &parent,
|
---|
311 | TArrayI &jinbag,TArrayI &iv,TArrayF &winbag,TArrayF &wr,TArrayF &wc,
|
---|
312 | TArrayF &wl,Int_t ninbag)
|
---|
313 | {
|
---|
314 | // Buildtree consists of repeated calls to two void functions, FindBestSplit and MoveData.
|
---|
315 | // Findbestsplit does just that--it finds the best split of the current node.
|
---|
316 | // MoveData moves the data in the split node right and left so that the data
|
---|
317 | // corresponding to each child node is contiguous.
|
---|
318 | //
|
---|
319 | // buildtree bookkeeping:
|
---|
320 | // ncur is the total number of nodes to date. nodestatus(k)=1 if the kth node has been split.
|
---|
321 | // nodestatus(k)=2 if the node exists but has not yet been split, and =-1 if the node is
|
---|
322 | // terminal. A node is terminal if its size is below a threshold value, or if it is all
|
---|
323 | // one class, or if all the data-values are equal. If the current node k is split, then its
|
---|
324 | // children are numbered ncur+1 (left), and ncur+2(right), ncur increases to ncur+2 and
|
---|
325 | // the next node to be split is numbered k+1. When no more nodes can be split, buildtree
|
---|
326 | // returns.
|
---|
327 |
|
---|
328 | Int_t msplit,nbest,ndendl,nc,jstat,ndend,ndstart;
|
---|
329 | Float_t decsplit=0;
|
---|
330 | Float_t popt1,popt2,pp;
|
---|
331 | TArrayF classpop;
|
---|
332 | TArrayI nodestatus;
|
---|
333 |
|
---|
334 | nodestatus.Set(nrnodes);
|
---|
335 | classpop.Set(2*nrnodes);
|
---|
336 |
|
---|
337 | nodestatus.Reset();
|
---|
338 | nodestart.Reset();
|
---|
339 | nodepop.Reset();
|
---|
340 | classpop.Reset();
|
---|
341 |
|
---|
342 |
|
---|
343 | for (Int_t j=0;j<2;j++)
|
---|
344 | classpop[j*nrnodes+0]=tclasspop[j];
|
---|
345 |
|
---|
346 | Int_t ncur=0;
|
---|
347 | nodestart[0]=0;
|
---|
348 | nodepop[0]=ninbag;
|
---|
349 | nodestatus[0]=2;
|
---|
350 |
|
---|
351 | // start main loop
|
---|
352 | for (Int_t kbuild=0;kbuild<nrnodes;kbuild++)
|
---|
353 | {
|
---|
354 | if (kbuild>ncur) break;
|
---|
355 | if (nodestatus[kbuild]!=2) continue;
|
---|
356 |
|
---|
357 | // initialize for next call to FindBestSplit
|
---|
358 |
|
---|
359 | ndstart=nodestart[kbuild];
|
---|
360 | ndend=ndstart+nodepop[kbuild]-1;
|
---|
361 | for (Int_t j=0;j<2;j++)
|
---|
362 | tclasspop[j]=classpop[j*nrnodes+kbuild];
|
---|
363 |
|
---|
364 | jstat=FindBestSplit(datasort,datarang,hadtrue,mdim,numdata,
|
---|
365 | ndstart,ndend,tclasspop,msplit,decsplit,
|
---|
366 | nbest,ncase,jinbag,iv,winbag,wr,wc,wl,
|
---|
367 | kbuild);
|
---|
368 |
|
---|
369 | if(jstat==1) {
|
---|
370 | nodestatus[kbuild]=-1;
|
---|
371 | continue;
|
---|
372 | }else{
|
---|
373 | fBestVar[kbuild]=msplit;
|
---|
374 | fGiniDec[msplit]+=decsplit;
|
---|
375 |
|
---|
376 | bestsplit[kbuild]=datasort[msplit*numdata+nbest];
|
---|
377 | bestsplitnext[kbuild]=datasort[msplit*numdata+nbest+1];
|
---|
378 | }
|
---|
379 |
|
---|
380 | MoveData(datasort,mdim,numdata,ndstart,ndend,idmove,ncase,
|
---|
381 | msplit,nbest,ndendl);
|
---|
382 |
|
---|
383 | // leftnode no.= ncur+1, rightnode no. = ncur+2.
|
---|
384 |
|
---|
385 | nodepop[ncur+1]=ndendl-ndstart+1;
|
---|
386 | nodepop[ncur+2]=ndend-ndendl;
|
---|
387 | nodestart[ncur+1]=ndstart;
|
---|
388 | nodestart[ncur+2]=ndendl+1;
|
---|
389 |
|
---|
390 | // find class populations in both nodes
|
---|
391 |
|
---|
392 | for (Int_t n=ndstart;n<=ndendl;n++)
|
---|
393 | {
|
---|
394 | nc=ncase[n];
|
---|
395 | Int_t j=hadtrue[nc];
|
---|
396 | classpop[j*nrnodes+ncur+1]+=winbag[nc];
|
---|
397 | }
|
---|
398 |
|
---|
399 | for (Int_t n=ndendl+1;n<=ndend;n++)
|
---|
400 | {
|
---|
401 | nc=ncase[n];
|
---|
402 | Int_t j=hadtrue[nc];
|
---|
403 | classpop[j*nrnodes+ncur+2]+=winbag[nc];
|
---|
404 | }
|
---|
405 |
|
---|
406 | // check on nodestatus
|
---|
407 |
|
---|
408 | nodestatus[ncur+1]=2;
|
---|
409 | nodestatus[ncur+2]=2;
|
---|
410 | if (nodepop[ncur+1]<=fNdSize) nodestatus[ncur+1]=-1;
|
---|
411 | if (nodepop[ncur+2]<=fNdSize) nodestatus[ncur+2]=-1;
|
---|
412 | popt1=0;
|
---|
413 | popt2=0;
|
---|
414 | for (Int_t j=0;j<2;j++)
|
---|
415 | {
|
---|
416 | popt1+=classpop[j*nrnodes+ncur+1];
|
---|
417 | popt2+=classpop[j*nrnodes+ncur+2];
|
---|
418 | }
|
---|
419 |
|
---|
420 | for (Int_t j=0;j<2;j++)
|
---|
421 | {
|
---|
422 | if (classpop[j*nrnodes+ncur+1]==popt1) nodestatus[ncur+1]=-1;
|
---|
423 | if (classpop[j*nrnodes+ncur+2]==popt2) nodestatus[ncur+2]=-1;
|
---|
424 | }
|
---|
425 |
|
---|
426 | fTreeMap1[kbuild]=ncur+1;
|
---|
427 | fTreeMap2[kbuild]=ncur+2;
|
---|
428 | parent[ncur+1]=kbuild;
|
---|
429 | parent[ncur+2]=kbuild;
|
---|
430 | nodestatus[kbuild]=1;
|
---|
431 | ncur+=2;
|
---|
432 | if (ncur>=nrnodes) break;
|
---|
433 | }
|
---|
434 |
|
---|
435 | // determine number of nodes
|
---|
436 | fNumNodes=nrnodes;
|
---|
437 | for (Int_t k=nrnodes-1;k>=0;k--)
|
---|
438 | {
|
---|
439 | if (nodestatus[k]==0) fNumNodes-=1;
|
---|
440 | if (nodestatus[k]==2) nodestatus[k]=-1;
|
---|
441 | }
|
---|
442 |
|
---|
443 | fNumEndNodes=0;
|
---|
444 | for (Int_t kn=0;kn<fNumNodes;kn++)
|
---|
445 | if(nodestatus[kn]==-1)
|
---|
446 | {
|
---|
447 | fNumEndNodes++;
|
---|
448 | pp=0;
|
---|
449 | for (Int_t j=0;j<2;j++)
|
---|
450 | {
|
---|
451 | if(classpop[j*nrnodes+kn]>pp)
|
---|
452 | {
|
---|
453 | // class + status of node kn coded into fBestVar[kn]
|
---|
454 | fBestVar[kn]=j-2;
|
---|
455 | pp=classpop[j*nrnodes+kn];
|
---|
456 | }
|
---|
457 | }
|
---|
458 | fBestSplit[kn] =classpop[1*nrnodes+kn];
|
---|
459 | fBestSplit[kn]/=(classpop[0*nrnodes+kn]+classpop[1*nrnodes+kn]);
|
---|
460 | }
|
---|
461 |
|
---|
462 | return;
|
---|
463 | }
|
---|
464 |
|
---|
465 | void MRanTree::SetRules(MDataArray *rules)
|
---|
466 | {
|
---|
467 | fData=rules;
|
---|
468 | }
|
---|
469 |
|
---|
470 | Double_t MRanTree::TreeHad(TVector &event)
|
---|
471 | {
|
---|
472 | Int_t kt=0;
|
---|
473 | // to optimize on storage space node status and node class
|
---|
474 | // are coded into fBestVar:
|
---|
475 | // status of node kt = TMath::Sign(1,fBestVar[kt])
|
---|
476 | // hadronness assigned to node kt = fBestSplit[kt]
|
---|
477 |
|
---|
478 | for (Int_t k=0;k<fNumNodes;k++)
|
---|
479 | {
|
---|
480 | if (fBestVar[kt]<0)
|
---|
481 | break;
|
---|
482 |
|
---|
483 | Int_t m=fBestVar[kt];
|
---|
484 |
|
---|
485 | if (event(m)<=fBestSplit[kt])
|
---|
486 | kt=fTreeMap1[kt];
|
---|
487 | else
|
---|
488 | kt=fTreeMap2[kt];
|
---|
489 | }
|
---|
490 |
|
---|
491 | return fBestSplit[kt];
|
---|
492 | }
|
---|
493 |
|
---|
494 | Double_t MRanTree::TreeHad()
|
---|
495 | {
|
---|
496 | const Double_t ncols = fData->GetNumEntries();
|
---|
497 | TVector event(ncols);
|
---|
498 |
|
---|
499 | for (int i=0; i<fData->GetNumEntries(); i++)
|
---|
500 | event(i) = (*fData)(i);
|
---|
501 |
|
---|
502 | Int_t kt=0;
|
---|
503 | // to optimize on storage space node status and node class
|
---|
504 | // are coded into fBestVar:
|
---|
505 | // status of node kt = TMath::Sign(1,fBestVar[kt])
|
---|
506 | // class of node kt = fBestVar[kt]+2 (class defined by larger
|
---|
507 | // node population, actually not used)
|
---|
508 | // hadronness assigned to node kt = fBestSplit[kt]
|
---|
509 |
|
---|
510 | for (Int_t k=0;k<fNumNodes;k++)
|
---|
511 | {
|
---|
512 | if (fBestVar[kt]<0)
|
---|
513 | break;
|
---|
514 |
|
---|
515 | Int_t m=fBestVar[kt];
|
---|
516 |
|
---|
517 | if (event(m)<=fBestSplit[kt])
|
---|
518 | kt=fTreeMap1[kt];
|
---|
519 | else
|
---|
520 | kt=fTreeMap2[kt];
|
---|
521 |
|
---|
522 | }
|
---|
523 |
|
---|
524 | return fBestSplit[kt];
|
---|
525 | }
|
---|
526 |
|
---|
527 | Bool_t MRanTree::AsciiWrite(ostream &out) const
|
---|
528 | {
|
---|
529 | TString str;
|
---|
530 | Int_t k;
|
---|
531 |
|
---|
532 | out.width(5);out<<fNumNodes<<endl;
|
---|
533 |
|
---|
534 | for (k=0;k<fNumNodes;k++)
|
---|
535 | {
|
---|
536 | str=Form("%f",GetBestSplit(k));
|
---|
537 |
|
---|
538 | out.width(5); out << k;
|
---|
539 | out.width(5); out << GetNodeStatus(k);
|
---|
540 | out.width(5); out << GetTreeMap1(k);
|
---|
541 | out.width(5); out << GetTreeMap2(k);
|
---|
542 | out.width(5); out << GetBestVar(k);
|
---|
543 | out.width(15); out << str<<endl;
|
---|
544 | out.width(5); out << GetNodeClass(k);
|
---|
545 | }
|
---|
546 | out<<endl;
|
---|
547 |
|
---|
548 | return k==fNumNodes;
|
---|
549 | }
|
---|