| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Thomas Bretz, 11/2003 <mailto:tbretz@astro.uni-wuerzburg.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2004 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | // MAstro | 
|---|
| 28 | // ------ | 
|---|
| 29 | // | 
|---|
| 30 | //////////////////////////////////////////////////////////////////////////// | 
|---|
| 31 | #include "MAstro.h" | 
|---|
| 32 |  | 
|---|
| 33 | #include <iostream> | 
|---|
| 34 |  | 
|---|
| 35 | #include <TArrayD.h>  // TArrayD | 
|---|
| 36 | #include <TVector3.h> // TVector3 | 
|---|
| 37 |  | 
|---|
| 38 | #include "MTime.h"    // MTime::GetGmst | 
|---|
| 39 | #include "MString.h" | 
|---|
| 40 |  | 
|---|
| 41 | #include "MAstroCatalog.h" // FIXME: replace by MVector3! | 
|---|
| 42 |  | 
|---|
| 43 | using namespace std; | 
|---|
| 44 |  | 
|---|
| 45 | ClassImp(MAstro); | 
|---|
| 46 |  | 
|---|
| 47 | Double_t MAstro::Trunc(Double_t val) | 
|---|
| 48 | { | 
|---|
| 49 | // dint(A) - truncate to nearest whole number towards zero (double) | 
|---|
| 50 | return val<0 ? TMath::Ceil(val) : TMath::Floor(val); | 
|---|
| 51 | } | 
|---|
| 52 |  | 
|---|
| 53 | Double_t MAstro::Round(Double_t val) | 
|---|
| 54 | { | 
|---|
| 55 | // dnint(A) - round to nearest whole number (double) | 
|---|
| 56 | return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5); | 
|---|
| 57 | } | 
|---|
| 58 |  | 
|---|
| 59 | Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 60 | { | 
|---|
| 61 | const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg); | 
|---|
| 62 | return sgn=='-' ? -rc : rc; | 
|---|
| 63 | } | 
|---|
| 64 |  | 
|---|
| 65 | Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 66 | { | 
|---|
| 67 | // pi/(180*3600):  arcseconds to radians | 
|---|
| 68 | //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6 | 
|---|
| 69 | return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/; | 
|---|
| 70 | } | 
|---|
| 71 |  | 
|---|
| 72 | Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 73 | { | 
|---|
| 74 | // pi/(12*3600):  seconds of time to radians | 
|---|
| 75 | //#define DS2R 7.2722052166430399038487115353692196393452995355905e-5 | 
|---|
| 76 | return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/; | 
|---|
| 77 | } | 
|---|
| 78 |  | 
|---|
| 79 | Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 80 | { | 
|---|
| 81 | return Hms2Sec(deg, min, sec, sgn)/3600.; | 
|---|
| 82 | } | 
|---|
| 83 |  | 
|---|
| 84 | Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 85 | { | 
|---|
| 86 | return Hms2Sec(hor, min, sec, sgn)/240.; | 
|---|
| 87 | } | 
|---|
| 88 |  | 
|---|
| 89 | Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 90 | { | 
|---|
| 91 | return Hms2Sec(deg, min, sec, sgn)/54000.; | 
|---|
| 92 | } | 
|---|
| 93 |  | 
|---|
| 94 | Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn) | 
|---|
| 95 | { | 
|---|
| 96 | return Hms2Sec(hor, min, sec, sgn)/3600.; | 
|---|
| 97 | } | 
|---|
| 98 |  | 
|---|
| 99 | void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec) | 
|---|
| 100 | { | 
|---|
| 101 | /* Handle sign */ | 
|---|
| 102 | sgn = day<0?'-':'+'; | 
|---|
| 103 |  | 
|---|
| 104 | /* Round interval and express in smallest units required */ | 
|---|
| 105 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds | 
|---|
| 106 |  | 
|---|
| 107 | /* Separate into fields */ | 
|---|
| 108 | const Double_t ah = Trunc(a/3600.); | 
|---|
| 109 | a -= ah * 3600.; | 
|---|
| 110 | const Double_t am = Trunc(a/60.); | 
|---|
| 111 | a -= am * 60.; | 
|---|
| 112 | const Double_t as = Trunc(a); | 
|---|
| 113 |  | 
|---|
| 114 | /* Return results */ | 
|---|
| 115 | hor = (UShort_t)ah; | 
|---|
| 116 | min = (UShort_t)am; | 
|---|
| 117 | sec = (UShort_t)as; | 
|---|
| 118 | } | 
|---|
| 119 |  | 
|---|
| 120 | void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 121 | { | 
|---|
| 122 | Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec); | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 126 | { | 
|---|
| 127 | Rad2Hms(rad*15, sgn, deg, min, sec); | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 131 | { | 
|---|
| 132 | Day2Hms(d/24, sgn, deg, min, sec); | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 136 | { | 
|---|
| 137 | Day2Hms(d/360, sgn, deg, min, sec); | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 141 | { | 
|---|
| 142 | Day2Hms(h*15/24, sgn, deg, min, sec); | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec) | 
|---|
| 146 | { | 
|---|
| 147 | Day2Hms(h/24, sgn, deg, min, sec); | 
|---|
| 148 | } | 
|---|
| 149 |  | 
|---|
| 150 | void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min) | 
|---|
| 151 | { | 
|---|
| 152 | /* Handle sign */ | 
|---|
| 153 | sgn = day<0?'-':'+'; | 
|---|
| 154 |  | 
|---|
| 155 | /* Round interval and express in smallest units required */ | 
|---|
| 156 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds | 
|---|
| 157 |  | 
|---|
| 158 | /* Separate into fields */ | 
|---|
| 159 | const Double_t ah = Trunc(a/3600.); | 
|---|
| 160 | a -= ah * 3600.; | 
|---|
| 161 |  | 
|---|
| 162 | /* Return results */ | 
|---|
| 163 | hor = (UShort_t)ah; | 
|---|
| 164 | min = a/60.; | 
|---|
| 165 | } | 
|---|
| 166 |  | 
|---|
| 167 | void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 168 | { | 
|---|
| 169 | Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min); | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 173 | { | 
|---|
| 174 | Rad2Hm(rad*15, sgn, deg, min); | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 178 | { | 
|---|
| 179 | Day2Hm(d/24, sgn, deg, min); | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 183 | { | 
|---|
| 184 | Rad2Hm(d/360, sgn, deg, min); | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 | void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 188 | { | 
|---|
| 189 | Day2Hm(h*15/24, sgn, deg, min); | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min) | 
|---|
| 193 | { | 
|---|
| 194 | Day2Hm(h/24, sgn, deg, min); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | TString MAstro::GetStringDeg(Double_t deg, const char *fmt) | 
|---|
| 198 | { | 
|---|
| 199 | Char_t sgn; | 
|---|
| 200 | UShort_t d, m, s; | 
|---|
| 201 | Deg2Dms(deg, sgn, d, m, s); | 
|---|
| 202 |  | 
|---|
| 203 | MString str; | 
|---|
| 204 | str.Print(fmt, sgn, d, m ,s); | 
|---|
| 205 | return str; | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 | TString MAstro::GetStringHor(Double_t deg, const char *fmt) | 
|---|
| 209 | { | 
|---|
| 210 | Char_t sgn; | 
|---|
| 211 | UShort_t h, m, s; | 
|---|
| 212 | Hor2Hms(deg, sgn, h, m, s); | 
|---|
| 213 |  | 
|---|
| 214 | MString str; | 
|---|
| 215 | str.Print(fmt, sgn, h, m ,s); | 
|---|
| 216 | return str; | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | // -------------------------------------------------------------------------- | 
|---|
| 220 | // | 
|---|
| 221 | // Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0' | 
|---|
| 222 | // as floating point value -12.5 or 12.5. If interpretation is | 
|---|
| 223 | // successfull kTRUE is returned, otherwise kFALSE. ret is not | 
|---|
| 224 | // touched if interpretation was not successfull. The successfull | 
|---|
| 225 | // interpreted part is removed from the TString. | 
|---|
| 226 | // | 
|---|
| 227 | Bool_t MAstro::String2Angle(TString &str, Double_t &ret) | 
|---|
| 228 | { | 
|---|
| 229 | Char_t  sgn; | 
|---|
| 230 | Int_t   d, len; | 
|---|
| 231 | UInt_t  m; | 
|---|
| 232 | Float_t s; | 
|---|
| 233 |  | 
|---|
| 234 | // Skip whitespaces before %c and after %f | 
|---|
| 235 | int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len); | 
|---|
| 236 |  | 
|---|
| 237 | if (n!=4 || (sgn!='+' && sgn!='-')) | 
|---|
| 238 | return kFALSE; | 
|---|
| 239 |  | 
|---|
| 240 | str.Remove(0, len); | 
|---|
| 241 |  | 
|---|
| 242 | ret = Dms2Deg(d, m, s, sgn); | 
|---|
| 243 | return kTRUE; | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 | // -------------------------------------------------------------------------- | 
|---|
| 247 | // | 
|---|
| 248 | // Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0' | 
|---|
| 249 | // as floating point value -12.5, 12.5 or 12.5. If interpretation is | 
|---|
| 250 | // successfull kTRUE is returned, otherwise kFALSE. ret is not | 
|---|
| 251 | // touched if interpretation was not successfull. | 
|---|
| 252 | // | 
|---|
| 253 | Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret) | 
|---|
| 254 | { | 
|---|
| 255 | Char_t  sgn = str[0]=='-' ? '-' : '+'; | 
|---|
| 256 | Int_t   d; | 
|---|
| 257 | UInt_t  m; | 
|---|
| 258 | Float_t s; | 
|---|
| 259 |  | 
|---|
| 260 | const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s); | 
|---|
| 261 |  | 
|---|
| 262 | if (n!=3) | 
|---|
| 263 | return kFALSE; | 
|---|
| 264 |  | 
|---|
| 265 | ret = Dms2Deg(d, m, s, sgn); | 
|---|
| 266 | return kTRUE; | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | // -------------------------------------------------------------------------- | 
|---|
| 270 | // | 
|---|
| 271 | // Returns val=-12.5 as string '-12:30:00' | 
|---|
| 272 | // | 
|---|
| 273 | TString MAstro::Angle2Coordinate(Double_t val) | 
|---|
| 274 | { | 
|---|
| 275 | Char_t  sgn; | 
|---|
| 276 | UShort_t d,m,s; | 
|---|
| 277 |  | 
|---|
| 278 | Deg2Dms(val, sgn, d, m, s); | 
|---|
| 279 |  | 
|---|
| 280 | return Form("%c%02d:%02d:%02d", sgn, d, m, s); | 
|---|
| 281 | } | 
|---|
| 282 |  | 
|---|
| 283 | // -------------------------------------------------------------------------- | 
|---|
| 284 | // | 
|---|
| 285 | //  Return year y, month m and day d corresponding to Mjd. | 
|---|
| 286 | // | 
|---|
| 287 | void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d) | 
|---|
| 288 | { | 
|---|
| 289 | // Express day in Gregorian calendar | 
|---|
| 290 | const ULong_t jd   = mjd + 2400001; | 
|---|
| 291 | const ULong_t n4   = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37); | 
|---|
| 292 | const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5; | 
|---|
| 293 |  | 
|---|
| 294 | y = n4/1461L-4712; | 
|---|
| 295 | m = ((nd10/306+2)%12)+1; | 
|---|
| 296 | d = (nd10%306)/10+1; | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | // -------------------------------------------------------------------------- | 
|---|
| 300 | // | 
|---|
| 301 | //  Return Mjd corresponding to year y, month m and day d. | 
|---|
| 302 | // | 
|---|
| 303 | Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d) | 
|---|
| 304 | { | 
|---|
| 305 | // Month lengths in days | 
|---|
| 306 | static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; | 
|---|
| 307 |  | 
|---|
| 308 | // Validate month | 
|---|
| 309 | if (m<1 || m>12) | 
|---|
| 310 | return -1; | 
|---|
| 311 |  | 
|---|
| 312 | // Allow for leap year | 
|---|
| 313 | months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28; | 
|---|
| 314 |  | 
|---|
| 315 | // Validate day | 
|---|
| 316 | if (d<1 || d>months[m-1]) | 
|---|
| 317 | return -1; | 
|---|
| 318 |  | 
|---|
| 319 | // Precalculate some values | 
|---|
| 320 | const Byte_t  lm = 12-m; | 
|---|
| 321 | const ULong_t lm10 = 4712 + y - lm/10; | 
|---|
| 322 |  | 
|---|
| 323 | // Perform the conversion | 
|---|
| 324 | return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904; | 
|---|
| 325 | } | 
|---|
| 326 |  | 
|---|
| 327 | // -------------------------------------------------------------------------- | 
|---|
| 328 | // | 
|---|
| 329 | //  theta0, phi0    [rad]: polar angle/zenith distance, azimuth of 1st object | 
|---|
| 330 | //  theta1, phi1    [rad]: polar angle/zenith distance, azimuth of 2nd object | 
|---|
| 331 | //  AngularDistance [rad]: Angular distance between two objects | 
|---|
| 332 | // | 
|---|
| 333 | Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1) | 
|---|
| 334 | { | 
|---|
| 335 | TVector3 v0(1); | 
|---|
| 336 | v0.Rotate(phi0, theta0); | 
|---|
| 337 |  | 
|---|
| 338 | TVector3 v1(1); | 
|---|
| 339 | v1.Rotate(phi1, theta1); | 
|---|
| 340 |  | 
|---|
| 341 | return v0.Angle(v1); | 
|---|
| 342 | } | 
|---|
| 343 |  | 
|---|
| 344 | // -------------------------------------------------------------------------- | 
|---|
| 345 | // | 
|---|
| 346 | // Calls MTime::GetGmst() Better use MTime::GetGmst() directly | 
|---|
| 347 | // | 
|---|
| 348 | Double_t MAstro::UT2GMST(Double_t ut1) | 
|---|
| 349 | { | 
|---|
| 350 | return MTime(ut1).GetGmst(); | 
|---|
| 351 | } | 
|---|
| 352 |  | 
|---|
| 353 | // -------------------------------------------------------------------------- | 
|---|
| 354 | // | 
|---|
| 355 | // RotationAngle | 
|---|
| 356 | // | 
|---|
| 357 | // calculates the angle for the rotation of the sky coordinate system | 
|---|
| 358 | // with respect to the local coordinate system. This is identical | 
|---|
| 359 | // to the rotation angle of the sky image in the camera. | 
|---|
| 360 | // | 
|---|
| 361 | //  sinl  [rad]: sine of observers latitude | 
|---|
| 362 | //  cosl  [rad]: cosine of observers latitude | 
|---|
| 363 | //  theta [rad]: polar angle/zenith distance | 
|---|
| 364 | //  phi   [rad]: rotation angle/azimuth | 
|---|
| 365 | // | 
|---|
| 366 | // Return sin/cos component of angle | 
|---|
| 367 | // | 
|---|
| 368 | // The convention is such, that the rotation angle is -pi/pi if | 
|---|
| 369 | // right ascension and local rotation angle are counted in the | 
|---|
| 370 | // same direction, 0 if counted in the opposite direction. | 
|---|
| 371 | // | 
|---|
| 372 | // (In other words: The rotation angle is 0 when the source culminates) | 
|---|
| 373 | // | 
|---|
| 374 | // Using vectors it can be done like: | 
|---|
| 375 | //    TVector3 v, p; | 
|---|
| 376 | //    v.SetMagThetaPhi(1, theta, phi); | 
|---|
| 377 | //    p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0); | 
|---|
| 378 | //    v = v.Cross(l)); | 
|---|
| 379 | //    v.RotateZ(-phi); | 
|---|
| 380 | //    v.Rotate(-theta) | 
|---|
| 381 | //    rho = TMath::ATan2(v(2), v(1)); | 
|---|
| 382 | // | 
|---|
| 383 | // For more information see TDAS 00-11, eqs. (18) and (20) | 
|---|
| 384 | // | 
|---|
| 385 | void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos) | 
|---|
| 386 | { | 
|---|
| 387 | const Double_t sint = TMath::Sin(theta); | 
|---|
| 388 | const Double_t cost = TMath::Cos(theta); | 
|---|
| 389 |  | 
|---|
| 390 | const Double_t snlt = sinl*sint; | 
|---|
| 391 | const Double_t cslt = cosl*cost; | 
|---|
| 392 |  | 
|---|
| 393 | const Double_t sinp = TMath::Sin(phi); | 
|---|
| 394 | const Double_t cosp = TMath::Cos(phi); | 
|---|
| 395 |  | 
|---|
| 396 | const Double_t v1 = sint*sinp; | 
|---|
| 397 | const Double_t v2 = cslt - snlt*cosp; | 
|---|
| 398 |  | 
|---|
| 399 | const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2); | 
|---|
| 400 |  | 
|---|
| 401 | sin =   cosl*sinp      / denom; // y-component | 
|---|
| 402 | cos = (snlt-cslt*cosp) / denom; // x-component | 
|---|
| 403 | } | 
|---|
| 404 |  | 
|---|
| 405 | // -------------------------------------------------------------------------- | 
|---|
| 406 | // | 
|---|
| 407 | // RotationAngle | 
|---|
| 408 | // | 
|---|
| 409 | // calculates the angle for the rotation of the sky coordinate system | 
|---|
| 410 | // with respect to the local coordinate system. This is identical | 
|---|
| 411 | // to the rotation angle of the sky image in the camera. | 
|---|
| 412 | // | 
|---|
| 413 | //  sinl  [rad]: sine of observers latitude | 
|---|
| 414 | //  cosl  [rad]: cosine of observers latitude | 
|---|
| 415 | //  theta [rad]: polar angle/zenith distance | 
|---|
| 416 | //  phi   [rad]: rotation angle/azimuth | 
|---|
| 417 | // | 
|---|
| 418 | // Return angle [rad] in the range -pi, pi | 
|---|
| 419 | // | 
|---|
| 420 | // The convention is such, that the rotation angle is -pi/pi if | 
|---|
| 421 | // right ascension and local rotation angle are counted in the | 
|---|
| 422 | // same direction, 0 if counted in the opposite direction. | 
|---|
| 423 | // | 
|---|
| 424 | // (In other words: The rotation angle is 0 when the source culminates) | 
|---|
| 425 | // | 
|---|
| 426 | // Using vectors it can be done like: | 
|---|
| 427 | //    TVector3 v, p; | 
|---|
| 428 | //    v.SetMagThetaPhi(1, theta, phi); | 
|---|
| 429 | //    p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0); | 
|---|
| 430 | //    v = v.Cross(l)); | 
|---|
| 431 | //    v.RotateZ(-phi); | 
|---|
| 432 | //    v.Rotate(-theta) | 
|---|
| 433 | //    rho = TMath::ATan2(v(2), v(1)); | 
|---|
| 434 | // | 
|---|
| 435 | // For more information see TDAS 00-11, eqs. (18) and (20) | 
|---|
| 436 | // | 
|---|
| 437 | Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi) | 
|---|
| 438 | { | 
|---|
| 439 | const Double_t snlt = sinl*TMath::Sin(theta); | 
|---|
| 440 | const Double_t cslt = cosl*TMath::Cos(theta); | 
|---|
| 441 |  | 
|---|
| 442 | const Double_t sinp = TMath::Sin(phi); | 
|---|
| 443 | const Double_t cosp = TMath::Cos(phi); | 
|---|
| 444 |  | 
|---|
| 445 | return TMath::ATan2(cosl*sinp, snlt-cslt*cosp); | 
|---|
| 446 | } | 
|---|
| 447 |  | 
|---|
| 448 | // -------------------------------------------------------------------------- | 
|---|
| 449 | // | 
|---|
| 450 | // Estimates the time at which a source culminates. | 
|---|
| 451 | // | 
|---|
| 452 | // ra: right ascension [rad] | 
|---|
| 453 | // elong: observers longitude [rad] | 
|---|
| 454 | // mjd: modified julian date (utc) | 
|---|
| 455 | // | 
|---|
| 456 | // return time in [-12;12] | 
|---|
| 457 | // | 
|---|
| 458 | Double_t MAstro::EstimateCulminationTime(Double_t mjd, Double_t elong, Double_t ra) | 
|---|
| 459 | { | 
|---|
| 460 | // startime at 1.1.2000 for greenwich 0h | 
|---|
| 461 | const Double_t gmt0 = 6.664520; | 
|---|
| 462 |  | 
|---|
| 463 | // difference of startime for greenwich for two calendar days [h] | 
|---|
| 464 | const Double_t d0 = 0.06570982224; | 
|---|
| 465 |  | 
|---|
| 466 | // mjd of greenwich 1.1.2000 0h | 
|---|
| 467 | const Double_t mjd0 = 51544; | 
|---|
| 468 |  | 
|---|
| 469 | // mjd today | 
|---|
| 470 | const Double_t mjd1 = TMath::Floor(mjd); | 
|---|
| 471 |  | 
|---|
| 472 | // scale between star-time and sun-time | 
|---|
| 473 | const Double_t scale = 1;//1.00273790926; | 
|---|
| 474 |  | 
|---|
| 475 | const Double_t UT = (ra-elong)*RadToHor() - (gmt0 + d0 * (mjd1-mjd0))/scale; | 
|---|
| 476 |  | 
|---|
| 477 | return fmod(2412 + UT, 24) - 12; | 
|---|
| 478 | } | 
|---|
| 479 |  | 
|---|
| 480 | // -------------------------------------------------------------------------- | 
|---|
| 481 | // | 
|---|
| 482 | // Kepler - solve the equation of Kepler | 
|---|
| 483 | // | 
|---|
| 484 | Double_t MAstro::Kepler(Double_t m, Double_t ecc) | 
|---|
| 485 | { | 
|---|
| 486 | m *= TMath::DegToRad(); | 
|---|
| 487 |  | 
|---|
| 488 | Double_t delta = 0; | 
|---|
| 489 | Double_t e = m; | 
|---|
| 490 | do { | 
|---|
| 491 | delta = e - ecc * sin(e) - m; | 
|---|
| 492 | e -= delta / (1 - ecc * cos(e)); | 
|---|
| 493 | } while (fabs(delta) > 1e-6); | 
|---|
| 494 |  | 
|---|
| 495 | return e; | 
|---|
| 496 | } | 
|---|
| 497 |  | 
|---|
| 498 | // -------------------------------------------------------------------------- | 
|---|
| 499 | // | 
|---|
| 500 | // GetMoonPhase - calculate phase of moon as a fraction: | 
|---|
| 501 | //  Returns -1 if calculation failed | 
|---|
| 502 | // | 
|---|
| 503 | Double_t MAstro::GetMoonPhase(Double_t mjd) | 
|---|
| 504 | { | 
|---|
| 505 | /****** Calculation of the Sun's position. ******/ | 
|---|
| 506 |  | 
|---|
| 507 | // date within epoch | 
|---|
| 508 | const Double_t epoch = 44238;       // 1980 January 0.0 | 
|---|
| 509 | const Double_t day = mjd - epoch; | 
|---|
| 510 | if (day<0) | 
|---|
| 511 | { | 
|---|
| 512 | cout << "MAstro::GetMoonPhase - Day before Jan 1980" << endl; | 
|---|
| 513 | return -1; | 
|---|
| 514 | } | 
|---|
| 515 |  | 
|---|
| 516 | // mean anomaly of the Sun | 
|---|
| 517 | const Double_t n = fmod(day*360/365.2422, 360); | 
|---|
| 518 |  | 
|---|
| 519 | const Double_t elonge = 278.833540; // ecliptic longitude of the Sun at epoch 1980.0 | 
|---|
| 520 | const Double_t elongp = 282.596403; // ecliptic longitude of the Sun at perigee | 
|---|
| 521 |  | 
|---|
| 522 | // convert from perigee co-ordinates to epoch 1980.0 | 
|---|
| 523 | const Double_t m = fmod(n + elonge - elongp + 360, 360); | 
|---|
| 524 |  | 
|---|
| 525 | // solve equation of Kepler | 
|---|
| 526 | const Double_t eccent = 0.016718; // eccentricity of Earth's orbit | 
|---|
| 527 | const Double_t k   = Kepler(m, eccent); | 
|---|
| 528 | const Double_t ec0 = sqrt((1 + eccent) / (1 - eccent)) * tan(k / 2); | 
|---|
| 529 | // true anomaly | 
|---|
| 530 | const Double_t ec  = 2 * atan(ec0) * TMath::RadToDeg(); | 
|---|
| 531 |  | 
|---|
| 532 | // Sun's geocentric ecliptic longitude | 
|---|
| 533 | const Double_t lambdasun = fmod(ec + elongp + 720, 360); | 
|---|
| 534 |  | 
|---|
| 535 |  | 
|---|
| 536 | /****** Calculation of the Moon's position. ******/ | 
|---|
| 537 |  | 
|---|
| 538 | // Moon's mean longitude. | 
|---|
| 539 | const Double_t mmlong  = 64.975464;  // moon's mean lonigitude at the epoch | 
|---|
| 540 | const Double_t ml      = fmod(13.1763966*day + mmlong + 360, 360); | 
|---|
| 541 | // Moon's mean anomaly. | 
|---|
| 542 | const Double_t mmlongp = 349.383063; // mean longitude of the perigee at the epoch | 
|---|
| 543 | const Double_t mm      = fmod(ml - 0.1114041*day - mmlongp + 720, 360); | 
|---|
| 544 | // Evection. | 
|---|
| 545 | const Double_t ev   = 1.2739 * sin((2 * (ml - lambdasun) - mm)*TMath::DegToRad()); | 
|---|
| 546 | // Annual equation. | 
|---|
| 547 | const Double_t sinm = TMath::Sin(m*TMath::DegToRad()); | 
|---|
| 548 | const Double_t ae   = 0.1858 * sinm; | 
|---|
| 549 | // Correction term. | 
|---|
| 550 | const Double_t a3   = 0.37 * sinm; | 
|---|
| 551 | // Corrected anomaly. | 
|---|
| 552 | const Double_t mmp  = (mm + ev - ae - a3)*TMath::DegToRad(); | 
|---|
| 553 | // Correction for the equation of the centre. | 
|---|
| 554 | const Double_t mec  = 6.2886 * sin(mmp); | 
|---|
| 555 | // Another correction term. | 
|---|
| 556 | const Double_t a4   = 0.214 * sin(2 * mmp); | 
|---|
| 557 | // Corrected longitude. | 
|---|
| 558 | const Double_t lp   = ml + ev + mec - ae + a4; | 
|---|
| 559 | // Variation. | 
|---|
| 560 | const Double_t v    = 0.6583 * sin(2 * (lp - lambdasun)*TMath::DegToRad()); | 
|---|
| 561 | // True longitude. | 
|---|
| 562 | const Double_t lpp  = lp + v; | 
|---|
| 563 | // Age of the Moon in degrees. | 
|---|
| 564 | const Double_t age  = (lpp - lambdasun)*TMath::DegToRad(); | 
|---|
| 565 |  | 
|---|
| 566 | // Calculation of the phase of the Moon. | 
|---|
| 567 | return (1 - TMath::Cos(age)) / 2; | 
|---|
| 568 | } | 
|---|
| 569 |  | 
|---|
| 570 | // -------------------------------------------------------------------------- | 
|---|
| 571 | // | 
|---|
| 572 | // Calculate the Period to which the time belongs to. The Period is defined | 
|---|
| 573 | // as the number of synodic months ellapsed since the first full moon | 
|---|
| 574 | // after Jan 1st 1980 (which was @ MJD=44240.37917) | 
|---|
| 575 | // | 
|---|
| 576 | Double_t MAstro::GetMoonPeriod(Double_t mjd) | 
|---|
| 577 | { | 
|---|
| 578 | const Double_t synmonth = 29.53058868; // synodic month (new Moon to new Moon) | 
|---|
| 579 | const Double_t epoch0   = 44240.37917; // First full moon after 1980/1/1 | 
|---|
| 580 |  | 
|---|
| 581 | const Double_t et = mjd-epoch0; // Ellapsed time | 
|---|
| 582 | return et/synmonth; | 
|---|
| 583 | } | 
|---|
| 584 |  | 
|---|
| 585 | // -------------------------------------------------------------------------- | 
|---|
| 586 | // | 
|---|
| 587 | // To get the moon period as defined for MAGIC observation we take the | 
|---|
| 588 | // nearest integer mjd, eg: | 
|---|
| 589 | //   53257.8 --> 53258 | 
|---|
| 590 | //   53258.3 --> 53258 | 
|---|
| 591 | // Which is the time between 13h and 12:59h of the following day. To | 
|---|
| 592 | // this day-period we assign the moon-period at midnight. To get | 
|---|
| 593 | // the MAGIC definition we now substract 284. | 
|---|
| 594 | // | 
|---|
| 595 | // For MAGIC observation period do eg: | 
|---|
| 596 | //   GetMagicPeriod(53257.91042) | 
|---|
| 597 | // or | 
|---|
| 598 | //   MTime t; | 
|---|
| 599 | //   t.SetMjd(53257.91042); | 
|---|
| 600 | //   GetMagicPeriod(t.GetMjd()); | 
|---|
| 601 | // or | 
|---|
| 602 | //   MTime t; | 
|---|
| 603 | //   t.Set(2004, 1, 1, 12, 32, 11); | 
|---|
| 604 | //   GetMagicPeriod(t.GetMjd()); | 
|---|
| 605 | // | 
|---|
| 606 | // To get a floating point magic period use | 
|---|
| 607 | //   GetMoonPeriod(mjd)-284 | 
|---|
| 608 | // | 
|---|
| 609 | Int_t MAstro::GetMagicPeriod(Double_t mjd) | 
|---|
| 610 | { | 
|---|
| 611 | const Double_t mmjd   = (Double_t)TMath::Nint(mjd); | 
|---|
| 612 | const Double_t period = GetMoonPeriod(mmjd); | 
|---|
| 613 |  | 
|---|
| 614 | return (Int_t)TMath::Floor(period)-284; | 
|---|
| 615 | } | 
|---|
| 616 |  | 
|---|
| 617 | // -------------------------------------------------------------------------- | 
|---|
| 618 | // | 
|---|
| 619 | // Returns right ascension and declination [rad] of the sun at the | 
|---|
| 620 | // given mjd (ra, dec). | 
|---|
| 621 | // | 
|---|
| 622 | // returns the mean longitude [rad]. | 
|---|
| 623 | // | 
|---|
| 624 | // from http://xoomer.alice.it/vtomezzo/sunriset/formulas/index.html | 
|---|
| 625 | // | 
|---|
| 626 | Double_t MAstro::GetSunRaDec(Double_t mjd, Double_t &ra, Double_t &dec) | 
|---|
| 627 | { | 
|---|
| 628 | const Double_t T = (mjd-51544.5)/36525;// +  (h-12)/24.0; | 
|---|
| 629 |  | 
|---|
| 630 | const Double_t T2 = T<0 ? -T*T : T*T; | 
|---|
| 631 | const Double_t T3 = T*T*T; | 
|---|
| 632 |  | 
|---|
| 633 | // Find the ecliptic longitude of the Sun | 
|---|
| 634 |  | 
|---|
| 635 | // Geometric mean longitude of the Sun | 
|---|
| 636 | const Double_t L = 280.46646 + 36000.76983*T + 0.0003032*T2; | 
|---|
| 637 |  | 
|---|
| 638 | // mean anomaly of the Sun | 
|---|
| 639 | Double_t g = 357.52911 + 35999.05029*T - 0.0001537*T2; | 
|---|
| 640 | g *= TMath::DegToRad(); | 
|---|
| 641 |  | 
|---|
| 642 | // Longitude of the moon's ascending node | 
|---|
| 643 | Double_t omega = 125.04452 - 1934.136261*T + 0.0020708*T2 + T3/450000; | 
|---|
| 644 | omega *= TMath::DegToRad(); | 
|---|
| 645 |  | 
|---|
| 646 | const Double_t coso = cos(omega); | 
|---|
| 647 | const Double_t sino = sin(omega); | 
|---|
| 648 |  | 
|---|
| 649 | // Equation of the center | 
|---|
| 650 | const Double_t C = (1.914602 - 0.004817*T - 0.000014*T2)*sin(g) + | 
|---|
| 651 | (0.019993 - 0.000101*T)*sin(2*g) + 0.000289*sin(3*g); | 
|---|
| 652 |  | 
|---|
| 653 | // True longitude of the sun | 
|---|
| 654 | const Double_t tlong = L + C; | 
|---|
| 655 |  | 
|---|
| 656 | // Apperent longitude of the Sun (ecliptic) | 
|---|
| 657 | Double_t lambda = tlong - 0.00569 - 0.00478*sino; | 
|---|
| 658 | lambda *= TMath::DegToRad(); | 
|---|
| 659 |  | 
|---|
| 660 | // Obliquity of the ecliptic | 
|---|
| 661 | Double_t obliq = 23.4392911 - 0.01300416667*T - 0.00000016389*T2 + 0.00000050361*T3 + 0.00255625*coso; | 
|---|
| 662 | obliq *= TMath::DegToRad(); | 
|---|
| 663 |  | 
|---|
| 664 | // Find the RA and DEC of the Sun | 
|---|
| 665 | const Double_t sinl =  sin(lambda); | 
|---|
| 666 |  | 
|---|
| 667 | ra  = atan2(cos(obliq) * sinl, cos(lambda)); | 
|---|
| 668 | dec = asin(sin(obliq) * sinl); | 
|---|
| 669 |  | 
|---|
| 670 | return L*TMath::DegToRad(); | 
|---|
| 671 | } | 
|---|
| 672 |  | 
|---|
| 673 | // -------------------------------------------------------------------------- | 
|---|
| 674 | // | 
|---|
| 675 | // Returns right ascension and declination [rad] of the moon at the | 
|---|
| 676 | // given mjd (ra, dec). | 
|---|
| 677 | // | 
|---|
| 678 | void MAstro::GetMoonRaDec(Double_t mjd, Double_t &ra, Double_t &dec) | 
|---|
| 679 | { | 
|---|
| 680 | // Mean Moon orbit elements as of 1990.0 | 
|---|
| 681 | const Double_t l0 = 318.351648 * TMath::DegToRad(); | 
|---|
| 682 | const Double_t P0 =  36.340410 * TMath::DegToRad(); | 
|---|
| 683 | const Double_t N0 = 318.510107 * TMath::DegToRad(); | 
|---|
| 684 | const Double_t i  =   5.145396 * TMath::DegToRad(); | 
|---|
| 685 |  | 
|---|
| 686 | Double_t sunra, sundec, g; | 
|---|
| 687 | { | 
|---|
| 688 | const Double_t T = (mjd-51544.5)/36525;// +  (h-12)/24.0; | 
|---|
| 689 | const Double_t T2 = T<0 ? -T*T : T*T; | 
|---|
| 690 |  | 
|---|
| 691 | GetSunRaDec(mjd, sunra, sundec); | 
|---|
| 692 |  | 
|---|
| 693 | // mean anomaly of the Sun | 
|---|
| 694 | g = 357.52911 + 35999.05029*T - 0.0001537*T2; | 
|---|
| 695 | g *= TMath::DegToRad(); | 
|---|
| 696 | } | 
|---|
| 697 |  | 
|---|
| 698 | const Double_t sing   = sin(g)*TMath::DegToRad(); | 
|---|
| 699 |  | 
|---|
| 700 | const Double_t D      = (mjd-47891) * TMath::DegToRad(); | 
|---|
| 701 | const Double_t l      =    13.1763966*D + l0; | 
|---|
| 702 | const Double_t MMoon  = l  -0.1114041*D - P0; // Moon's mean anomaly M | 
|---|
| 703 | const Double_t N      = N0 -0.0529539*D;      // Moon's mean ascending node longitude | 
|---|
| 704 |  | 
|---|
| 705 | const Double_t C      = l-sunra; | 
|---|
| 706 | const Double_t Ev     = 1.2739 * sin(2*C-MMoon) * TMath::DegToRad(); | 
|---|
| 707 | const Double_t Ae     = 0.1858 * sing; | 
|---|
| 708 | const Double_t A3     = 0.37   * sing; | 
|---|
| 709 | const Double_t MMoon2 = MMoon+Ev-Ae-A3;  // corrected Moon anomaly | 
|---|
| 710 |  | 
|---|
| 711 | const Double_t Ec     = 6.2886 * sin(MMoon2)  * TMath::DegToRad();  // equation of centre | 
|---|
| 712 | const Double_t A4     = 0.214  * sin(2*MMoon2)* TMath::DegToRad(); | 
|---|
| 713 | const Double_t l2     = l+Ev+Ec-Ae+A4; // corrected Moon's longitude | 
|---|
| 714 |  | 
|---|
| 715 | const Double_t V      = 0.6583 * sin(2*(l2-sunra)) * TMath::DegToRad(); | 
|---|
| 716 | const Double_t l3     = l2+V; // true orbital longitude; | 
|---|
| 717 |  | 
|---|
| 718 | const Double_t N2     = N -0.16*sing; | 
|---|
| 719 |  | 
|---|
| 720 | ra  = fmod( N2 + atan2( sin(l3-N2)*cos(i), cos(l3-N2) ), TMath::TwoPi() ); | 
|---|
| 721 | dec = asin(sin(l3-N2)*sin(i) ); | 
|---|
| 722 | } | 
|---|
| 723 |  | 
|---|
| 724 | // -------------------------------------------------------------------------- | 
|---|
| 725 | // | 
|---|
| 726 | // Return Euqation of time in hours for given mjd | 
|---|
| 727 | // | 
|---|
| 728 | Double_t MAstro::GetEquationOfTime(Double_t mjd) | 
|---|
| 729 | { | 
|---|
| 730 | Double_t ra, dec; | 
|---|
| 731 | const Double_t L = fmod(GetSunRaDec(mjd, ra, dec), TMath::TwoPi()); | 
|---|
| 732 |  | 
|---|
| 733 | if (L-ra>TMath::Pi()) | 
|---|
| 734 | ra += TMath::TwoPi(); | 
|---|
| 735 |  | 
|---|
| 736 | return 24*(L - ra)/TMath::TwoPi(); | 
|---|
| 737 | } | 
|---|
| 738 |  | 
|---|
| 739 | // -------------------------------------------------------------------------- | 
|---|
| 740 | // | 
|---|
| 741 | // Returns noon time (the time of the highest altitude of the sun) | 
|---|
| 742 | // at the given mjd and at the given observers longitude [deg] | 
|---|
| 743 | // | 
|---|
| 744 | // The maximum altitude reached at noon time is | 
|---|
| 745 | //   altmax = 90.0 + dec - latit; | 
|---|
| 746 | //   if (dec > latit) | 
|---|
| 747 | //      altmax = 90.0 + latit - dec; | 
|---|
| 748 | // dec=Declination of the sun | 
|---|
| 749 | // | 
|---|
| 750 | Double_t MAstro::GetNoonTime(Double_t mjd, Double_t longit) | 
|---|
| 751 | { | 
|---|
| 752 | const Double_t equation = GetEquationOfTime(TMath::Floor(mjd)); | 
|---|
| 753 | return 12. + equation - longit/15; | 
|---|
| 754 | } | 
|---|
| 755 |  | 
|---|
| 756 | // -------------------------------------------------------------------------- | 
|---|
| 757 | // | 
|---|
| 758 | // Returns the time (in hours) between noon (the sun culmination) | 
|---|
| 759 | // and the sun being at height alt[deg] (90=zenith, 0=horizont) | 
|---|
| 760 | // | 
|---|
| 761 | //       civil twilight:      0deg to  -6deg | 
|---|
| 762 | //       nautical twilight:  -6deg to -12deg | 
|---|
| 763 | //       astronom twilight: -12deg to -18deg | 
|---|
| 764 | // | 
|---|
| 765 | // latit is the observers latitude in rad | 
|---|
| 766 | // | 
|---|
| 767 | // returns -1 in case the sun doesn't reach this altitude. | 
|---|
| 768 | // (eg. alt=0: Polarnight or -day) | 
|---|
| 769 | // | 
|---|
| 770 | // To get the sun rise/set: | 
|---|
| 771 | //    double timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), par[0]); | 
|---|
| 772 | //    double noon     = MAstro::GetNoonTime(mjd, longit); | 
|---|
| 773 | //    double N        = TMath::Floor(mjd)+noon/24.; | 
|---|
| 774 | //    double risetime = N-timediff/24.; | 
|---|
| 775 | //    double settime  = N+timediff/24.; | 
|---|
| 776 | // | 
|---|
| 777 | Double_t MAstro::GetTimeFromNoonToAlt(Double_t mjd, Double_t latit, Double_t alt) | 
|---|
| 778 | { | 
|---|
| 779 | Double_t ra, dec; | 
|---|
| 780 | GetSunRaDec(mjd, ra, dec); | 
|---|
| 781 |  | 
|---|
| 782 | const Double_t h = alt*TMath::DegToRad(); | 
|---|
| 783 |  | 
|---|
| 784 | const Double_t arg = (sin(h) - sin(latit)*sin(dec))/(cos(latit)*cos(dec)); | 
|---|
| 785 |  | 
|---|
| 786 | return TMath::Abs(arg)>1 ? -1 : 12*acos(arg)/TMath::Pi(); | 
|---|
| 787 | } | 
|---|
| 788 |  | 
|---|
| 789 | // -------------------------------------------------------------------------- | 
|---|
| 790 | // | 
|---|
| 791 | // Returns the time of the sunrise/set calculated before and after | 
|---|
| 792 | // the noon of floor(mjd) (TO BE IMPROVED) | 
|---|
| 793 | // | 
|---|
| 794 | // Being longit and latit the longitude and latitude of the observer | 
|---|
| 795 | // in deg and alt the hight above or below the horizont in deg. | 
|---|
| 796 | // | 
|---|
| 797 | //       civil twilight:      0deg to  -6deg | 
|---|
| 798 | //       nautical twilight:  -6deg to -12deg | 
|---|
| 799 | //       astronom twilight: -12deg to -18deg | 
|---|
| 800 | // | 
|---|
| 801 | // A TArrayD(2) is returned with the the mjd of the sunrise in | 
|---|
| 802 | // TArray[0] and the mjd of the sunset in TArrayD[1]. | 
|---|
| 803 | // | 
|---|
| 804 | TArrayD MAstro::GetSunRiseSet(Double_t mjd, Double_t longit, Double_t latit, Double_t alt) | 
|---|
| 805 | { | 
|---|
| 806 | const Double_t timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), alt); | 
|---|
| 807 | const Double_t noon     = MAstro::GetNoonTime(mjd, longit); | 
|---|
| 808 |  | 
|---|
| 809 | const Double_t N = TMath::Floor(mjd)+noon/24.; | 
|---|
| 810 |  | 
|---|
| 811 | const Double_t rise = timediff<0 ? N-0.5 : N-timediff/24.; | 
|---|
| 812 | const Double_t set  = timediff<0 ? N+0.5 : N+timediff/24.; | 
|---|
| 813 |  | 
|---|
| 814 | TArrayD rc(2); | 
|---|
| 815 | rc[0] = rise; | 
|---|
| 816 | rc[1] = set; | 
|---|
| 817 | return rc; | 
|---|
| 818 | } | 
|---|
| 819 |  | 
|---|
| 820 | // -------------------------------------------------------------------------- | 
|---|
| 821 | // | 
|---|
| 822 | // Returns the distance in x,y between two polar-vectors (eg. Alt/Az, Ra/Dec) | 
|---|
| 823 | // projected on aplain in a distance dist. For Magic this this the distance | 
|---|
| 824 | // of the camera plain (1700mm) dist also determins the unit in which | 
|---|
| 825 | // the TVector2 is returned. | 
|---|
| 826 | // | 
|---|
| 827 | // v0 is the reference vector (eg. the vector to the center of the camera) | 
|---|
| 828 | // v1 is the vector to which we determin the distance on the plain | 
|---|
| 829 | // | 
|---|
| 830 | //  (see also MStarCamTrans::Loc0LocToCam()) | 
|---|
| 831 | // | 
|---|
| 832 | TVector2 MAstro::GetDistOnPlain(const TVector3 &v0, TVector3 v1, Double_t dist) | 
|---|
| 833 | { | 
|---|
| 834 | v1.RotateZ(-v0.Phi()); | 
|---|
| 835 | v1.RotateY(-v0.Theta()); | 
|---|
| 836 | v1.RotateZ(-TMath::Pi()/2); // exchange x and y | 
|---|
| 837 | v1 *= dist/v1.Z(); | 
|---|
| 838 |  | 
|---|
| 839 | return v1.XYvector(); //TVector2(v1.Y(), -v1.X());//v1.XYvector(); | 
|---|
| 840 | } | 
|---|
| 841 |  | 
|---|
| 842 | // -------------------------------------------------------------------------- | 
|---|
| 843 | // | 
|---|
| 844 | // Calculate the absolute misspointing from the nominal zenith angle nomzd | 
|---|
| 845 | // and the deviations in zd (devzd) and az (devaz). | 
|---|
| 846 | // All values given in deg, the return value, too. | 
|---|
| 847 | // | 
|---|
| 848 | Double_t MAstro::GetDevAbs(Double_t nomzd, Double_t devzd, Double_t devaz) | 
|---|
| 849 | { | 
|---|
| 850 | const Double_t pzd = nomzd * TMath::DegToRad(); | 
|---|
| 851 | const Double_t azd = devzd * TMath::DegToRad(); | 
|---|
| 852 | const Double_t aaz = devaz * TMath::DegToRad(); | 
|---|
| 853 |  | 
|---|
| 854 | const double el = TMath::Pi()/2-pzd; | 
|---|
| 855 |  | 
|---|
| 856 | const double dphi2 = aaz/2.; | 
|---|
| 857 | const double cos2  = TMath::Cos(dphi2)*TMath::Cos(dphi2); | 
|---|
| 858 | const double sin2  = TMath::Sin(dphi2)*TMath::Sin(dphi2); | 
|---|
| 859 | const double d     = TMath::Cos(azd)*cos2 - TMath::Cos(2*el)*sin2; | 
|---|
| 860 |  | 
|---|
| 861 | return TMath::ACos(d)*TMath::RadToDeg(); | 
|---|
| 862 | } | 
|---|
| 863 |  | 
|---|
| 864 | // -------------------------------------------------------------------------- | 
|---|
| 865 | // | 
|---|
| 866 | // Returned is the offset (number of days) which must be added to | 
|---|
| 867 | // March 1st of the given year, eg: | 
|---|
| 868 | // | 
|---|
| 869 | //    Int_t offset = GetDayOfEaster(2004); | 
|---|
| 870 | // | 
|---|
| 871 | //    MTime t; | 
|---|
| 872 | //    t.Set(year, 3, 1); | 
|---|
| 873 | //    t.SetMjd(t.GetMjd()+offset); | 
|---|
| 874 | // | 
|---|
| 875 | //    cout << t << endl; | 
|---|
| 876 | // | 
|---|
| 877 | //  If the date coudn't be calculated -1 is returned. | 
|---|
| 878 | // | 
|---|
| 879 | //  The minimum value returned is 21 corresponding to March 22. | 
|---|
| 880 | //  The maximum value returned is 55 corresponding to April 25. | 
|---|
| 881 | // | 
|---|
| 882 | // -------------------------------------------------------------------------- | 
|---|
| 883 | // | 
|---|
| 884 | // Gauss'sche Formel zur Berechnung des Osterdatums | 
|---|
| 885 | // Wann wird Ostern gefeiert? Wie erfährt man das Osterdatum für ein | 
|---|
| 886 | // bestimmtes Jahr, ohne in einen Kalender zu schauen? | 
|---|
| 887 | // | 
|---|
| 888 | // Ostern ist ein "bewegliches" Fest. Es wird am ersten Sonntag nach dem | 
|---|
| 889 | // ersten Frühlingsvollmond gefeiert. Damit ist der 22. März der früheste | 
|---|
| 890 | // Termin, der 25. April der letzte, auf den Ostern fallen kann. Von | 
|---|
| 891 | // diesem Termin hängen auch die Feste Christi Himmelfahrt, das 40 Tage | 
|---|
| 892 | // nach Ostern, und Pfingsten, das 50 Tage nach Ostern gefeiert wird, ab. | 
|---|
| 893 | // | 
|---|
| 894 | // Von Carl Friedrich Gauß (Mathematiker, Astronom und Physiker; | 
|---|
| 895 | // 1777-1855) stammt ein Algorithmus, der es erlaubt ohne Kenntnis des | 
|---|
| 896 | // Mondkalenders die Daten der Osterfeste für die Jahre 1700 bis 2199 zu | 
|---|
| 897 | // bestimmen. | 
|---|
| 898 | // | 
|---|
| 899 | // Gib eine Jahreszahl zwischen 1700 und 2199 ein: | 
|---|
| 900 | // | 
|---|
| 901 | // Und so funktioniert der Algorithmus: | 
|---|
| 902 | // | 
|---|
| 903 | // Es sei: | 
|---|
| 904 | // | 
|---|
| 905 | // J    die Jahreszahl | 
|---|
| 906 | // a    der Divisionsrest von   J/19 | 
|---|
| 907 | // b    der Divisionsrest von   J/4 | 
|---|
| 908 | // c    der Divisionsrest von   J/7 | 
|---|
| 909 | // d    der Divisionsrest von   (19*a + M)/30 | 
|---|
| 910 | // e    der Divisionsrest von   (2*b + 4*c + 6*d + N)/7 | 
|---|
| 911 | // | 
|---|
| 912 | // wobei M und N folgende Werte annehmen: | 
|---|
| 913 | // | 
|---|
| 914 | // für die Jahre        M       N | 
|---|
| 915 | //  1583-1599          22       2 | 
|---|
| 916 | //  1600-1699          22       2 | 
|---|
| 917 | //  1700-1799          23       3 | 
|---|
| 918 | //  1800-1899          23       4 | 
|---|
| 919 | //  1900-1999          24       5 | 
|---|
| 920 | //  2000-2099          24       5 | 
|---|
| 921 | //  2100-2199          24       6 | 
|---|
| 922 | //  2200-2299          25       0 | 
|---|
| 923 | //  2300-2399          26       1 | 
|---|
| 924 | //  2400-2499          25       1 | 
|---|
| 925 | // | 
|---|
| 926 | // Dann fällt Ostern auf den | 
|---|
| 927 | // (22 + d + e)ten März | 
|---|
| 928 | // | 
|---|
| 929 | // oder den | 
|---|
| 930 | // (d + e - 9)ten April | 
|---|
| 931 | // | 
|---|
| 932 | // Beachte: | 
|---|
| 933 | // Anstelle des 26. Aprils ist immer der 19. April zu setzen, | 
|---|
| 934 | // anstelle des 25. Aprils immer dann der 18. April, wenn d=28 und a>10. | 
|---|
| 935 | // | 
|---|
| 936 | // Literatur: | 
|---|
| 937 | // Schüler-Rechenduden | 
|---|
| 938 | // Bibliographisches Institut | 
|---|
| 939 | // Mannheim, 1966 | 
|---|
| 940 | // | 
|---|
| 941 | // -------------------------------------------------------------------------- | 
|---|
| 942 | // | 
|---|
| 943 | // Der Ostersonntag ist ein sog. unregelmäßiger Feiertag. Alle anderen | 
|---|
| 944 | // unregelmäßigen Feiertage eines Jahres leiten sich von diesem Tag ab: | 
|---|
| 945 | // | 
|---|
| 946 | //    * Aschermittwoch ist 46 Tage vor Ostern. | 
|---|
| 947 | //    * Pfingsten ist 49 Tage nach Ostern. | 
|---|
| 948 | //    * Christi Himmelfahrt ist 10 Tage vor Pfingsten. | 
|---|
| 949 | //    * Fronleichnam ist 11 Tage nach Pfingsten. | 
|---|
| 950 | // | 
|---|
| 951 | // Man muß also nur den Ostersonntag ermitteln, um alle anderen | 
|---|
| 952 | // unregelmäßigen Feiertage zu berechnen. Doch wie geht das? | 
|---|
| 953 | // | 
|---|
| 954 | // Dazu etwas Geschichte: | 
|---|
| 955 | // | 
|---|
| 956 | // Das 1. Kirchenkonzil im Jahre 325 hat festgelegt: | 
|---|
| 957 | // | 
|---|
| 958 | //    * Ostern ist stets am ersten Sonntag nach dem ersten Vollmond des | 
|---|
| 959 | //      Frühlings. | 
|---|
| 960 | //    * Stichtag ist der 21. März, die "Frühlings-Tagundnachtgleiche". | 
|---|
| 961 | // | 
|---|
| 962 | // Am 15.10.1582 wurde von Papst Gregor XIII. der bis dahin gültige | 
|---|
| 963 | // Julianische Kalender reformiert. Der noch heute gültige Gregorianische | 
|---|
| 964 | // Kalender legt dabei folgendes fest: | 
|---|
| 965 | // | 
|---|
| 966 | // Ein Jahr hat 365 Tage und ein Schaltjahr wird eingefügt, wenn das Jahr | 
|---|
| 967 | // durch 4 oder durch 400, aber nicht durch 100 teilbar ist. Hieraus | 
|---|
| 968 | // ergeben sich die zwei notwendigen Konstanten, um den Ostersonntag zu | 
|---|
| 969 | // berechnen: | 
|---|
| 970 | // | 
|---|
| 971 | //   1. Die Jahreslänge von und bis zum Zeitpunkt der | 
|---|
| 972 | //      Frühlings-Tagundnachtgleiche: 365,2422 mittlere Sonnentage | 
|---|
| 973 | //   2. Ein Mondmonat: 29,5306 mittlere Sonnentage | 
|---|
| 974 | // | 
|---|
| 975 | // Mit der "Osterformel", von Carl Friedrich Gauß (1777-1855) im Jahre 1800 | 
|---|
| 976 | // entwickelt, läßt sich der Ostersonntag für jedes Jahr von 1583 bis 8202 | 
|---|
| 977 | // berechnen. | 
|---|
| 978 | // | 
|---|
| 979 | // Der früheste mögliche Ostertermin ist der 22. März. (Wenn der Vollmond | 
|---|
| 980 | // auf den 21. März fällt und der 22. März ein Sonntag ist.) | 
|---|
| 981 | // | 
|---|
| 982 | // Der späteste mögliche Ostertermin ist der 25. April. (Wenn der Vollmond | 
|---|
| 983 | // auf den 21. März fällt und der 21. März ein Sonntag ist.) | 
|---|
| 984 | // | 
|---|
| 985 | Int_t MAstro::GetEasterOffset(UShort_t year) | 
|---|
| 986 | { | 
|---|
| 987 | if (year<1583 || year>2499) | 
|---|
| 988 | { | 
|---|
| 989 | cout << "MAstro::GetDayOfEaster - Year " << year << " not between 1700 and 2199" << endl; | 
|---|
| 990 | return -1; | 
|---|
| 991 | } | 
|---|
| 992 |  | 
|---|
| 993 | Int_t M=0; | 
|---|
| 994 | Int_t N=0; | 
|---|
| 995 | switch (year/100) | 
|---|
| 996 | { | 
|---|
| 997 | case 15: | 
|---|
| 998 | case 16: M=22; N=2; break; | 
|---|
| 999 | case 17: M=23; N=3; break; | 
|---|
| 1000 | case 18: M=23; N=4; break; | 
|---|
| 1001 | case 19: | 
|---|
| 1002 | case 20: M=24; N=5; break; | 
|---|
| 1003 | case 21: M=24; N=6; break; | 
|---|
| 1004 | case 22: M=25; N=0; break; | 
|---|
| 1005 | case 23: M=26; N=1; break; | 
|---|
| 1006 | case 24: M=25; N=1; break; | 
|---|
| 1007 | } | 
|---|
| 1008 |  | 
|---|
| 1009 | const Int_t a = year%19; | 
|---|
| 1010 | const Int_t b = year%4; | 
|---|
| 1011 | const Int_t c = year%7; | 
|---|
| 1012 | const Int_t d = (19*a + M)%30; | 
|---|
| 1013 | const Int_t e = (2*b + 4*c + 6*d + N)%7; | 
|---|
| 1014 |  | 
|---|
| 1015 | if (e==6 && d==28 && a>10) | 
|---|
| 1016 | return 48; | 
|---|
| 1017 |  | 
|---|
| 1018 | if (d+e==35) | 
|---|
| 1019 | return 49; | 
|---|
| 1020 |  | 
|---|
| 1021 | return d + e + 21; | 
|---|
| 1022 | } | 
|---|