1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 11/2003 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MAstro
|
---|
28 | // ------
|
---|
29 | //
|
---|
30 | ////////////////////////////////////////////////////////////////////////////
|
---|
31 | #include "MAstro.h"
|
---|
32 |
|
---|
33 | #include <iostream>
|
---|
34 |
|
---|
35 | #include <TVector3.h> // TVector3
|
---|
36 |
|
---|
37 | #include "MTime.h" // MTime::GetGmst
|
---|
38 |
|
---|
39 | #include "MAstroCatalog.h" // FIXME: replace by MVector3!
|
---|
40 |
|
---|
41 | using namespace std;
|
---|
42 |
|
---|
43 | ClassImp(MAstro);
|
---|
44 |
|
---|
45 | Double_t MAstro::Trunc(Double_t val)
|
---|
46 | {
|
---|
47 | // dint(A) - truncate to nearest whole number towards zero (double)
|
---|
48 | return val<0 ? TMath::Ceil(val) : TMath::Floor(val);
|
---|
49 | }
|
---|
50 |
|
---|
51 | Double_t MAstro::Round(Double_t val)
|
---|
52 | {
|
---|
53 | // dnint(A) - round to nearest whole number (double)
|
---|
54 | return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5);
|
---|
55 | }
|
---|
56 |
|
---|
57 | Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
---|
58 | {
|
---|
59 | const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg);
|
---|
60 | return sgn=='-' ? -rc : rc;
|
---|
61 | }
|
---|
62 |
|
---|
63 | Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
---|
64 | {
|
---|
65 | // pi/(180*3600): arcseconds to radians
|
---|
66 | //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6
|
---|
67 | return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/;
|
---|
68 | }
|
---|
69 |
|
---|
70 | Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
---|
71 | {
|
---|
72 | // pi/(12*3600): seconds of time to radians
|
---|
73 | //#define DS2R 7.2722052166430399038487115353692196393452995355905e-5
|
---|
74 | return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/;
|
---|
75 | }
|
---|
76 |
|
---|
77 | Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
---|
78 | {
|
---|
79 | return Hms2Sec(deg, min, sec, sgn)/3600.;
|
---|
80 | }
|
---|
81 |
|
---|
82 | Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
---|
83 | {
|
---|
84 | return Hms2Sec(hor, min, sec, sgn)/240.;
|
---|
85 | }
|
---|
86 |
|
---|
87 | Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
---|
88 | {
|
---|
89 | return Hms2Sec(deg, min, sec, sgn)/54000.;
|
---|
90 | }
|
---|
91 |
|
---|
92 | Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
---|
93 | {
|
---|
94 | return Hms2Sec(hor, min, sec, sgn)/3600.;
|
---|
95 | }
|
---|
96 |
|
---|
97 | void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec)
|
---|
98 | {
|
---|
99 | /* Handle sign */
|
---|
100 | sgn = day<0?'-':'+';
|
---|
101 |
|
---|
102 | /* Round interval and express in smallest units required */
|
---|
103 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
|
---|
104 |
|
---|
105 | /* Separate into fields */
|
---|
106 | const Double_t ah = Trunc(a/3600.);
|
---|
107 | a -= ah * 3600.;
|
---|
108 | const Double_t am = Trunc(a/60.);
|
---|
109 | a -= am * 60.;
|
---|
110 | const Double_t as = Trunc(a);
|
---|
111 |
|
---|
112 | /* Return results */
|
---|
113 | hor = (UShort_t)ah;
|
---|
114 | min = (UShort_t)am;
|
---|
115 | sec = (UShort_t)as;
|
---|
116 | }
|
---|
117 |
|
---|
118 | void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
---|
119 | {
|
---|
120 | Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec);
|
---|
121 | }
|
---|
122 |
|
---|
123 | void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
---|
124 | {
|
---|
125 | Rad2Hms(rad*15, sgn, deg, min, sec);
|
---|
126 | }
|
---|
127 |
|
---|
128 | void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
---|
129 | {
|
---|
130 | Day2Hms(d/24, sgn, deg, min, sec);
|
---|
131 | }
|
---|
132 |
|
---|
133 | void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
---|
134 | {
|
---|
135 | Rad2Hms(d/360, sgn, deg, min, sec);
|
---|
136 | }
|
---|
137 |
|
---|
138 | void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
---|
139 | {
|
---|
140 | Day2Hms(h*15/24, sgn, deg, min, sec);
|
---|
141 | }
|
---|
142 |
|
---|
143 | void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
---|
144 | {
|
---|
145 | Day2Hms(h/24, sgn, deg, min, sec);
|
---|
146 | }
|
---|
147 |
|
---|
148 | void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min)
|
---|
149 | {
|
---|
150 | /* Handle sign */
|
---|
151 | sgn = day<0?'-':'+';
|
---|
152 |
|
---|
153 | /* Round interval and express in smallest units required */
|
---|
154 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
|
---|
155 |
|
---|
156 | /* Separate into fields */
|
---|
157 | const Double_t ah = Trunc(a/3600.);
|
---|
158 | a -= ah * 3600.;
|
---|
159 |
|
---|
160 | /* Return results */
|
---|
161 | hor = (UShort_t)ah;
|
---|
162 | min = a/60.;
|
---|
163 | }
|
---|
164 |
|
---|
165 | void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min)
|
---|
166 | {
|
---|
167 | Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min);
|
---|
168 | }
|
---|
169 |
|
---|
170 | void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min)
|
---|
171 | {
|
---|
172 | Rad2Hm(rad*15, sgn, deg, min);
|
---|
173 | }
|
---|
174 |
|
---|
175 | void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min)
|
---|
176 | {
|
---|
177 | Day2Hm(d/24, sgn, deg, min);
|
---|
178 | }
|
---|
179 |
|
---|
180 | void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min)
|
---|
181 | {
|
---|
182 | Rad2Hm(d/360, sgn, deg, min);
|
---|
183 | }
|
---|
184 |
|
---|
185 | void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min)
|
---|
186 | {
|
---|
187 | Day2Hm(h*15/24, sgn, deg, min);
|
---|
188 | }
|
---|
189 |
|
---|
190 | void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min)
|
---|
191 | {
|
---|
192 | Day2Hm(h/24, sgn, deg, min);
|
---|
193 | }
|
---|
194 |
|
---|
195 | // --------------------------------------------------------------------------
|
---|
196 | //
|
---|
197 | // Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0'
|
---|
198 | // as floating point value -12.5 or 12.5. If interpretation is
|
---|
199 | // successfull kTRUE is returned, otherwise kFALSE. ret is not
|
---|
200 | // touched if interpretation was not successfull. The successfull
|
---|
201 | // interpreted part is removed from the TString.
|
---|
202 | //
|
---|
203 | Bool_t MAstro::String2Angle(TString &str, Double_t &ret)
|
---|
204 | {
|
---|
205 | Char_t sgn;
|
---|
206 | Int_t d, len;
|
---|
207 | UInt_t m;
|
---|
208 | Float_t s;
|
---|
209 |
|
---|
210 | // Skip whitespaces before %c and after %f
|
---|
211 | int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len);
|
---|
212 |
|
---|
213 | if (n!=4 || (sgn!='+' && sgn!='-'))
|
---|
214 | return kFALSE;
|
---|
215 |
|
---|
216 | str.Remove(0, len);
|
---|
217 |
|
---|
218 | ret = Dms2Deg(d, m, s, sgn);
|
---|
219 | return kTRUE;
|
---|
220 | }
|
---|
221 |
|
---|
222 | // --------------------------------------------------------------------------
|
---|
223 | //
|
---|
224 | // Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0'
|
---|
225 | // as floating point value -12.5, 12.5 or 12.5. If interpretation is
|
---|
226 | // successfull kTRUE is returned, otherwise kFALSE. ret is not
|
---|
227 | // touched if interpretation was not successfull.
|
---|
228 | //
|
---|
229 | Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret)
|
---|
230 | {
|
---|
231 | Char_t sgn = str[0]=='-' ? '-' : '+';
|
---|
232 | Int_t d;
|
---|
233 | UInt_t m;
|
---|
234 | Float_t s;
|
---|
235 |
|
---|
236 | const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s);
|
---|
237 |
|
---|
238 | if (n!=3)
|
---|
239 | return kFALSE;
|
---|
240 |
|
---|
241 | ret = Dms2Deg(d, m, s, sgn);
|
---|
242 | return kTRUE;
|
---|
243 | }
|
---|
244 |
|
---|
245 | // --------------------------------------------------------------------------
|
---|
246 | //
|
---|
247 | // Returns val=-12.5 as string '-12:30:00'
|
---|
248 | //
|
---|
249 | TString MAstro::Angle2Coordinate(Double_t val)
|
---|
250 | {
|
---|
251 | Char_t sgn;
|
---|
252 | UShort_t d,m,s;
|
---|
253 |
|
---|
254 | Deg2Dms(val, sgn, d, m, s);
|
---|
255 |
|
---|
256 | return Form("%c%02d:%02d:%02d", sgn, d, m, s);
|
---|
257 | }
|
---|
258 |
|
---|
259 | // --------------------------------------------------------------------------
|
---|
260 | //
|
---|
261 | // Return year y, month m and day d corresponding to Mjd.
|
---|
262 | //
|
---|
263 | void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d)
|
---|
264 | {
|
---|
265 | // Express day in Gregorian calendar
|
---|
266 | const ULong_t jd = mjd + 2400001;
|
---|
267 | const ULong_t n4 = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37);
|
---|
268 | const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5;
|
---|
269 |
|
---|
270 | y = n4/1461L-4712;
|
---|
271 | m = ((nd10/306+2)%12)+1;
|
---|
272 | d = (nd10%306)/10+1;
|
---|
273 | }
|
---|
274 |
|
---|
275 | // --------------------------------------------------------------------------
|
---|
276 | //
|
---|
277 | // Return Mjd corresponding to year y, month m and day d.
|
---|
278 | //
|
---|
279 | Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d)
|
---|
280 | {
|
---|
281 | // Month lengths in days
|
---|
282 | static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
---|
283 |
|
---|
284 | // Validate month
|
---|
285 | if (m<1 || m>12)
|
---|
286 | return -1;
|
---|
287 |
|
---|
288 | // Allow for leap year
|
---|
289 | months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28;
|
---|
290 |
|
---|
291 | // Validate day
|
---|
292 | if (d<1 || d>months[m-1])
|
---|
293 | return -1;
|
---|
294 |
|
---|
295 | // Precalculate some values
|
---|
296 | const Byte_t lm = 12-m;
|
---|
297 | const ULong_t lm10 = 4712 + y - lm/10;
|
---|
298 |
|
---|
299 | // Perform the conversion
|
---|
300 | return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904;
|
---|
301 | }
|
---|
302 |
|
---|
303 | // --------------------------------------------------------------------------
|
---|
304 | //
|
---|
305 | // theta0, phi0 [rad]: polar angle/zenith distance, azimuth of 1st object
|
---|
306 | // theta1, phi1 [rad]: polar angle/zenith distance, azimuth of 2nd object
|
---|
307 | // AngularDistance [rad]: Angular distance between two objects
|
---|
308 | //
|
---|
309 | Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1)
|
---|
310 | {
|
---|
311 | TVector3 v0(1);
|
---|
312 | v0.Rotate(phi0, theta0);
|
---|
313 |
|
---|
314 | TVector3 v1(1);
|
---|
315 | v1.Rotate(phi1, theta1);
|
---|
316 |
|
---|
317 | return v0.Angle(v1);
|
---|
318 | }
|
---|
319 |
|
---|
320 | // --------------------------------------------------------------------------
|
---|
321 | //
|
---|
322 | // Calls MTime::GetGmst() Better use MTime::GetGmst() directly
|
---|
323 | //
|
---|
324 | Double_t MAstro::UT2GMST(Double_t ut1)
|
---|
325 | {
|
---|
326 | return MTime(ut1).GetGmst();
|
---|
327 | }
|
---|
328 |
|
---|
329 | // --------------------------------------------------------------------------
|
---|
330 | //
|
---|
331 | // RotationAngle
|
---|
332 | //
|
---|
333 | // calculates the angle for the rotation of the sky coordinate system
|
---|
334 | // with respect to the local coordinate system. This is identical
|
---|
335 | // to the rotation angle of the sky image in the camera.
|
---|
336 | //
|
---|
337 | // sinl [rad]: sine of observers latitude
|
---|
338 | // cosl [rad]: cosine of observers latitude
|
---|
339 | // theta [rad]: polar angle/zenith distance
|
---|
340 | // phi [rad]: rotation angle/azimuth
|
---|
341 | //
|
---|
342 | // Return sin/cos component of angle
|
---|
343 | //
|
---|
344 | // The convention is such, that the rotation angle is -pi/pi if
|
---|
345 | // right ascension and local rotation angle are counted in the
|
---|
346 | // same direction, 0 if counted in the opposite direction.
|
---|
347 | //
|
---|
348 | // (In other words: The rotation angle is 0 when the source culminates)
|
---|
349 | //
|
---|
350 | // Using vectors it can be done like:
|
---|
351 | // TVector3 v, p;
|
---|
352 | // v.SetMagThetaPhi(1, theta, phi);
|
---|
353 | // p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
|
---|
354 | // v = v.Cross(l));
|
---|
355 | // v.RotateZ(-phi);
|
---|
356 | // v.Rotate(-theta)
|
---|
357 | // rho = TMath::ATan2(v(2), v(1));
|
---|
358 | //
|
---|
359 | // For more information see TDAS 00-11, eqs. (18) and (20)
|
---|
360 | //
|
---|
361 | void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos)
|
---|
362 | {
|
---|
363 | const Double_t sint = TMath::Sin(theta);
|
---|
364 | const Double_t cost = TMath::Cos(theta);
|
---|
365 |
|
---|
366 | const Double_t snlt = sinl*sint;
|
---|
367 | const Double_t cslt = cosl*cost;
|
---|
368 |
|
---|
369 | const Double_t sinp = TMath::Sin(phi);
|
---|
370 | const Double_t cosp = TMath::Cos(phi);
|
---|
371 |
|
---|
372 | const Double_t v1 = sint*sinp;
|
---|
373 | const Double_t v2 = cslt - snlt*cosp;
|
---|
374 |
|
---|
375 | const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2);
|
---|
376 |
|
---|
377 | sin = cosl*sinp / denom; // y-component
|
---|
378 | cos = (snlt-cslt*cosp) / denom; // x-component
|
---|
379 | }
|
---|
380 |
|
---|
381 | // --------------------------------------------------------------------------
|
---|
382 | //
|
---|
383 | // RotationAngle
|
---|
384 | //
|
---|
385 | // calculates the angle for the rotation of the sky coordinate system
|
---|
386 | // with respect to the local coordinate system. This is identical
|
---|
387 | // to the rotation angle of the sky image in the camera.
|
---|
388 | //
|
---|
389 | // sinl [rad]: sine of observers latitude
|
---|
390 | // cosl [rad]: cosine of observers latitude
|
---|
391 | // theta [rad]: polar angle/zenith distance
|
---|
392 | // phi [rad]: rotation angle/azimuth
|
---|
393 | //
|
---|
394 | // Return angle [rad] in the range -pi, pi
|
---|
395 | //
|
---|
396 | // The convention is such, that the rotation angle is -pi/pi if
|
---|
397 | // right ascension and local rotation angle are counted in the
|
---|
398 | // same direction, 0 if counted in the opposite direction.
|
---|
399 | //
|
---|
400 | // (In other words: The rotation angle is 0 when the source culminates)
|
---|
401 | //
|
---|
402 | // Using vectors it can be done like:
|
---|
403 | // TVector3 v, p;
|
---|
404 | // v.SetMagThetaPhi(1, theta, phi);
|
---|
405 | // p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
|
---|
406 | // v = v.Cross(l));
|
---|
407 | // v.RotateZ(-phi);
|
---|
408 | // v.Rotate(-theta)
|
---|
409 | // rho = TMath::ATan2(v(2), v(1));
|
---|
410 | //
|
---|
411 | // For more information see TDAS 00-11, eqs. (18) and (20)
|
---|
412 | //
|
---|
413 | Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi)
|
---|
414 | {
|
---|
415 | const Double_t snlt = sinl*TMath::Sin(theta);
|
---|
416 | const Double_t cslt = cosl*TMath::Cos(theta);
|
---|
417 |
|
---|
418 | const Double_t sinp = TMath::Sin(phi);
|
---|
419 | const Double_t cosp = TMath::Cos(phi);
|
---|
420 |
|
---|
421 | return TMath::ATan2(cosl*sinp, snlt-cslt*cosp);
|
---|
422 | }
|
---|
423 |
|
---|
424 |
|
---|
425 | // --------------------------------------------------------------------------
|
---|
426 | //
|
---|
427 | // Kepler - solve the equation of Kepler
|
---|
428 | //
|
---|
429 | Double_t MAstro::Kepler(Double_t m, Double_t ecc)
|
---|
430 | {
|
---|
431 | m *= TMath::DegToRad();
|
---|
432 |
|
---|
433 | Double_t delta = 0;
|
---|
434 | Double_t e = m;
|
---|
435 | do {
|
---|
436 | delta = e - ecc * sin(e) - m;
|
---|
437 | e -= delta / (1 - ecc * cos(e));
|
---|
438 | } while (fabs(delta) > 1e-6);
|
---|
439 |
|
---|
440 | return e;
|
---|
441 | }
|
---|
442 |
|
---|
443 | // --------------------------------------------------------------------------
|
---|
444 | //
|
---|
445 | // GetMoonPhase - calculate phase of moon as a fraction:
|
---|
446 | // Returns -1 if calculation failed
|
---|
447 | //
|
---|
448 | Double_t MAstro::GetMoonPhase(Double_t mjd)
|
---|
449 | {
|
---|
450 | /****** Calculation of the Sun's position. ******/
|
---|
451 |
|
---|
452 | // date within epoch
|
---|
453 | const Double_t epoch = 44238; // 1980 January 0.0
|
---|
454 | const Double_t day = mjd - epoch;
|
---|
455 | if (day<0)
|
---|
456 | {
|
---|
457 | cout << "MAstro::GetMoonPhase - Day before Jan 1980" << endl;
|
---|
458 | return -1;
|
---|
459 | }
|
---|
460 |
|
---|
461 | // mean anomaly of the Sun
|
---|
462 | const Double_t n = fmod(day*360/365.2422, 360);
|
---|
463 |
|
---|
464 | const Double_t elonge = 278.833540; // ecliptic longitude of the Sun at epoch 1980.0
|
---|
465 | const Double_t elongp = 282.596403; // ecliptic longitude of the Sun at perigee
|
---|
466 |
|
---|
467 | // convert from perigee co-ordinates to epoch 1980.0
|
---|
468 | const Double_t m = fmod(n + elonge - elongp + 360, 360);
|
---|
469 |
|
---|
470 | // solve equation of Kepler
|
---|
471 | const Double_t eccent = 0.016718; // eccentricity of Earth's orbit
|
---|
472 | const Double_t k = Kepler(m, eccent);
|
---|
473 | const Double_t ec0 = sqrt((1 + eccent) / (1 - eccent)) * tan(k / 2);
|
---|
474 | // true anomaly
|
---|
475 | const Double_t ec = 2 * atan(ec0) * TMath::RadToDeg();
|
---|
476 |
|
---|
477 | // Sun's geocentric ecliptic longitude
|
---|
478 | const Double_t lambdasun = fmod(ec + elongp + 720, 360);
|
---|
479 |
|
---|
480 |
|
---|
481 | /****** Calculation of the Moon's position. ******/
|
---|
482 |
|
---|
483 | // Moon's mean longitude.
|
---|
484 | const Double_t mmlong = 64.975464; // moon's mean lonigitude at the epoch
|
---|
485 | const Double_t ml = fmod(13.1763966*day + mmlong + 360, 360);
|
---|
486 | // Moon's mean anomaly.
|
---|
487 | const Double_t mmlongp = 349.383063; // mean longitude of the perigee at the epoch
|
---|
488 | const Double_t mm = fmod(ml - 0.1114041*day - mmlongp + 720, 360);
|
---|
489 | // Evection.
|
---|
490 | const Double_t ev = 1.2739 * sin((2 * (ml - lambdasun) - mm)*TMath::DegToRad());
|
---|
491 | // Annual equation.
|
---|
492 | const Double_t sinm = TMath::Sin(m*TMath::DegToRad());
|
---|
493 | const Double_t ae = 0.1858 * sinm;
|
---|
494 | // Correction term.
|
---|
495 | const Double_t a3 = 0.37 * sinm;
|
---|
496 | // Corrected anomaly.
|
---|
497 | const Double_t mmp = (mm + ev - ae - a3)*TMath::DegToRad();
|
---|
498 | // Correction for the equation of the centre.
|
---|
499 | const Double_t mec = 6.2886 * sin(mmp);
|
---|
500 | // Another correction term.
|
---|
501 | const Double_t a4 = 0.214 * sin(2 * mmp);
|
---|
502 | // Corrected longitude.
|
---|
503 | const Double_t lp = ml + ev + mec - ae + a4;
|
---|
504 | // Variation.
|
---|
505 | const Double_t v = 0.6583 * sin(2 * (lp - lambdasun)*TMath::DegToRad());
|
---|
506 | // True longitude.
|
---|
507 | const Double_t lpp = lp + v;
|
---|
508 | // Age of the Moon in degrees.
|
---|
509 | const Double_t age = (lpp - lambdasun)*TMath::DegToRad();
|
---|
510 |
|
---|
511 | // Calculation of the phase of the Moon.
|
---|
512 | return (1 - TMath::Cos(age)) / 2;
|
---|
513 | }
|
---|
514 |
|
---|
515 | // --------------------------------------------------------------------------
|
---|
516 | //
|
---|
517 | // Calculate the Period to which the time belongs to. The Period is defined
|
---|
518 | // as the number of synodic months ellapsed since the first full moon
|
---|
519 | // after Jan 1st 1980 (which was @ MJD=44240.37917)
|
---|
520 | //
|
---|
521 | Double_t MAstro::GetMoonPeriod(Double_t mjd)
|
---|
522 | {
|
---|
523 | const Double_t synmonth = 29.53058868; // synodic month (new Moon to new Moon)
|
---|
524 | const Double_t epoch0 = 44240.37917; // First full moon after 1980/1/1
|
---|
525 |
|
---|
526 | const Double_t et = mjd-epoch0; // Ellapsed time
|
---|
527 | return et/synmonth;
|
---|
528 | }
|
---|
529 |
|
---|
530 | // --------------------------------------------------------------------------
|
---|
531 | //
|
---|
532 | // To get the moon period as defined for MAGIC observation we take the
|
---|
533 | // nearest integer mjd, eg:
|
---|
534 | // 53257.8 --> 53258
|
---|
535 | // 53258.3 --> 53258
|
---|
536 | // Which is the time between 13h and 12:59h of the following day. To
|
---|
537 | // this day-period we assign the moon-period at midnight. To get
|
---|
538 | // the MAGIC definition we now substract 284.
|
---|
539 | //
|
---|
540 | // For MAGIC observation period do eg:
|
---|
541 | // GetMagicPeriod(53257.91042)
|
---|
542 | // or
|
---|
543 | // MTime t;
|
---|
544 | // t.SetMjd(53257.91042);
|
---|
545 | // GetMagicPeriod(t.GetMjd());
|
---|
546 | // or
|
---|
547 | // MTime t;
|
---|
548 | // t.Set(2004, 1, 1, 12, 32, 11);
|
---|
549 | // GetMagicPeriod(t.GetMjd());
|
---|
550 | //
|
---|
551 | Int_t MAstro::GetMagicPeriod(Double_t mjd)
|
---|
552 | {
|
---|
553 | const Double_t mmjd = (Double_t)TMath::Nint(mjd);
|
---|
554 | const Double_t period = GetMoonPeriod(mmjd);
|
---|
555 |
|
---|
556 | return (Int_t)TMath::Floor(period)-284;
|
---|
557 | }
|
---|
558 |
|
---|
559 | // --------------------------------------------------------------------------
|
---|
560 | //
|
---|
561 | // Returns the distance in x,y between two polar-vectors (eg. Alt/Az, Ra/Dec)
|
---|
562 | // projected on aplain in a distance dist. For Magic this this the distance
|
---|
563 | // of the camera plain (1700mm) dist also determins the unit in which
|
---|
564 | // the TVector2 is returned.
|
---|
565 | //
|
---|
566 | // v0 is the reference vector (eg. the vector to the center of the camera)
|
---|
567 | // v1 is the vector to which we determin the distance on the plain
|
---|
568 | //
|
---|
569 | // (see also MStarCamTrans::Loc0LocToCam())
|
---|
570 | //
|
---|
571 | TVector2 MAstro::GetDistOnPlain(const TVector3 &v0, TVector3 v1, Double_t dist)
|
---|
572 | {
|
---|
573 | v1.RotateZ(-v0.Phi());
|
---|
574 | v1.RotateY(-v0.Theta());
|
---|
575 | v1.RotateZ(-TMath::Pi()/2); // exchange x and y
|
---|
576 | v1 *= dist/v1.Z();
|
---|
577 |
|
---|
578 | return v1.XYvector(); //TVector2(v1.Y(), -v1.X());//v1.XYvector();
|
---|
579 | }
|
---|