/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 11/2003 ! ! Copyright: MAGIC Software Development, 2000-2008 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MAstro // ------ // //////////////////////////////////////////////////////////////////////////// #include "MAstro.h" #include // fmod on darwin #include #include // TArrayD #include // TVector3 #include "MTime.h" // MTime::GetGmst #include "MString.h" #include "MAstroCatalog.h" // FIXME: replace by MVector3! using namespace std; ClassImp(MAstro); const Double_t MAstro::kSynMonth = 29.53058868; // synodic month (new Moon to new Moon) const Double_t MAstro::kEpoch0 = 44240.37917; // First full moon after 1980/1/1 Double_t MAstro::RadToHor() { return 24/TMath::TwoPi(); } Double_t MAstro::HorToRad() { return TMath::TwoPi()/24; } Double_t MAstro::Trunc(Double_t val) { // dint(A) - truncate to nearest whole number towards zero (double) return val<0 ? TMath::Ceil(val) : TMath::Floor(val); } Double_t MAstro::Round(Double_t val) { // dnint(A) - round to nearest whole number (double) return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5); } Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) { const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg); return sgn=='-' ? -rc : rc; } Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) { // pi/(180*3600): arcseconds to radians //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6 return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/; } Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) { // pi/(12*3600): seconds of time to radians //#define DS2R 7.2722052166430399038487115353692196393452995355905e-5 return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/; } Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) { return Hms2Sec(deg, min, sec, sgn)/3600.; } Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) { return Hms2Sec(hor, min, sec, sgn)/240.; } Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) { return Hms2Sec(deg, min, sec, sgn)/54000.; } Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) { return Hms2Sec(hor, min, sec, sgn)/3600.; } void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec) { /* Handle sign */ sgn = day<0?'-':'+'; /* Round interval and express in smallest units required */ Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds /* Separate into fields */ const Double_t ah = Trunc(a/3600.); a -= ah * 3600.; const Double_t am = Trunc(a/60.); a -= am * 60.; const Double_t as = Trunc(a); /* Return results */ hor = (UShort_t)ah; min = (UShort_t)am; sec = (UShort_t)as; } void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) { Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec); } void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) { Rad2Hms(rad*15, sgn, deg, min, sec); } void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) { Day2Hms(d/24, sgn, deg, min, sec); } void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) { Day2Hms(d/360, sgn, deg, min, sec); } void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) { Day2Hms(h*15/24, sgn, deg, min, sec); } void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) { Day2Hms(h/24, sgn, deg, min, sec); } void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min) { /* Handle sign */ sgn = day<0?'-':'+'; /* Round interval and express in smallest units required */ Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds /* Separate into fields */ const Double_t ah = Trunc(a/3600.); a -= ah * 3600.; /* Return results */ hor = (UShort_t)ah; min = a/60.; } void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min) { Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min); } void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min) { Rad2Hm(rad*15, sgn, deg, min); } void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min) { Day2Hm(d/24, sgn, deg, min); } void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min) { Rad2Hm(d/360, sgn, deg, min); } void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min) { Day2Hm(h*15/24, sgn, deg, min); } void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min) { Day2Hm(h/24, sgn, deg, min); } TString MAstro::GetStringDeg(Double_t deg, const char *fmt) { Char_t sgn; UShort_t d, m, s; Deg2Dms(deg, sgn, d, m, s); return MString::Format(fmt, sgn, d, m ,s); } TString MAstro::GetStringHor(Double_t deg, const char *fmt) { Char_t sgn; UShort_t h, m, s; Hor2Hms(deg, sgn, h, m, s); return MString::Format(fmt, sgn, h, m ,s); } // -------------------------------------------------------------------------- // // Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0' // as floating point value -12.5 or 12.5. If interpretation is // successfull kTRUE is returned, otherwise kFALSE. ret is not // touched if interpretation was not successfull. The successfull // interpreted part is removed from the TString. // Bool_t MAstro::String2Angle(TString &str, Double_t &ret) { Char_t sgn; Int_t d, len; UInt_t m; Float_t s; // Skip whitespaces before %c and after %f int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len); if (n!=4 || (sgn!='+' && sgn!='-')) return kFALSE; str.Remove(0, len); ret = Dms2Deg(d, m, s, sgn); return kTRUE; } // -------------------------------------------------------------------------- // // Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0' // as floating point value -12.5, 12.5 or 12.5. If interpretation is // successfull kTRUE is returned, otherwise kFALSE. ret is not // touched if interpretation was not successfull. // Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret) { Char_t sgn = str[0]=='-' ? '-' : '+'; Int_t d; UInt_t m; Float_t s; const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s); if (n!=3) return kFALSE; ret = Dms2Deg(d, m, s, sgn); return kTRUE; } // -------------------------------------------------------------------------- // // Returns val=-12.5 as string '-12:30:00' // TString MAstro::Angle2Coordinate(Double_t val) { Char_t sgn; UShort_t d,m,s; Deg2Dms(val, sgn, d, m, s); return Form("%c%02d:%02d:%02d", sgn, d, m, s); } // -------------------------------------------------------------------------- // // Return year y, month m and day d corresponding to Mjd. // void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d) { // Express day in Gregorian calendar const ULong_t jd = mjd + 2400001; const ULong_t n4 = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37); const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5; y = n4/1461L-4712; m = ((nd10/306+2)%12)+1; d = (nd10%306)/10+1; } // -------------------------------------------------------------------------- // // Return Mjd corresponding to year y, month m and day d. // Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d) { // Month lengths in days static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; // Validate month if (m<1 || m>12) return -1; // Allow for leap year months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28; // Validate day if (d<1 || d>months[m-1]) return -1; // Precalculate some values const Byte_t lm = 12-m; const ULong_t lm10 = 4712 + y - lm/10; // Perform the conversion return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904; } // -------------------------------------------------------------------------- // // Convert a mjd to a number yymmdd. The century is just cuts away, e.g. // 54393 --> 71020 (2007/10/20) // 50741 --> 971020 (1997/10/20) // 17868 --> 71020 (1907/10/20) // UInt_t MAstro::Mjd2Yymmdd(UInt_t mjd) { UShort_t y; Byte_t m, d; Mjd2Ymd(mjd, y, m, d); return d + m*100 + (y%100)*10000; } // -------------------------------------------------------------------------- // // Convert a yymmdd number to mjd. The century is defined as 2000 for // yy<70, 1900 elsewise. // 71020 --> 54393 (2007/10/20) // 971020 --> 50741 (1997/10/20) // UInt_t MAstro::Yymmdd2Mjd(UInt_t yymmdd) { const Byte_t dd = yymmdd%100; const Byte_t mm = (yymmdd/100)%100; const UShort_t yy = (yymmdd/10000)%100; return Ymd2Mjd(yy + (yy<70 ? 2000 : 1900), mm, dd); } // -------------------------------------------------------------------------- // // theta0, phi0 [rad]: polar angle/zenith distance, azimuth of 1st object // theta1, phi1 [rad]: polar angle/zenith distance, azimuth of 2nd object // AngularDistance [rad]: Angular distance between two objects // Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1) { TVector3 v0(1); v0.Rotate(phi0, theta0); TVector3 v1(1); v1.Rotate(phi1, theta1); return v0.Angle(v1); } // -------------------------------------------------------------------------- // // Calls MTime::GetGmst() Better use MTime::GetGmst() directly // Double_t MAstro::UT2GMST(Double_t ut1) { return MTime(ut1).GetGmst(); } // -------------------------------------------------------------------------- // // RotationAngle // // calculates the angle for the rotation of the sky coordinate system // with respect to the local coordinate system. This is identical // to the rotation angle of the sky image in the camera. // // sinl [rad]: sine of observers latitude // cosl [rad]: cosine of observers latitude // theta [rad]: polar angle/zenith distance // phi [rad]: rotation angle/azimuth // // Return sin/cos component of angle // // The convention is such, that the rotation angle is -pi/pi if // right ascension and local rotation angle are counted in the // same direction, 0 if counted in the opposite direction. // // (In other words: The rotation angle is 0 when the source culminates) // // Using vectors it can be done like: // TVector3 v, p; // v.SetMagThetaPhi(1, theta, phi); // p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0); // v = v.Cross(l)); // v.RotateZ(-phi); // v.Rotate(-theta) // rho = TMath::ATan2(v(2), v(1)); // // For more information see TDAS 00-11, eqs. (18) and (20) // void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos) { const Double_t sint = TMath::Sin(theta); const Double_t cost = TMath::Cos(theta); const Double_t snlt = sinl*sint; const Double_t cslt = cosl*cost; const Double_t sinp = TMath::Sin(phi); const Double_t cosp = TMath::Cos(phi); const Double_t v1 = sint*sinp; const Double_t v2 = cslt - snlt*cosp; const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2); sin = cosl*sinp / denom; // y-component cos = (snlt-cslt*cosp) / denom; // x-component } // -------------------------------------------------------------------------- // // RotationAngle // // calculates the angle for the rotation of the sky coordinate system // with respect to the local coordinate system. This is identical // to the rotation angle of the sky image in the camera. // // sinl [rad]: sine of observers latitude // cosl [rad]: cosine of observers latitude // theta [rad]: polar angle/zenith distance // phi [rad]: rotation angle/azimuth // // Return angle [rad] in the range -pi, pi // // The convention is such, that the rotation angle is -pi/pi if // right ascension and local rotation angle are counted in the // same direction, 0 if counted in the opposite direction. // // (In other words: The rotation angle is 0 when the source culminates) // // Using vectors it can be done like: // TVector3 v, p; // v.SetMagThetaPhi(1, theta, phi); // p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0); // v = v.Cross(l)); // v.RotateZ(-phi); // v.Rotate(-theta) // rho = TMath::ATan2(v(2), v(1)); // // For more information see TDAS 00-11, eqs. (18) and (20) // Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi) { const Double_t snlt = sinl*TMath::Sin(theta); const Double_t cslt = cosl*TMath::Cos(theta); const Double_t sinp = TMath::Sin(phi); const Double_t cosp = TMath::Cos(phi); return TMath::ATan2(cosl*sinp, snlt-cslt*cosp); } // -------------------------------------------------------------------------- // // Estimates the time at which a source culminates. // // ra: right ascension [rad] // elong: observers longitude [rad] // mjd: modified julian date (utc) // // return time in [-12;12] // Double_t MAstro::EstimateCulminationTime(Double_t mjd, Double_t elong, Double_t ra) { // startime at 1.1.2000 for greenwich 0h const Double_t gmt0 = 6.664520; // difference of startime for greenwich for two calendar days [h] const Double_t d0 = 0.06570982224; // mjd of greenwich 1.1.2000 0h const Double_t mjd0 = 51544; // mjd today const Double_t mjd1 = TMath::Floor(mjd); // scale between star-time and sun-time const Double_t scale = 1;//1.00273790926; const Double_t UT = (ra-elong)*RadToHor() - (gmt0 + d0 * (mjd1-mjd0))/scale; return fmod(2412 + UT, 24) - 12; } // -------------------------------------------------------------------------- // // Kepler - solve the equation of Kepler // Double_t MAstro::Kepler(Double_t m, Double_t ecc) { m *= TMath::DegToRad(); Double_t delta = 0; Double_t e = m; do { delta = e - ecc * sin(e) - m; e -= delta / (1 - ecc * cos(e)); } while (fabs(delta) > 1e-6); return e; } // -------------------------------------------------------------------------- // // GetMoonPhase - calculate phase of moon as a fraction: // Returns -1 if calculation failed // Double_t MAstro::GetMoonPhase(Double_t mjd) { /****** Calculation of the Sun's position. ******/ // date within epoch const Double_t epoch = 44238; // 1980 January 0.0 const Double_t day = mjd - epoch; if (day<0) { cout << "MAstro::GetMoonPhase - Day before Jan 1980" << endl; return -1; } // mean anomaly of the Sun const Double_t n = fmod(day*360/365.2422, 360); const Double_t elonge = 278.833540; // ecliptic longitude of the Sun at epoch 1980.0 const Double_t elongp = 282.596403; // ecliptic longitude of the Sun at perigee // convert from perigee co-ordinates to epoch 1980.0 const Double_t m = fmod(n + elonge - elongp + 360, 360); // solve equation of Kepler const Double_t eccent = 0.016718; // eccentricity of Earth's orbit const Double_t k = Kepler(m, eccent); const Double_t ec0 = sqrt((1 + eccent) / (1 - eccent)) * tan(k / 2); // true anomaly const Double_t ec = 2 * atan(ec0) * TMath::RadToDeg(); // Sun's geocentric ecliptic longitude const Double_t lambdasun = fmod(ec + elongp + 720, 360); /****** Calculation of the Moon's position. ******/ // Moon's mean longitude. const Double_t mmlong = 64.975464; // moon's mean lonigitude at the epoch const Double_t ml = fmod(13.1763966*day + mmlong + 360, 360); // Moon's mean anomaly. const Double_t mmlongp = 349.383063; // mean longitude of the perigee at the epoch const Double_t mm = fmod(ml - 0.1114041*day - mmlongp + 720, 360); // Evection. const Double_t ev = 1.2739 * sin((2 * (ml - lambdasun) - mm)*TMath::DegToRad()); // Annual equation. const Double_t sinm = TMath::Sin(m*TMath::DegToRad()); const Double_t ae = 0.1858 * sinm; // Correction term. const Double_t a3 = 0.37 * sinm; // Corrected anomaly. const Double_t mmp = (mm + ev - ae - a3)*TMath::DegToRad(); // Correction for the equation of the centre. const Double_t mec = 6.2886 * sin(mmp); // Another correction term. const Double_t a4 = 0.214 * sin(2 * mmp); // Corrected longitude. const Double_t lp = ml + ev + mec - ae + a4; // Variation. const Double_t v = 0.6583 * sin(2 * (lp - lambdasun)*TMath::DegToRad()); // True longitude. const Double_t lpp = lp + v; // Age of the Moon in degrees. const Double_t age = (lpp - lambdasun)*TMath::DegToRad(); // Calculation of the phase of the Moon. return (1 - TMath::Cos(age)) / 2; } // -------------------------------------------------------------------------- // // Calculate the Period to which the time belongs to. The Period is defined // as the number of synodic months ellapsed since the first full moon // after Jan 1st 1980 (which was @ MJD=44240.37917) // Double_t MAstro::GetMoonPeriod(Double_t mjd) { const Double_t et = mjd-kEpoch0; // Elapsed time return et/kSynMonth; } // -------------------------------------------------------------------------- // // Convert a moon period back to a mjd // // See also // MAstro::GetMoonPeriod // Double_t MAstro::GetMoonPeriodMjd(Double_t p) { return p*kSynMonth+kEpoch0; } // -------------------------------------------------------------------------- // // To get the moon period as defined for MAGIC observation we take the // nearest integer mjd, eg: // 53257.8 --> 53258 // 53258.3 --> 53258 // Which is the time between 12h and 11:59h of the following day. To // this day-period we assign the moon-period at midnight. To get // the MAGIC definition we now substract 284. // // For MAGIC observation period do eg: // GetMagicPeriod(53257.91042) // or // MTime t; // t.SetMjd(53257.91042); // GetMagicPeriod(t.GetMjd()); // or // MTime t; // t.Set(2004, 1, 1, 12, 32, 11); // GetMagicPeriod(t.GetMjd()); // // To get a floating point magic period use // GetMoonPeriod(mjd)-284 // Int_t MAstro::GetMagicPeriod(Double_t mjd) { const Double_t mmjd = (Double_t)TMath::Nint(mjd); const Double_t period = GetMoonPeriod(mmjd); return (Int_t)TMath::Floor(period)-284; } // -------------------------------------------------------------------------- // // Get the start time (12h noon) of the MAGIC period p. // // See also // MAstro::GetMagicPeriod // Double_t MAstro::GetMagicPeriodStart(Int_t p) { return TMath::Floor(GetMoonPeriodMjd(p+284))+0.5; } // -------------------------------------------------------------------------- // // Returns right ascension and declination [rad] of the sun at the // given mjd (ra, dec). // // returns the mean longitude [rad]. // // from http://xoomer.alice.it/vtomezzo/sunriset/formulas/index.html // Double_t MAstro::GetSunRaDec(Double_t mjd, Double_t &ra, Double_t &dec) { const Double_t T = (mjd-51544.5)/36525;// + (h-12)/24.0; const Double_t T2 = T<0 ? -T*T : T*T; const Double_t T3 = T*T*T; // Find the ecliptic longitude of the Sun // Geometric mean longitude of the Sun const Double_t L = 280.46646 + 36000.76983*T + 0.0003032*T2; // mean anomaly of the Sun Double_t g = 357.52911 + 35999.05029*T - 0.0001537*T2; g *= TMath::DegToRad(); // Longitude of the moon's ascending node Double_t omega = 125.04452 - 1934.136261*T + 0.0020708*T2 + T3/450000; omega *= TMath::DegToRad(); const Double_t coso = cos(omega); const Double_t sino = sin(omega); // Equation of the center const Double_t C = (1.914602 - 0.004817*T - 0.000014*T2)*sin(g) + (0.019993 - 0.000101*T)*sin(2*g) + 0.000289*sin(3*g); // True longitude of the sun const Double_t tlong = L + C; // Apperent longitude of the Sun (ecliptic) Double_t lambda = tlong - 0.00569 - 0.00478*sino; lambda *= TMath::DegToRad(); // Obliquity of the ecliptic Double_t obliq = 23.4392911 - 0.01300416667*T - 0.00000016389*T2 + 0.00000050361*T3 + 0.00255625*coso; obliq *= TMath::DegToRad(); // Find the RA and DEC of the Sun const Double_t sinl = sin(lambda); ra = atan2(cos(obliq) * sinl, cos(lambda)); dec = asin(sin(obliq) * sinl); return L*TMath::DegToRad(); } // -------------------------------------------------------------------------- // // Returns right ascension and declination [rad] of the moon at the // given mjd (ra, dec). // void MAstro::GetMoonRaDec(Double_t mjd, Double_t &ra, Double_t &dec) { // Mean Moon orbit elements as of 1990.0 const Double_t l0 = 318.351648 * TMath::DegToRad(); const Double_t P0 = 36.340410 * TMath::DegToRad(); const Double_t N0 = 318.510107 * TMath::DegToRad(); const Double_t i = 5.145396 * TMath::DegToRad(); Double_t sunra, sundec, g; { const Double_t T = (mjd-51544.5)/36525;// + (h-12)/24.0; const Double_t T2 = T<0 ? -T*T : T*T; GetSunRaDec(mjd, sunra, sundec); // mean anomaly of the Sun g = 357.52911 + 35999.05029*T - 0.0001537*T2; g *= TMath::DegToRad(); } const Double_t sing = sin(g)*TMath::DegToRad(); const Double_t D = (mjd-47891) * TMath::DegToRad(); const Double_t l = 13.1763966*D + l0; const Double_t MMoon = l -0.1114041*D - P0; // Moon's mean anomaly M const Double_t N = N0 -0.0529539*D; // Moon's mean ascending node longitude const Double_t C = l-sunra; const Double_t Ev = 1.2739 * sin(2*C-MMoon) * TMath::DegToRad(); const Double_t Ae = 0.1858 * sing; const Double_t A3 = 0.37 * sing; const Double_t MMoon2 = MMoon+Ev-Ae-A3; // corrected Moon anomaly const Double_t Ec = 6.2886 * sin(MMoon2) * TMath::DegToRad(); // equation of centre const Double_t A4 = 0.214 * sin(2*MMoon2)* TMath::DegToRad(); const Double_t l2 = l+Ev+Ec-Ae+A4; // corrected Moon's longitude const Double_t V = 0.6583 * sin(2*(l2-sunra)) * TMath::DegToRad(); const Double_t l3 = l2+V; // true orbital longitude; const Double_t N2 = N -0.16*sing; ra = fmod( N2 + atan2( sin(l3-N2)*cos(i), cos(l3-N2) ), TMath::TwoPi() ); dec = asin(sin(l3-N2)*sin(i) ); } // -------------------------------------------------------------------------- // // Return Euqation of time in hours for given mjd // Double_t MAstro::GetEquationOfTime(Double_t mjd) { Double_t ra, dec; const Double_t L = fmod(GetSunRaDec(mjd, ra, dec), TMath::TwoPi()); if (L-ra>TMath::Pi()) ra += TMath::TwoPi(); return 24*(L - ra)/TMath::TwoPi(); } // -------------------------------------------------------------------------- // // Returns noon time (the time of the highest altitude of the sun) // at the given mjd and at the given observers longitude [deg] // // The maximum altitude reached at noon time is // altmax = 90.0 + dec - latit; // if (dec > latit) // altmax = 90.0 + latit - dec; // dec=Declination of the sun // Double_t MAstro::GetNoonTime(Double_t mjd, Double_t longit) { const Double_t equation = GetEquationOfTime(TMath::Floor(mjd)); return 12. + equation - longit/15; } // -------------------------------------------------------------------------- // // Returns the time (in hours) between noon (the sun culmination) // and the sun being at height alt[deg] (90=zenith, 0=horizont) // // civil twilight: 0deg to -6deg // nautical twilight: -6deg to -12deg // astronom twilight: -12deg to -18deg // // latit is the observers latitude in rad // // returns -1 in case the sun doesn't reach this altitude. // (eg. alt=0: Polarnight or -day) // // To get the sun rise/set: // double timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), par[0]); // double noon = MAstro::GetNoonTime(mjd, longit); // double N = TMath::Floor(mjd)+noon/24.; // double risetime = N-timediff/24.; // double settime = N+timediff/24.; // Double_t MAstro::GetTimeFromNoonToAlt(Double_t mjd, Double_t latit, Double_t alt) { Double_t ra, dec; GetSunRaDec(mjd, ra, dec); const Double_t h = alt*TMath::DegToRad(); const Double_t arg = (sin(h) - sin(latit)*sin(dec))/(cos(latit)*cos(dec)); return TMath::Abs(arg)>1 ? -1 : 12*acos(arg)/TMath::Pi(); } // -------------------------------------------------------------------------- // // Returns the time of the sunrise/set calculated before and after // the noon of floor(mjd) (TO BE IMPROVED) // // Being longit and latit the longitude and latitude of the observer // in deg and alt the hight above or below the horizont in deg. // // civil twilight: 0deg to -6deg // nautical twilight: -6deg to -12deg // astronom twilight: -12deg to -18deg // // A TArrayD(2) is returned with the the mjd of the sunrise in // TArray[0] and the mjd of the sunset in TArrayD[1]. // TArrayD MAstro::GetSunRiseSet(Double_t mjd, Double_t longit, Double_t latit, Double_t alt) { const Double_t timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), alt); const Double_t noon = MAstro::GetNoonTime(mjd, longit); const Double_t N = TMath::Floor(mjd)+noon/24.; const Double_t rise = timediff<0 ? N-0.5 : N-timediff/24.; const Double_t set = timediff<0 ? N+0.5 : N+timediff/24.; TArrayD rc(2); rc[0] = rise; rc[1] = set; return rc; } // -------------------------------------------------------------------------- // // Returns the distance in x,y between two polar-vectors (eg. Alt/Az, Ra/Dec) // projected on aplain in a distance dist. For Magic this this the distance // of the camera plain (1700mm) dist also determins the unit in which // the TVector2 is returned. // // v0 is the reference vector (eg. the vector to the center of the camera) // v1 is the vector to which we determin the distance on the plain // // (see also MStarCamTrans::Loc0LocToCam()) // TVector2 MAstro::GetDistOnPlain(const TVector3 &v0, TVector3 v1, Double_t dist) { v1.RotateZ(-v0.Phi()); v1.RotateY(-v0.Theta()); v1.RotateZ(-TMath::Pi()/2); // exchange x and y v1 *= dist/v1.Z(); return v1.XYvector(); //TVector2(v1.Y(), -v1.X());//v1.XYvector(); } // -------------------------------------------------------------------------- // // Calculate the absolute misspointing from the nominal zenith angle nomzd // and the deviations in zd (devzd) and az (devaz). // All values given in deg, the return value, too. // Double_t MAstro::GetDevAbs(Double_t nomzd, Double_t devzd, Double_t devaz) { const Double_t pzd = nomzd * TMath::DegToRad(); const Double_t azd = devzd * TMath::DegToRad(); const Double_t aaz = devaz * TMath::DegToRad(); const double el = TMath::Pi()/2-pzd; const double dphi2 = aaz/2.; const double cos2 = TMath::Cos(dphi2)*TMath::Cos(dphi2); const double sin2 = TMath::Sin(dphi2)*TMath::Sin(dphi2); const double d = TMath::Cos(azd)*cos2 - TMath::Cos(2*el)*sin2; return TMath::ACos(d)*TMath::RadToDeg(); } // -------------------------------------------------------------------------- // // Returned is the offset (number of days) which must be added to // March 1st of the given year, eg: // // Int_t offset = GetDayOfEaster(2004); // // MTime t; // t.Set(year, 3, 1); // t.SetMjd(t.GetMjd()+offset); // // cout << t << endl; // // If the date coudn't be calculated -1 is returned. // // The minimum value returned is 21 corresponding to March 22. // The maximum value returned is 55 corresponding to April 25. // // -------------------------------------------------------------------------- // // Gauss'sche Formel zur Berechnung des Osterdatums // Wann wird Ostern gefeiert? Wie erfährt man das Osterdatum für ein // bestimmtes Jahr, ohne in einen Kalender zu schauen? // // Ostern ist ein "bewegliches" Fest. Es wird am ersten Sonntag nach dem // ersten Frühlingsvollmond gefeiert. Damit ist der 22. März der früheste // Termin, der 25. April der letzte, auf den Ostern fallen kann. Von // diesem Termin hängen auch die Feste Christi Himmelfahrt, das 40 Tage // nach Ostern, und Pfingsten, das 50 Tage nach Ostern gefeiert wird, ab. // // Von Carl Friedrich Gauß (Mathematiker, Astronom und Physiker; // 1777-1855) stammt ein Algorithmus, der es erlaubt ohne Kenntnis des // Mondkalenders die Daten der Osterfeste für die Jahre 1700 bis 2199 zu // bestimmen. // // Gib eine Jahreszahl zwischen 1700 und 2199 ein: // // Und so funktioniert der Algorithmus: // // Es sei: // // J die Jahreszahl // a der Divisionsrest von J/19 // b der Divisionsrest von J/4 // c der Divisionsrest von J/7 // d der Divisionsrest von (19*a + M)/30 // e der Divisionsrest von (2*b + 4*c + 6*d + N)/7 // // wobei M und N folgende Werte annehmen: // // für die Jahre M N // 1583-1599 22 2 // 1600-1699 22 2 // 1700-1799 23 3 // 1800-1899 23 4 // 1900-1999 24 5 // 2000-2099 24 5 // 2100-2199 24 6 // 2200-2299 25 0 // 2300-2399 26 1 // 2400-2499 25 1 // // Dann fällt Ostern auf den // (22 + d + e)ten März // // oder den // (d + e - 9)ten April // // Beachte: // Anstelle des 26. Aprils ist immer der 19. April zu setzen, // anstelle des 25. Aprils immer dann der 18. April, wenn d=28 und a>10. // // Literatur: // Schüler-Rechenduden // Bibliographisches Institut // Mannheim, 1966 // // -------------------------------------------------------------------------- // // Der Ostersonntag ist ein sog. unregelmäßiger Feiertag. Alle anderen // unregelmäßigen Feiertage eines Jahres leiten sich von diesem Tag ab: // // * Aschermittwoch ist 46 Tage vor Ostern. // * Pfingsten ist 49 Tage nach Ostern. // * Christi Himmelfahrt ist 10 Tage vor Pfingsten. // * Fronleichnam ist 11 Tage nach Pfingsten. // // Man muß also nur den Ostersonntag ermitteln, um alle anderen // unregelmäßigen Feiertage zu berechnen. Doch wie geht das? // // Dazu etwas Geschichte: // // Das 1. Kirchenkonzil im Jahre 325 hat festgelegt: // // * Ostern ist stets am ersten Sonntag nach dem ersten Vollmond des // Frühlings. // * Stichtag ist der 21. März, die "Frühlings-Tagundnachtgleiche". // // Am 15.10.1582 wurde von Papst Gregor XIII. der bis dahin gültige // Julianische Kalender reformiert. Der noch heute gültige Gregorianische // Kalender legt dabei folgendes fest: // // Ein Jahr hat 365 Tage und ein Schaltjahr wird eingefügt, wenn das Jahr // durch 4 oder durch 400, aber nicht durch 100 teilbar ist. Hieraus // ergeben sich die zwei notwendigen Konstanten, um den Ostersonntag zu // berechnen: // // 1. Die Jahreslänge von und bis zum Zeitpunkt der // Frühlings-Tagundnachtgleiche: 365,2422 mittlere Sonnentage // 2. Ein Mondmonat: 29,5306 mittlere Sonnentage // // Mit der "Osterformel", von Carl Friedrich Gauß (1777-1855) im Jahre 1800 // entwickelt, läßt sich der Ostersonntag für jedes Jahr von 1583 bis 8202 // berechnen. // // Der früheste mögliche Ostertermin ist der 22. März. (Wenn der Vollmond // auf den 21. März fällt und der 22. März ein Sonntag ist.) // // Der späteste mögliche Ostertermin ist der 25. April. (Wenn der Vollmond // auf den 21. März fällt und der 21. März ein Sonntag ist.) // Int_t MAstro::GetEasterOffset(UShort_t year) { if (year<1583 || year>2499) { cout << "MAstro::GetDayOfEaster - Year " << year << " not between 1700 and 2199" << endl; return -1; } Int_t M=0; Int_t N=0; switch (year/100) { case 15: case 16: M=22; N=2; break; case 17: M=23; N=3; break; case 18: M=23; N=4; break; case 19: case 20: M=24; N=5; break; case 21: M=24; N=6; break; case 22: M=25; N=0; break; case 23: M=26; N=1; break; case 24: M=25; N=1; break; } const Int_t a = year%19; const Int_t b = year%4; const Int_t c = year%7; const Int_t d = (19*a + M)%30; const Int_t e = (2*b + 4*c + 6*d + N)%7; if (e==6 && d==28 && a>10) return 48; if (d+e==35) return 49; return d + e + 21; }