| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Thomas Bretz, 11/2003 <mailto:tbretz@astro.uni-wuerzburg.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2004 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | // MAstro | 
|---|
| 28 | // ------ | 
|---|
| 29 | // | 
|---|
| 30 | //////////////////////////////////////////////////////////////////////////// | 
|---|
| 31 | #include "MAstro.h" | 
|---|
| 32 |  | 
|---|
| 33 | #include <iostream> | 
|---|
| 34 |  | 
|---|
| 35 | #include <TVector3.h> // TVector3 | 
|---|
| 36 |  | 
|---|
| 37 | #include "MTime.h"    // MTime::GetGmst | 
|---|
| 38 |  | 
|---|
| 39 | using namespace std; | 
|---|
| 40 |  | 
|---|
| 41 | ClassImp(MAstro); | 
|---|
| 42 |  | 
|---|
| 43 | Double_t MAstro::Trunc(Double_t val) | 
|---|
| 44 | { | 
|---|
| 45 | // dint(A) - truncate to nearest whole number towards zero (double) | 
|---|
| 46 | return val<0 ? TMath::Ceil(val) : TMath::Floor(val); | 
|---|
| 47 | } | 
|---|
| 48 |  | 
|---|
| 49 | Double_t MAstro::Round(Double_t val) | 
|---|
| 50 | { | 
|---|
| 51 | // dnint(A) - round to nearest whole number (double) | 
|---|
| 52 | return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5); | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 | Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 56 | { | 
|---|
| 57 | const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg); | 
|---|
| 58 | return sgn=='-' ? -rc : rc; | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 | Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 62 | { | 
|---|
| 63 | // pi/(180*3600):  arcseconds to radians | 
|---|
| 64 | //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6 | 
|---|
| 65 | return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/; | 
|---|
| 66 | } | 
|---|
| 67 |  | 
|---|
| 68 | Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 69 | { | 
|---|
| 70 | // pi/(12*3600):  seconds of time to radians | 
|---|
| 71 | //#define DS2R 7.2722052166430399038487115353692196393452995355905e-5 | 
|---|
| 72 | return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/; | 
|---|
| 73 | } | 
|---|
| 74 |  | 
|---|
| 75 | Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 76 | { | 
|---|
| 77 | return Hms2Sec(deg, min, sec, sgn)/3600.; | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 81 | { | 
|---|
| 82 | return Hms2Sec(hor, min, sec, sgn)/240.; | 
|---|
| 83 | } | 
|---|
| 84 |  | 
|---|
| 85 | Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 86 | { | 
|---|
| 87 | return Hms2Sec(deg, min, sec, sgn)/54000.; | 
|---|
| 88 | } | 
|---|
| 89 |  | 
|---|
| 90 | Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 91 | { | 
|---|
| 92 | return Hms2Sec(hor, min, sec, sgn)/3600.; | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec) | 
|---|
| 96 | { | 
|---|
| 97 | /* Handle sign */ | 
|---|
| 98 | sgn = day<0?'-':'+'; | 
|---|
| 99 |  | 
|---|
| 100 | /* Round interval and express in smallest units required */ | 
|---|
| 101 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds | 
|---|
| 102 |  | 
|---|
| 103 | /* Separate into fields */ | 
|---|
| 104 | const Double_t ah = Trunc(a/3600.); | 
|---|
| 105 | a -= ah * 3600.; | 
|---|
| 106 | const Double_t am = Trunc(a/60.); | 
|---|
| 107 | a -= am * 60.; | 
|---|
| 108 | const Double_t as = Trunc(a); | 
|---|
| 109 |  | 
|---|
| 110 | /* Return results */ | 
|---|
| 111 | hor = (UShort_t)ah; | 
|---|
| 112 | min = (UShort_t)am; | 
|---|
| 113 | sec = (UShort_t)as; | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 117 | { | 
|---|
| 118 | Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec); | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 122 | { | 
|---|
| 123 | Rad2Hms(rad*15, sgn, deg, min, sec); | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 127 | { | 
|---|
| 128 | Day2Hms(d/24, sgn, deg, min, sec); | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 | void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 132 | { | 
|---|
| 133 | Rad2Hms(d/360, sgn, deg, min, sec); | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 137 | { | 
|---|
| 138 | Day2Hms(h*15/24, sgn, deg, min, sec); | 
|---|
| 139 | } | 
|---|
| 140 |  | 
|---|
| 141 | void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 142 | { | 
|---|
| 143 | Day2Hms(h/24, sgn, deg, min, sec); | 
|---|
| 144 | } | 
|---|
| 145 |  | 
|---|
| 146 | void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min) | 
|---|
| 147 | { | 
|---|
| 148 | /* Handle sign */ | 
|---|
| 149 | sgn = day<0?'-':'+'; | 
|---|
| 150 |  | 
|---|
| 151 | /* Round interval and express in smallest units required */ | 
|---|
| 152 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds | 
|---|
| 153 |  | 
|---|
| 154 | /* Separate into fields */ | 
|---|
| 155 | const Double_t ah = Trunc(a/3600.); | 
|---|
| 156 | a -= ah * 3600.; | 
|---|
| 157 |  | 
|---|
| 158 | /* Return results */ | 
|---|
| 159 | hor = (UShort_t)ah; | 
|---|
| 160 | min = a/60.; | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 164 | { | 
|---|
| 165 | Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min); | 
|---|
| 166 | } | 
|---|
| 167 |  | 
|---|
| 168 | void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 169 | { | 
|---|
| 170 | Rad2Hm(rad*15, sgn, deg, min); | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 174 | { | 
|---|
| 175 | Day2Hm(d/24, sgn, deg, min); | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 179 | { | 
|---|
| 180 | Rad2Hm(d/360, sgn, deg, min); | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 184 | { | 
|---|
| 185 | Day2Hm(h*15/24, sgn, deg, min); | 
|---|
| 186 | } | 
|---|
| 187 |  | 
|---|
| 188 | void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 189 | { | 
|---|
| 190 | Day2Hm(h/24, sgn, deg, min); | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | // -------------------------------------------------------------------------- | 
|---|
| 194 | // | 
|---|
| 195 | // Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0' | 
|---|
| 196 | // as floating point value -12.5 or 12.5. If interpretation is | 
|---|
| 197 | // successfull kTRUE is returned, otherwise kFALSE. ret is not | 
|---|
| 198 | // touched if interpretation was not successfull. The successfull | 
|---|
| 199 | // interpreted part is removed from the TString. | 
|---|
| 200 | // | 
|---|
| 201 | Bool_t MAstro::String2Angle(TString &str, Double_t &ret) | 
|---|
| 202 | { | 
|---|
| 203 | Char_t  sgn; | 
|---|
| 204 | Int_t   d, len; | 
|---|
| 205 | UInt_t  m; | 
|---|
| 206 | Float_t s; | 
|---|
| 207 |  | 
|---|
| 208 | // Skip whitespaces before %c and after %f | 
|---|
| 209 | int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len); | 
|---|
| 210 |  | 
|---|
| 211 | if (n!=4 || (sgn!='+' && sgn!='-')) | 
|---|
| 212 | return kFALSE; | 
|---|
| 213 |  | 
|---|
| 214 | str.Remove(0, len); | 
|---|
| 215 |  | 
|---|
| 216 | ret = Dms2Deg(d, m, s, sgn); | 
|---|
| 217 | return kTRUE; | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|
| 220 | // -------------------------------------------------------------------------- | 
|---|
| 221 | // | 
|---|
| 222 | // Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0' | 
|---|
| 223 | // as floating point value -12.5, 12.5 or 12.5. If interpretation is | 
|---|
| 224 | // successfull kTRUE is returned, otherwise kFALSE. ret is not | 
|---|
| 225 | // touched if interpretation was not successfull. | 
|---|
| 226 | // | 
|---|
| 227 | Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret) | 
|---|
| 228 | { | 
|---|
| 229 | Char_t  sgn = str[0]=='-' ? '-' : '+'; | 
|---|
| 230 | Int_t   d; | 
|---|
| 231 | UInt_t  m; | 
|---|
| 232 | Float_t s; | 
|---|
| 233 |  | 
|---|
| 234 | const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s); | 
|---|
| 235 |  | 
|---|
| 236 | if (n!=3) | 
|---|
| 237 | return kFALSE; | 
|---|
| 238 |  | 
|---|
| 239 | ret = Dms2Deg(d, m, s, sgn); | 
|---|
| 240 | return kTRUE; | 
|---|
| 241 | } | 
|---|
| 242 |  | 
|---|
| 243 | // -------------------------------------------------------------------------- | 
|---|
| 244 | // | 
|---|
| 245 | //  Return year y, month m and day d corresponding to Mjd. | 
|---|
| 246 | // | 
|---|
| 247 | void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d) | 
|---|
| 248 | { | 
|---|
| 249 | // Express day in Gregorian calendar | 
|---|
| 250 | const ULong_t jd   = mjd + 2400001; | 
|---|
| 251 | const ULong_t n4   = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37); | 
|---|
| 252 | const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5; | 
|---|
| 253 |  | 
|---|
| 254 | y = n4/1461L-4712; | 
|---|
| 255 | m = ((nd10/306+2)%12)+1; | 
|---|
| 256 | d = (nd10%306)/10+1; | 
|---|
| 257 | } | 
|---|
| 258 |  | 
|---|
| 259 | // -------------------------------------------------------------------------- | 
|---|
| 260 | // | 
|---|
| 261 | //  Return Mjd corresponding to year y, month m and day d. | 
|---|
| 262 | // | 
|---|
| 263 | Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d) | 
|---|
| 264 | { | 
|---|
| 265 | // Month lengths in days | 
|---|
| 266 | static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; | 
|---|
| 267 |  | 
|---|
| 268 | // Validate month | 
|---|
| 269 | if (m<1 || m>12) | 
|---|
| 270 | return -1; | 
|---|
| 271 |  | 
|---|
| 272 | // Allow for leap year | 
|---|
| 273 | months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28; | 
|---|
| 274 |  | 
|---|
| 275 | // Validate day | 
|---|
| 276 | if (d<1 || d>months[m-1]) | 
|---|
| 277 | return -1; | 
|---|
| 278 |  | 
|---|
| 279 | // Precalculate some values | 
|---|
| 280 | const Byte_t  lm = 12-m; | 
|---|
| 281 | const ULong_t lm10 = 4712 + y - lm/10; | 
|---|
| 282 |  | 
|---|
| 283 | // Perform the conversion | 
|---|
| 284 | return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904; | 
|---|
| 285 | } | 
|---|
| 286 |  | 
|---|
| 287 | // -------------------------------------------------------------------------- | 
|---|
| 288 | // | 
|---|
| 289 | //  theta0, phi0    [rad]: polar angle/zenith distance, azimuth of 1st object | 
|---|
| 290 | //  theta1, phi1    [rad]: polar angle/zenith distance, azimuth of 2nd object | 
|---|
| 291 | //  AngularDistance [rad]: Angular distance between two objects | 
|---|
| 292 | // | 
|---|
| 293 | Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1) | 
|---|
| 294 | { | 
|---|
| 295 | TVector3 v0(1); | 
|---|
| 296 | v0.Rotate(phi0, theta0); | 
|---|
| 297 |  | 
|---|
| 298 | TVector3 v1(1); | 
|---|
| 299 | v1.Rotate(phi1, theta1); | 
|---|
| 300 |  | 
|---|
| 301 | return v0.Angle(v1); | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | // -------------------------------------------------------------------------- | 
|---|
| 305 | // | 
|---|
| 306 | // Calls MTime::GetGmst() Better use MTime::GetGmst() directly | 
|---|
| 307 | // | 
|---|
| 308 | Double_t MAstro::UT2GMST(Double_t ut1) | 
|---|
| 309 | { | 
|---|
| 310 | return MTime(ut1).GetGmst(); | 
|---|
| 311 | } | 
|---|
| 312 |  | 
|---|
| 313 | // -------------------------------------------------------------------------- | 
|---|
| 314 | // | 
|---|
| 315 | // RotationAngle | 
|---|
| 316 | // | 
|---|
| 317 | // calculates the angle for the rotation of the sky coordinate system | 
|---|
| 318 | // with respect to the local coordinate system. This is identical | 
|---|
| 319 | // to the rotation angle of the sky image in the camera. | 
|---|
| 320 | // | 
|---|
| 321 | //  sinl  [rad]: sine of observers latitude | 
|---|
| 322 | //  cosl  [rad]: cosine of observers latitude | 
|---|
| 323 | //  theta [rad]: polar angle/zenith distance | 
|---|
| 324 | //  phi   [rad]: rotation angle/azimuth | 
|---|
| 325 | // | 
|---|
| 326 | // Return sin/cos component of angle | 
|---|
| 327 | // | 
|---|
| 328 | // The convention is such, that the rotation angle is -pi/pi if | 
|---|
| 329 | // right ascension and local rotation angle are counted in the | 
|---|
| 330 | // same direction, 0 if counted in the opposite direction. | 
|---|
| 331 | // | 
|---|
| 332 | // (In other words: The rotation angle is 0 when the source culminates) | 
|---|
| 333 | // | 
|---|
| 334 | // Using vectors it can be done like: | 
|---|
| 335 | //    TVector3 v, p; | 
|---|
| 336 | //    v.SetMagThetaPhi(1, theta, phi); | 
|---|
| 337 | //    p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0); | 
|---|
| 338 | //    v = v.Cross(l)); | 
|---|
| 339 | //    v.RotateZ(-phi); | 
|---|
| 340 | //    v.Rotate(-theta) | 
|---|
| 341 | //    rho = TMath::ATan2(v(2), v(1)); | 
|---|
| 342 | // | 
|---|
| 343 | // For more information see TDAS 00-11, eqs. (18) and (20) | 
|---|
| 344 | // | 
|---|
| 345 | void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos) | 
|---|
| 346 | { | 
|---|
| 347 | const Double_t sint = TMath::Sin(theta); | 
|---|
| 348 | const Double_t cost = TMath::Cos(theta); | 
|---|
| 349 |  | 
|---|
| 350 | const Double_t snlt = sinl*sint; | 
|---|
| 351 | const Double_t cslt = cosl*cost; | 
|---|
| 352 |  | 
|---|
| 353 | const Double_t sinp = TMath::Sin(phi); | 
|---|
| 354 | const Double_t cosp = TMath::Cos(phi); | 
|---|
| 355 |  | 
|---|
| 356 | const Double_t v1 = sint*sinp; | 
|---|
| 357 | const Double_t v2 = cslt - snlt*cosp; | 
|---|
| 358 |  | 
|---|
| 359 | const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2); | 
|---|
| 360 |  | 
|---|
| 361 | sin =   cosl*sinp      / denom; // y-component | 
|---|
| 362 | cos = (snlt-cslt*cosp) / denom; // x-component | 
|---|
| 363 | } | 
|---|
| 364 |  | 
|---|
| 365 | // -------------------------------------------------------------------------- | 
|---|
| 366 | // | 
|---|
| 367 | // RotationAngle | 
|---|
| 368 | // | 
|---|
| 369 | // calculates the angle for the rotation of the sky coordinate system | 
|---|
| 370 | // with respect to the local coordinate system. This is identical | 
|---|
| 371 | // to the rotation angle of the sky image in the camera. | 
|---|
| 372 | // | 
|---|
| 373 | //  sinl  [rad]: sine of observers latitude | 
|---|
| 374 | //  cosl  [rad]: cosine of observers latitude | 
|---|
| 375 | //  theta [rad]: polar angle/zenith distance | 
|---|
| 376 | //  phi   [rad]: rotation angle/azimuth | 
|---|
| 377 | // | 
|---|
| 378 | // Return angle [rad] in the range -pi, pi | 
|---|
| 379 | // | 
|---|
| 380 | // The convention is such, that the rotation angle is -pi/pi if | 
|---|
| 381 | // right ascension and local rotation angle are counted in the | 
|---|
| 382 | // same direction, 0 if counted in the opposite direction. | 
|---|
| 383 | // | 
|---|
| 384 | // (In other words: The rotation angle is 0 when the source culminates) | 
|---|
| 385 | // | 
|---|
| 386 | // Using vectors it can be done like: | 
|---|
| 387 | //    TVector3 v, p; | 
|---|
| 388 | //    v.SetMagThetaPhi(1, theta, phi); | 
|---|
| 389 | //    p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0); | 
|---|
| 390 | //    v = v.Cross(l)); | 
|---|
| 391 | //    v.RotateZ(-phi); | 
|---|
| 392 | //    v.Rotate(-theta) | 
|---|
| 393 | //    rho = TMath::ATan2(v(2), v(1)); | 
|---|
| 394 | // | 
|---|
| 395 | // For more information see TDAS 00-11, eqs. (18) and (20) | 
|---|
| 396 | // | 
|---|
| 397 | Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi) | 
|---|
| 398 | { | 
|---|
| 399 | const Double_t snlt = sinl*TMath::Sin(theta); | 
|---|
| 400 | const Double_t cslt = cosl*TMath::Cos(theta); | 
|---|
| 401 |  | 
|---|
| 402 | const Double_t sinp = TMath::Sin(phi); | 
|---|
| 403 | const Double_t cosp = TMath::Cos(phi); | 
|---|
| 404 |  | 
|---|
| 405 | return TMath::ATan2(cosl*sinp, snlt-cslt*cosp); | 
|---|
| 406 | } | 
|---|