source: trunk/MagicSoft/Mars/mastro/MAstro.cc@ 6277

Last change on this file since 6277 was 6277, checked in by tbretz, 20 years ago
*** empty log message ***
File size: 17.3 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 11/2003 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: MAGIC Software Development, 2000-2004
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// MAstro
28// ------
29//
30////////////////////////////////////////////////////////////////////////////
31#include "MAstro.h"
32
33#include <iostream>
34
35#include <TVector3.h> // TVector3
36
37#include "MTime.h" // MTime::GetGmst
38
39#include "MAstroCatalog.h" // FIXME: replace by MVector3!
40
41using namespace std;
42
43ClassImp(MAstro);
44
45Double_t MAstro::Trunc(Double_t val)
46{
47 // dint(A) - truncate to nearest whole number towards zero (double)
48 return val<0 ? TMath::Ceil(val) : TMath::Floor(val);
49}
50
51Double_t MAstro::Round(Double_t val)
52{
53 // dnint(A) - round to nearest whole number (double)
54 return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5);
55}
56
57Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
58{
59 const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg);
60 return sgn=='-' ? -rc : rc;
61}
62
63Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
64{
65 // pi/(180*3600): arcseconds to radians
66 //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6
67 return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/;
68}
69
70Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
71{
72 // pi/(12*3600): seconds of time to radians
73//#define DS2R 7.2722052166430399038487115353692196393452995355905e-5
74 return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/;
75}
76
77Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
78{
79 return Hms2Sec(deg, min, sec, sgn)/3600.;
80}
81
82Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
83{
84 return Hms2Sec(hor, min, sec, sgn)/240.;
85}
86
87Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
88{
89 return Hms2Sec(deg, min, sec, sgn)/54000.;
90}
91
92Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
93{
94 return Hms2Sec(hor, min, sec, sgn)/3600.;
95}
96
97void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec)
98{
99 /* Handle sign */
100 sgn = day<0?'-':'+';
101
102 /* Round interval and express in smallest units required */
103 Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
104
105 /* Separate into fields */
106 const Double_t ah = Trunc(a/3600.);
107 a -= ah * 3600.;
108 const Double_t am = Trunc(a/60.);
109 a -= am * 60.;
110 const Double_t as = Trunc(a);
111
112 /* Return results */
113 hor = (UShort_t)ah;
114 min = (UShort_t)am;
115 sec = (UShort_t)as;
116}
117
118void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
119{
120 Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec);
121}
122
123void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
124{
125 Rad2Hms(rad*15, sgn, deg, min, sec);
126}
127
128void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
129{
130 Day2Hms(d/24, sgn, deg, min, sec);
131}
132
133void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
134{
135 Rad2Hms(d/360, sgn, deg, min, sec);
136}
137
138void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
139{
140 Day2Hms(h*15/24, sgn, deg, min, sec);
141}
142
143void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
144{
145 Day2Hms(h/24, sgn, deg, min, sec);
146}
147
148void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min)
149{
150 /* Handle sign */
151 sgn = day<0?'-':'+';
152
153 /* Round interval and express in smallest units required */
154 Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
155
156 /* Separate into fields */
157 const Double_t ah = Trunc(a/3600.);
158 a -= ah * 3600.;
159
160 /* Return results */
161 hor = (UShort_t)ah;
162 min = a/60.;
163}
164
165void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t &deg, Double_t &min)
166{
167 Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min);
168}
169
170void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t &deg, Double_t &min)
171{
172 Rad2Hm(rad*15, sgn, deg, min);
173}
174
175void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t &deg, Double_t &min)
176{
177 Day2Hm(d/24, sgn, deg, min);
178}
179
180void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t &deg, Double_t &min)
181{
182 Rad2Hm(d/360, sgn, deg, min);
183}
184
185void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t &deg, Double_t &min)
186{
187 Day2Hm(h*15/24, sgn, deg, min);
188}
189
190void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t &deg, Double_t &min)
191{
192 Day2Hm(h/24, sgn, deg, min);
193}
194
195// --------------------------------------------------------------------------
196//
197// Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0'
198// as floating point value -12.5 or 12.5. If interpretation is
199// successfull kTRUE is returned, otherwise kFALSE. ret is not
200// touched if interpretation was not successfull. The successfull
201// interpreted part is removed from the TString.
202//
203Bool_t MAstro::String2Angle(TString &str, Double_t &ret)
204{
205 Char_t sgn;
206 Int_t d, len;
207 UInt_t m;
208 Float_t s;
209
210 // Skip whitespaces before %c and after %f
211 int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len);
212
213 if (n!=4 || (sgn!='+' && sgn!='-'))
214 return kFALSE;
215
216 str.Remove(0, len);
217
218 ret = Dms2Deg(d, m, s, sgn);
219 return kTRUE;
220}
221
222// --------------------------------------------------------------------------
223//
224// Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0'
225// as floating point value -12.5, 12.5 or 12.5. If interpretation is
226// successfull kTRUE is returned, otherwise kFALSE. ret is not
227// touched if interpretation was not successfull.
228//
229Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret)
230{
231 Char_t sgn = str[0]=='-' ? '-' : '+';
232 Int_t d;
233 UInt_t m;
234 Float_t s;
235
236 const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s);
237
238 if (n!=3)
239 return kFALSE;
240
241 ret = Dms2Deg(d, m, s, sgn);
242 return kTRUE;
243}
244
245// --------------------------------------------------------------------------
246//
247// Returns val=-12.5 as string '-12:30:00'
248//
249TString MAstro::Angle2Coordinate(Double_t val)
250{
251 Char_t sgn;
252 UShort_t d,m,s;
253
254 Deg2Dms(val, sgn, d, m, s);
255
256 return Form("%c%02d:%02d:%02d", sgn, d, m, s);
257}
258
259// --------------------------------------------------------------------------
260//
261// Return year y, month m and day d corresponding to Mjd.
262//
263void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d)
264{
265 // Express day in Gregorian calendar
266 const ULong_t jd = mjd + 2400001;
267 const ULong_t n4 = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37);
268 const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5;
269
270 y = n4/1461L-4712;
271 m = ((nd10/306+2)%12)+1;
272 d = (nd10%306)/10+1;
273}
274
275// --------------------------------------------------------------------------
276//
277// Return Mjd corresponding to year y, month m and day d.
278//
279Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d)
280{
281 // Month lengths in days
282 static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
283
284 // Validate month
285 if (m<1 || m>12)
286 return -1;
287
288 // Allow for leap year
289 months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28;
290
291 // Validate day
292 if (d<1 || d>months[m-1])
293 return -1;
294
295 // Precalculate some values
296 const Byte_t lm = 12-m;
297 const ULong_t lm10 = 4712 + y - lm/10;
298
299 // Perform the conversion
300 return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904;
301}
302
303// --------------------------------------------------------------------------
304//
305// theta0, phi0 [rad]: polar angle/zenith distance, azimuth of 1st object
306// theta1, phi1 [rad]: polar angle/zenith distance, azimuth of 2nd object
307// AngularDistance [rad]: Angular distance between two objects
308//
309Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1)
310{
311 TVector3 v0(1);
312 v0.Rotate(phi0, theta0);
313
314 TVector3 v1(1);
315 v1.Rotate(phi1, theta1);
316
317 return v0.Angle(v1);
318}
319
320// --------------------------------------------------------------------------
321//
322// Calls MTime::GetGmst() Better use MTime::GetGmst() directly
323//
324Double_t MAstro::UT2GMST(Double_t ut1)
325{
326 return MTime(ut1).GetGmst();
327}
328
329// --------------------------------------------------------------------------
330//
331// RotationAngle
332//
333// calculates the angle for the rotation of the sky coordinate system
334// with respect to the local coordinate system. This is identical
335// to the rotation angle of the sky image in the camera.
336//
337// sinl [rad]: sine of observers latitude
338// cosl [rad]: cosine of observers latitude
339// theta [rad]: polar angle/zenith distance
340// phi [rad]: rotation angle/azimuth
341//
342// Return sin/cos component of angle
343//
344// The convention is such, that the rotation angle is -pi/pi if
345// right ascension and local rotation angle are counted in the
346// same direction, 0 if counted in the opposite direction.
347//
348// (In other words: The rotation angle is 0 when the source culminates)
349//
350// Using vectors it can be done like:
351// TVector3 v, p;
352// v.SetMagThetaPhi(1, theta, phi);
353// p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
354// v = v.Cross(l));
355// v.RotateZ(-phi);
356// v.Rotate(-theta)
357// rho = TMath::ATan2(v(2), v(1));
358//
359// For more information see TDAS 00-11, eqs. (18) and (20)
360//
361void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos)
362{
363 const Double_t sint = TMath::Sin(theta);
364 const Double_t cost = TMath::Cos(theta);
365
366 const Double_t snlt = sinl*sint;
367 const Double_t cslt = cosl*cost;
368
369 const Double_t sinp = TMath::Sin(phi);
370 const Double_t cosp = TMath::Cos(phi);
371
372 const Double_t v1 = sint*sinp;
373 const Double_t v2 = cslt - snlt*cosp;
374
375 const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2);
376
377 sin = cosl*sinp / denom; // y-component
378 cos = (snlt-cslt*cosp) / denom; // x-component
379}
380
381// --------------------------------------------------------------------------
382//
383// RotationAngle
384//
385// calculates the angle for the rotation of the sky coordinate system
386// with respect to the local coordinate system. This is identical
387// to the rotation angle of the sky image in the camera.
388//
389// sinl [rad]: sine of observers latitude
390// cosl [rad]: cosine of observers latitude
391// theta [rad]: polar angle/zenith distance
392// phi [rad]: rotation angle/azimuth
393//
394// Return angle [rad] in the range -pi, pi
395//
396// The convention is such, that the rotation angle is -pi/pi if
397// right ascension and local rotation angle are counted in the
398// same direction, 0 if counted in the opposite direction.
399//
400// (In other words: The rotation angle is 0 when the source culminates)
401//
402// Using vectors it can be done like:
403// TVector3 v, p;
404// v.SetMagThetaPhi(1, theta, phi);
405// p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
406// v = v.Cross(l));
407// v.RotateZ(-phi);
408// v.Rotate(-theta)
409// rho = TMath::ATan2(v(2), v(1));
410//
411// For more information see TDAS 00-11, eqs. (18) and (20)
412//
413Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi)
414{
415 const Double_t snlt = sinl*TMath::Sin(theta);
416 const Double_t cslt = cosl*TMath::Cos(theta);
417
418 const Double_t sinp = TMath::Sin(phi);
419 const Double_t cosp = TMath::Cos(phi);
420
421 return TMath::ATan2(cosl*sinp, snlt-cslt*cosp);
422}
423
424
425// --------------------------------------------------------------------------
426//
427// Kepler - solve the equation of Kepler
428//
429Double_t MAstro::Kepler(Double_t m, Double_t ecc)
430{
431 m *= TMath::DegToRad();
432
433 Double_t delta = 0;
434 Double_t e = m;
435 do {
436 delta = e - ecc * sin(e) - m;
437 e -= delta / (1 - ecc * cos(e));
438 } while (fabs(delta) > 1e-6);
439
440 return e;
441}
442
443// --------------------------------------------------------------------------
444//
445// GetMoonPhase - calculate phase of moon as a fraction:
446// Returns -1 if calculation failed
447//
448Double_t MAstro::GetMoonPhase(Double_t mjd)
449{
450 /****** Calculation of the Sun's position. ******/
451
452 // date within epoch
453 const Double_t epoch = 44238; // 1980 January 0.0
454 const Double_t day = mjd - epoch;
455 if (day<0)
456 {
457 cout << "MAstro::GetMoonPhase - Day before Jan 1980" << endl;
458 return -1;
459 }
460
461 // mean anomaly of the Sun
462 const Double_t n = fmod(day*360/365.2422, 360);
463
464 const Double_t elonge = 278.833540; // ecliptic longitude of the Sun at epoch 1980.0
465 const Double_t elongp = 282.596403; // ecliptic longitude of the Sun at perigee
466
467 // convert from perigee co-ordinates to epoch 1980.0
468 const Double_t m = fmod(n + elonge - elongp + 360, 360);
469
470 // solve equation of Kepler
471 const Double_t eccent = 0.016718; // eccentricity of Earth's orbit
472 const Double_t k = Kepler(m, eccent);
473 const Double_t ec0 = sqrt((1 + eccent) / (1 - eccent)) * tan(k / 2);
474 // true anomaly
475 const Double_t ec = 2 * atan(ec0) * TMath::RadToDeg();
476
477 // Sun's geocentric ecliptic longitude
478 const Double_t lambdasun = fmod(ec + elongp + 720, 360);
479
480
481 /****** Calculation of the Moon's position. ******/
482
483 // Moon's mean longitude.
484 const Double_t mmlong = 64.975464; // moon's mean lonigitude at the epoch
485 const Double_t ml = fmod(13.1763966*day + mmlong + 360, 360);
486 // Moon's mean anomaly.
487 const Double_t mmlongp = 349.383063; // mean longitude of the perigee at the epoch
488 const Double_t mm = fmod(ml - 0.1114041*day - mmlongp + 720, 360);
489 // Evection.
490 const Double_t ev = 1.2739 * sin((2 * (ml - lambdasun) - mm)*TMath::DegToRad());
491 // Annual equation.
492 const Double_t sinm = TMath::Sin(m*TMath::DegToRad());
493 const Double_t ae = 0.1858 * sinm;
494 // Correction term.
495 const Double_t a3 = 0.37 * sinm;
496 // Corrected anomaly.
497 const Double_t mmp = (mm + ev - ae - a3)*TMath::DegToRad();
498 // Correction for the equation of the centre.
499 const Double_t mec = 6.2886 * sin(mmp);
500 // Another correction term.
501 const Double_t a4 = 0.214 * sin(2 * mmp);
502 // Corrected longitude.
503 const Double_t lp = ml + ev + mec - ae + a4;
504 // Variation.
505 const Double_t v = 0.6583 * sin(2 * (lp - lambdasun)*TMath::DegToRad());
506 // True longitude.
507 const Double_t lpp = lp + v;
508 // Age of the Moon in degrees.
509 const Double_t age = (lpp - lambdasun)*TMath::DegToRad();
510
511 // Calculation of the phase of the Moon.
512 return (1 - TMath::Cos(age)) / 2;
513}
514
515// --------------------------------------------------------------------------
516//
517// Calculate the Period to which the time belongs to. The Period is defined
518// as the number of synodic months ellapsed since the first full moon
519// after Jan 1st 1980 (which was @ MJD=44240.37917)
520//
521Double_t MAstro::GetMoonPeriod(Double_t mjd)
522{
523 const Double_t synmonth = 29.53058868; // synodic month (new Moon to new Moon)
524 const Double_t epoch0 = 44240.37917; // First full moon after 1980/1/1
525
526 const Double_t et = mjd-epoch0; // Ellapsed time
527 return et/synmonth;
528}
529
530// --------------------------------------------------------------------------
531//
532// To get the moon period as defined for MAGIC observation we take the
533// nearest integer mjd, eg:
534// 53257.8 --> 53258
535// 53258.3 --> 53258
536// Which is the time between 13h and 12:59h of the following day. To
537// this day-period we assign the moon-period at midnight. To get
538// the MAGIC definition we now substract 284.
539//
540// For MAGIC observation period do eg:
541// GetMagicPeriod(53257.91042)
542// or
543// MTime t;
544// t.SetMjd(53257.91042);
545// GetMagicPeriod(t.GetMjd());
546// or
547// MTime t;
548// t.Set(2004, 1, 1, 12, 32, 11);
549// GetMagicPeriod(t.GetMjd());
550//
551Int_t MAstro::GetMagicPeriod(Double_t mjd)
552{
553 const Double_t mmjd = (Double_t)TMath::Nint(mjd);
554 const Double_t period = GetMoonPeriod(mmjd);
555
556 return (Int_t)TMath::Floor(period)-284;
557}
558
559// --------------------------------------------------------------------------
560//
561// Returns the distance in x,y between two polar-vectors (eg. Alt/Az, Ra/Dec)
562// projected on aplain in a distance dist. For Magic this this the distance
563// of the camera plain (1700mm) dist also determins the unit in which
564// the TVector2 is returned.
565//
566// v0 is the reference vector (eg. the vector to the center of the camera)
567// v1 is the vector to which we determin the distance on the plain
568//
569// (see also MStarCamTrans::Loc0LocToCam())
570//
571TVector2 MAstro::GetDistOnPlain(const TVector3 &v0, TVector3 v1, Double_t dist)
572{
573 v1.RotateZ(-v0.Phi());
574 v1.RotateY(-v0.Theta());
575 v1.RotateZ(-TMath::Pi()/2); // exchange x and y
576 v1 *= dist/v1.Z();
577
578 return v1.XYvector(); //TVector2(v1.Y(), -v1.X());//v1.XYvector();
579}
Note: See TracBrowser for help on using the repository browser.