| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz, 11/2003 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2004
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MAstro
|
|---|
| 28 | // ------
|
|---|
| 29 | //
|
|---|
| 30 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 31 | #include "MAstro.h"
|
|---|
| 32 |
|
|---|
| 33 | #include <iostream>
|
|---|
| 34 |
|
|---|
| 35 | #include <TVector3.h> // TVector3
|
|---|
| 36 |
|
|---|
| 37 | #include "MTime.h" // MTime::GetGmst
|
|---|
| 38 |
|
|---|
| 39 | using namespace std;
|
|---|
| 40 |
|
|---|
| 41 | ClassImp(MAstro);
|
|---|
| 42 |
|
|---|
| 43 | Double_t MAstro::Trunc(Double_t val)
|
|---|
| 44 | {
|
|---|
| 45 | // dint(A) - truncate to nearest whole number towards zero (double)
|
|---|
| 46 | return val<0 ? TMath::Ceil(val) : TMath::Floor(val);
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 | Double_t MAstro::Round(Double_t val)
|
|---|
| 50 | {
|
|---|
| 51 | // dnint(A) - round to nearest whole number (double)
|
|---|
| 52 | return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5);
|
|---|
| 53 | }
|
|---|
| 54 |
|
|---|
| 55 | Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 56 | {
|
|---|
| 57 | const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg);
|
|---|
| 58 | return sgn=='-' ? -rc : rc;
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 | Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 62 | {
|
|---|
| 63 | // pi/(180*3600): arcseconds to radians
|
|---|
| 64 | //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6
|
|---|
| 65 | return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/;
|
|---|
| 66 | }
|
|---|
| 67 |
|
|---|
| 68 | Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 69 | {
|
|---|
| 70 | // pi/(12*3600): seconds of time to radians
|
|---|
| 71 | //#define DS2R 7.2722052166430399038487115353692196393452995355905e-5
|
|---|
| 72 | return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/;
|
|---|
| 73 | }
|
|---|
| 74 |
|
|---|
| 75 | Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 76 | {
|
|---|
| 77 | return Hms2Sec(deg, min, sec, sgn)/3600.;
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 81 | {
|
|---|
| 82 | return Hms2Sec(hor, min, sec, sgn)/240.;
|
|---|
| 83 | }
|
|---|
| 84 |
|
|---|
| 85 | Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 86 | {
|
|---|
| 87 | return Hms2Sec(deg, min, sec, sgn)/54000.;
|
|---|
| 88 | }
|
|---|
| 89 |
|
|---|
| 90 | Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 91 | {
|
|---|
| 92 | return Hms2Sec(hor, min, sec, sgn)/3600.;
|
|---|
| 93 | }
|
|---|
| 94 |
|
|---|
| 95 | void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec)
|
|---|
| 96 | {
|
|---|
| 97 | /* Handle sign */
|
|---|
| 98 | sgn = day<0?'-':'+';
|
|---|
| 99 |
|
|---|
| 100 | /* Round interval and express in smallest units required */
|
|---|
| 101 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
|
|---|
| 102 |
|
|---|
| 103 | /* Separate into fields */
|
|---|
| 104 | const Double_t ah = Trunc(a/3600.);
|
|---|
| 105 | a -= ah * 3600.;
|
|---|
| 106 | const Double_t am = Trunc(a/60.);
|
|---|
| 107 | a -= am * 60.;
|
|---|
| 108 | const Double_t as = Trunc(a);
|
|---|
| 109 |
|
|---|
| 110 | /* Return results */
|
|---|
| 111 | hor = (UShort_t)ah;
|
|---|
| 112 | min = (UShort_t)am;
|
|---|
| 113 | sec = (UShort_t)as;
|
|---|
| 114 | }
|
|---|
| 115 |
|
|---|
| 116 | void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 117 | {
|
|---|
| 118 | Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec);
|
|---|
| 119 | }
|
|---|
| 120 |
|
|---|
| 121 | void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 122 | {
|
|---|
| 123 | Rad2Hms(rad*15, sgn, deg, min, sec);
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 127 | {
|
|---|
| 128 | Day2Hms(d/24, sgn, deg, min, sec);
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 132 | {
|
|---|
| 133 | Rad2Hms(d/360, sgn, deg, min, sec);
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 | void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 137 | {
|
|---|
| 138 | Day2Hms(h*15/24, sgn, deg, min, sec);
|
|---|
| 139 | }
|
|---|
| 140 |
|
|---|
| 141 | void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 142 | {
|
|---|
| 143 | Day2Hms(h/24, sgn, deg, min, sec);
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min)
|
|---|
| 147 | {
|
|---|
| 148 | /* Handle sign */
|
|---|
| 149 | sgn = day<0?'-':'+';
|
|---|
| 150 |
|
|---|
| 151 | /* Round interval and express in smallest units required */
|
|---|
| 152 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
|
|---|
| 153 |
|
|---|
| 154 | /* Separate into fields */
|
|---|
| 155 | const Double_t ah = Trunc(a/3600.);
|
|---|
| 156 | a -= ah * 3600.;
|
|---|
| 157 |
|
|---|
| 158 | /* Return results */
|
|---|
| 159 | hor = (UShort_t)ah;
|
|---|
| 160 | min = a/60.;
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|
| 163 | void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 164 | {
|
|---|
| 165 | Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min);
|
|---|
| 166 | }
|
|---|
| 167 |
|
|---|
| 168 | void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 169 | {
|
|---|
| 170 | Rad2Hm(rad*15, sgn, deg, min);
|
|---|
| 171 | }
|
|---|
| 172 |
|
|---|
| 173 | void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 174 | {
|
|---|
| 175 | Day2Hm(d/24, sgn, deg, min);
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 179 | {
|
|---|
| 180 | Rad2Hm(d/360, sgn, deg, min);
|
|---|
| 181 | }
|
|---|
| 182 |
|
|---|
| 183 | void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 184 | {
|
|---|
| 185 | Day2Hm(h*15/24, sgn, deg, min);
|
|---|
| 186 | }
|
|---|
| 187 |
|
|---|
| 188 | void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 189 | {
|
|---|
| 190 | Day2Hm(h/24, sgn, deg, min);
|
|---|
| 191 | }
|
|---|
| 192 |
|
|---|
| 193 | // --------------------------------------------------------------------------
|
|---|
| 194 | //
|
|---|
| 195 | // Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0'
|
|---|
| 196 | // as floating point value -12.5 or 12.5. If interpretation is
|
|---|
| 197 | // successfull kTRUE is returned, otherwise kFALSE. ret is not
|
|---|
| 198 | // touched if interpretation was not successfull. The successfull
|
|---|
| 199 | // interpreted part is removed from the TString.
|
|---|
| 200 | //
|
|---|
| 201 | Bool_t MAstro::String2Angle(TString &str, Double_t &ret)
|
|---|
| 202 | {
|
|---|
| 203 | Char_t sgn;
|
|---|
| 204 | Int_t d, len;
|
|---|
| 205 | UInt_t m;
|
|---|
| 206 | Float_t s;
|
|---|
| 207 |
|
|---|
| 208 | // Skip whitespaces before %c and after %f
|
|---|
| 209 | int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len);
|
|---|
| 210 |
|
|---|
| 211 | if (n!=4 || (sgn!='+' && sgn!='-'))
|
|---|
| 212 | return kFALSE;
|
|---|
| 213 |
|
|---|
| 214 | str.Remove(0, len);
|
|---|
| 215 |
|
|---|
| 216 | ret = Dms2Deg(d, m, s, sgn);
|
|---|
| 217 | return kTRUE;
|
|---|
| 218 | }
|
|---|
| 219 |
|
|---|
| 220 | // --------------------------------------------------------------------------
|
|---|
| 221 | //
|
|---|
| 222 | // Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0'
|
|---|
| 223 | // as floating point value -12.5, 12.5 or 12.5. If interpretation is
|
|---|
| 224 | // successfull kTRUE is returned, otherwise kFALSE. ret is not
|
|---|
| 225 | // touched if interpretation was not successfull.
|
|---|
| 226 | //
|
|---|
| 227 | Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret)
|
|---|
| 228 | {
|
|---|
| 229 | Char_t sgn = str[0]=='-' ? '-' : '+';
|
|---|
| 230 | Int_t d;
|
|---|
| 231 | UInt_t m;
|
|---|
| 232 | Float_t s;
|
|---|
| 233 |
|
|---|
| 234 | const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s);
|
|---|
| 235 |
|
|---|
| 236 | if (n!=3)
|
|---|
| 237 | return kFALSE;
|
|---|
| 238 |
|
|---|
| 239 | ret = Dms2Deg(d, m, s, sgn);
|
|---|
| 240 | return kTRUE;
|
|---|
| 241 | }
|
|---|
| 242 |
|
|---|
| 243 | // --------------------------------------------------------------------------
|
|---|
| 244 | //
|
|---|
| 245 | // Return year y, month m and day d corresponding to Mjd.
|
|---|
| 246 | //
|
|---|
| 247 | void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d)
|
|---|
| 248 | {
|
|---|
| 249 | // Express day in Gregorian calendar
|
|---|
| 250 | const ULong_t jd = mjd + 2400001;
|
|---|
| 251 | const ULong_t n4 = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37);
|
|---|
| 252 | const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5;
|
|---|
| 253 |
|
|---|
| 254 | y = n4/1461L-4712;
|
|---|
| 255 | m = ((nd10/306+2)%12)+1;
|
|---|
| 256 | d = (nd10%306)/10+1;
|
|---|
| 257 | }
|
|---|
| 258 |
|
|---|
| 259 | // --------------------------------------------------------------------------
|
|---|
| 260 | //
|
|---|
| 261 | // Return Mjd corresponding to year y, month m and day d.
|
|---|
| 262 | //
|
|---|
| 263 | Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d)
|
|---|
| 264 | {
|
|---|
| 265 | // Month lengths in days
|
|---|
| 266 | static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|---|
| 267 |
|
|---|
| 268 | // Validate month
|
|---|
| 269 | if (m<1 || m>12)
|
|---|
| 270 | return -1;
|
|---|
| 271 |
|
|---|
| 272 | // Allow for leap year
|
|---|
| 273 | months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28;
|
|---|
| 274 |
|
|---|
| 275 | // Validate day
|
|---|
| 276 | if (d<1 || d>months[m-1])
|
|---|
| 277 | return -1;
|
|---|
| 278 |
|
|---|
| 279 | // Precalculate some values
|
|---|
| 280 | const Byte_t lm = 12-m;
|
|---|
| 281 | const ULong_t lm10 = 4712 + y - lm/10;
|
|---|
| 282 |
|
|---|
| 283 | // Perform the conversion
|
|---|
| 284 | return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904;
|
|---|
| 285 | }
|
|---|
| 286 |
|
|---|
| 287 | // --------------------------------------------------------------------------
|
|---|
| 288 | //
|
|---|
| 289 | // theta0, phi0 [rad]: polar angle/zenith distance, azimuth of 1st object
|
|---|
| 290 | // theta1, phi1 [rad]: polar angle/zenith distance, azimuth of 2nd object
|
|---|
| 291 | // AngularDistance [rad]: Angular distance between two objects
|
|---|
| 292 | //
|
|---|
| 293 | Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1)
|
|---|
| 294 | {
|
|---|
| 295 | TVector3 v0(1);
|
|---|
| 296 | v0.Rotate(phi0, theta0);
|
|---|
| 297 |
|
|---|
| 298 | TVector3 v1(1);
|
|---|
| 299 | v1.Rotate(phi1, theta1);
|
|---|
| 300 |
|
|---|
| 301 | return v0.Angle(v1);
|
|---|
| 302 | }
|
|---|
| 303 |
|
|---|
| 304 | // --------------------------------------------------------------------------
|
|---|
| 305 | //
|
|---|
| 306 | // Calls MTime::GetGmst() Better use MTime::GetGmst() directly
|
|---|
| 307 | //
|
|---|
| 308 | Double_t MAstro::UT2GMST(Double_t ut1)
|
|---|
| 309 | {
|
|---|
| 310 | return MTime(ut1).GetGmst();
|
|---|
| 311 | }
|
|---|
| 312 |
|
|---|
| 313 | // --------------------------------------------------------------------------
|
|---|
| 314 | //
|
|---|
| 315 | // RotationAngle
|
|---|
| 316 | //
|
|---|
| 317 | // calculates the angle for the rotation of the sky coordinate system
|
|---|
| 318 | // with respect to the local coordinate system. This is identical
|
|---|
| 319 | // to the rotation angle of the sky image in the camera.
|
|---|
| 320 | //
|
|---|
| 321 | // sinl [rad]: sine of observers latitude
|
|---|
| 322 | // cosl [rad]: cosine of observers latitude
|
|---|
| 323 | // theta [rad]: polar angle/zenith distance
|
|---|
| 324 | // phi [rad]: rotation angle/azimuth
|
|---|
| 325 | //
|
|---|
| 326 | // Return sin/cos component of angle
|
|---|
| 327 | //
|
|---|
| 328 | // The convention is such, that the rotation angle is -pi/pi if
|
|---|
| 329 | // right ascension and local rotation angle are counted in the
|
|---|
| 330 | // same direction, 0 if counted in the opposite direction.
|
|---|
| 331 | //
|
|---|
| 332 | // (In other words: The rotation angle is 0 when the source culminates)
|
|---|
| 333 | //
|
|---|
| 334 | // Using vectors it can be done like:
|
|---|
| 335 | // TVector3 v, p;
|
|---|
| 336 | // v.SetMagThetaPhi(1, theta, phi);
|
|---|
| 337 | // p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
|
|---|
| 338 | // v = v.Cross(l));
|
|---|
| 339 | // v.RotateZ(-phi);
|
|---|
| 340 | // v.Rotate(-theta)
|
|---|
| 341 | // rho = TMath::ATan2(v(2), v(1));
|
|---|
| 342 | //
|
|---|
| 343 | // For more information see TDAS 00-11, eqs. (18) and (20)
|
|---|
| 344 | //
|
|---|
| 345 | void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos)
|
|---|
| 346 | {
|
|---|
| 347 | const Double_t sint = TMath::Sin(theta);
|
|---|
| 348 | const Double_t cost = TMath::Cos(theta);
|
|---|
| 349 |
|
|---|
| 350 | const Double_t snlt = sinl*sint;
|
|---|
| 351 | const Double_t cslt = cosl*cost;
|
|---|
| 352 |
|
|---|
| 353 | const Double_t sinp = TMath::Sin(phi);
|
|---|
| 354 | const Double_t cosp = TMath::Cos(phi);
|
|---|
| 355 |
|
|---|
| 356 | const Double_t v1 = sint*sinp;
|
|---|
| 357 | const Double_t v2 = cslt - snlt*cosp;
|
|---|
| 358 |
|
|---|
| 359 | const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2);
|
|---|
| 360 |
|
|---|
| 361 | sin = cosl*sinp / denom; // y-component
|
|---|
| 362 | cos = (snlt-cslt*cosp) / denom; // x-component
|
|---|
| 363 | }
|
|---|
| 364 |
|
|---|
| 365 | // --------------------------------------------------------------------------
|
|---|
| 366 | //
|
|---|
| 367 | // RotationAngle
|
|---|
| 368 | //
|
|---|
| 369 | // calculates the angle for the rotation of the sky coordinate system
|
|---|
| 370 | // with respect to the local coordinate system. This is identical
|
|---|
| 371 | // to the rotation angle of the sky image in the camera.
|
|---|
| 372 | //
|
|---|
| 373 | // sinl [rad]: sine of observers latitude
|
|---|
| 374 | // cosl [rad]: cosine of observers latitude
|
|---|
| 375 | // theta [rad]: polar angle/zenith distance
|
|---|
| 376 | // phi [rad]: rotation angle/azimuth
|
|---|
| 377 | //
|
|---|
| 378 | // Return angle [rad] in the range -pi, pi
|
|---|
| 379 | //
|
|---|
| 380 | // The convention is such, that the rotation angle is -pi/pi if
|
|---|
| 381 | // right ascension and local rotation angle are counted in the
|
|---|
| 382 | // same direction, 0 if counted in the opposite direction.
|
|---|
| 383 | //
|
|---|
| 384 | // (In other words: The rotation angle is 0 when the source culminates)
|
|---|
| 385 | //
|
|---|
| 386 | // Using vectors it can be done like:
|
|---|
| 387 | // TVector3 v, p;
|
|---|
| 388 | // v.SetMagThetaPhi(1, theta, phi);
|
|---|
| 389 | // p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
|
|---|
| 390 | // v = v.Cross(l));
|
|---|
| 391 | // v.RotateZ(-phi);
|
|---|
| 392 | // v.Rotate(-theta)
|
|---|
| 393 | // rho = TMath::ATan2(v(2), v(1));
|
|---|
| 394 | //
|
|---|
| 395 | // For more information see TDAS 00-11, eqs. (18) and (20)
|
|---|
| 396 | //
|
|---|
| 397 | Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi)
|
|---|
| 398 | {
|
|---|
| 399 | const Double_t snlt = sinl*TMath::Sin(theta);
|
|---|
| 400 | const Double_t cslt = cosl*TMath::Cos(theta);
|
|---|
| 401 |
|
|---|
| 402 | const Double_t sinp = TMath::Sin(phi);
|
|---|
| 403 | const Double_t cosp = TMath::Cos(phi);
|
|---|
| 404 |
|
|---|
| 405 | return TMath::ATan2(cosl*sinp, snlt-cslt*cosp);
|
|---|
| 406 | }
|
|---|