source: trunk/MagicSoft/Mars/mastro/MAstro.cc@ 8887

Last change on this file since 8887 was 8765, checked in by tbretz, 17 years ago
*** empty log message ***
File size: 32.1 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 11/2003 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: MAGIC Software Development, 2000-2004
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// MAstro
28// ------
29//
30////////////////////////////////////////////////////////////////////////////
31#include "MAstro.h"
32
33#include <iostream>
34
35#include <TArrayD.h> // TArrayD
36#include <TVector3.h> // TVector3
37
38#include "MTime.h" // MTime::GetGmst
39#include "MString.h"
40
41#include "MAstroCatalog.h" // FIXME: replace by MVector3!
42
43using namespace std;
44
45ClassImp(MAstro);
46
47Double_t MAstro::Trunc(Double_t val)
48{
49 // dint(A) - truncate to nearest whole number towards zero (double)
50 return val<0 ? TMath::Ceil(val) : TMath::Floor(val);
51}
52
53Double_t MAstro::Round(Double_t val)
54{
55 // dnint(A) - round to nearest whole number (double)
56 return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5);
57}
58
59Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
60{
61 const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg);
62 return sgn=='-' ? -rc : rc;
63}
64
65Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
66{
67 // pi/(180*3600): arcseconds to radians
68 //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6
69 return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/;
70}
71
72Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
73{
74 // pi/(12*3600): seconds of time to radians
75//#define DS2R 7.2722052166430399038487115353692196393452995355905e-5
76 return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/;
77}
78
79Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
80{
81 return Hms2Sec(deg, min, sec, sgn)/3600.;
82}
83
84Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
85{
86 return Hms2Sec(hor, min, sec, sgn)/240.;
87}
88
89Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
90{
91 return Hms2Sec(deg, min, sec, sgn)/54000.;
92}
93
94Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
95{
96 return Hms2Sec(hor, min, sec, sgn)/3600.;
97}
98
99void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec)
100{
101 /* Handle sign */
102 sgn = day<0?'-':'+';
103
104 /* Round interval and express in smallest units required */
105 Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
106
107 /* Separate into fields */
108 const Double_t ah = Trunc(a/3600.);
109 a -= ah * 3600.;
110 const Double_t am = Trunc(a/60.);
111 a -= am * 60.;
112 const Double_t as = Trunc(a);
113
114 /* Return results */
115 hor = (UShort_t)ah;
116 min = (UShort_t)am;
117 sec = (UShort_t)as;
118}
119
120void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
121{
122 Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec);
123}
124
125void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
126{
127 Rad2Hms(rad*15, sgn, deg, min, sec);
128}
129
130void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
131{
132 Day2Hms(d/24, sgn, deg, min, sec);
133}
134
135void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
136{
137 Day2Hms(d/360, sgn, deg, min, sec);
138}
139
140void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
141{
142 Day2Hms(h*15/24, sgn, deg, min, sec);
143}
144
145void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
146{
147 Day2Hms(h/24, sgn, deg, min, sec);
148}
149
150void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min)
151{
152 /* Handle sign */
153 sgn = day<0?'-':'+';
154
155 /* Round interval and express in smallest units required */
156 Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
157
158 /* Separate into fields */
159 const Double_t ah = Trunc(a/3600.);
160 a -= ah * 3600.;
161
162 /* Return results */
163 hor = (UShort_t)ah;
164 min = a/60.;
165}
166
167void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t &deg, Double_t &min)
168{
169 Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min);
170}
171
172void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t &deg, Double_t &min)
173{
174 Rad2Hm(rad*15, sgn, deg, min);
175}
176
177void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t &deg, Double_t &min)
178{
179 Day2Hm(d/24, sgn, deg, min);
180}
181
182void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t &deg, Double_t &min)
183{
184 Rad2Hm(d/360, sgn, deg, min);
185}
186
187void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t &deg, Double_t &min)
188{
189 Day2Hm(h*15/24, sgn, deg, min);
190}
191
192void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t &deg, Double_t &min)
193{
194 Day2Hm(h/24, sgn, deg, min);
195}
196
197TString MAstro::GetStringDeg(Double_t deg, const char *fmt)
198{
199 Char_t sgn;
200 UShort_t d, m, s;
201 Deg2Dms(deg, sgn, d, m, s);
202
203 MString str;
204 str.Print(fmt, sgn, d, m ,s);
205 return str;
206}
207
208TString MAstro::GetStringHor(Double_t deg, const char *fmt)
209{
210 Char_t sgn;
211 UShort_t h, m, s;
212 Hor2Hms(deg, sgn, h, m, s);
213
214 MString str;
215 str.Print(fmt, sgn, h, m ,s);
216 return str;
217}
218
219// --------------------------------------------------------------------------
220//
221// Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0'
222// as floating point value -12.5 or 12.5. If interpretation is
223// successfull kTRUE is returned, otherwise kFALSE. ret is not
224// touched if interpretation was not successfull. The successfull
225// interpreted part is removed from the TString.
226//
227Bool_t MAstro::String2Angle(TString &str, Double_t &ret)
228{
229 Char_t sgn;
230 Int_t d, len;
231 UInt_t m;
232 Float_t s;
233
234 // Skip whitespaces before %c and after %f
235 int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len);
236
237 if (n!=4 || (sgn!='+' && sgn!='-'))
238 return kFALSE;
239
240 str.Remove(0, len);
241
242 ret = Dms2Deg(d, m, s, sgn);
243 return kTRUE;
244}
245
246// --------------------------------------------------------------------------
247//
248// Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0'
249// as floating point value -12.5, 12.5 or 12.5. If interpretation is
250// successfull kTRUE is returned, otherwise kFALSE. ret is not
251// touched if interpretation was not successfull.
252//
253Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret)
254{
255 Char_t sgn = str[0]=='-' ? '-' : '+';
256 Int_t d;
257 UInt_t m;
258 Float_t s;
259
260 const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s);
261
262 if (n!=3)
263 return kFALSE;
264
265 ret = Dms2Deg(d, m, s, sgn);
266 return kTRUE;
267}
268
269// --------------------------------------------------------------------------
270//
271// Returns val=-12.5 as string '-12:30:00'
272//
273TString MAstro::Angle2Coordinate(Double_t val)
274{
275 Char_t sgn;
276 UShort_t d,m,s;
277
278 Deg2Dms(val, sgn, d, m, s);
279
280 return Form("%c%02d:%02d:%02d", sgn, d, m, s);
281}
282
283// --------------------------------------------------------------------------
284//
285// Return year y, month m and day d corresponding to Mjd.
286//
287void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d)
288{
289 // Express day in Gregorian calendar
290 const ULong_t jd = mjd + 2400001;
291 const ULong_t n4 = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37);
292 const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5;
293
294 y = n4/1461L-4712;
295 m = ((nd10/306+2)%12)+1;
296 d = (nd10%306)/10+1;
297}
298
299// --------------------------------------------------------------------------
300//
301// Return Mjd corresponding to year y, month m and day d.
302//
303Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d)
304{
305 // Month lengths in days
306 static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
307
308 // Validate month
309 if (m<1 || m>12)
310 return -1;
311
312 // Allow for leap year
313 months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28;
314
315 // Validate day
316 if (d<1 || d>months[m-1])
317 return -1;
318
319 // Precalculate some values
320 const Byte_t lm = 12-m;
321 const ULong_t lm10 = 4712 + y - lm/10;
322
323 // Perform the conversion
324 return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904;
325}
326
327// --------------------------------------------------------------------------
328//
329// Convert a mjd to a number yymmdd. The century is just cuts away, e.g.
330// 54393 --> 71020 (2007/10/20)
331// 50741 --> 971020 (1997/10/20)
332// 17868 --> 71020 (1907/10/20)
333//
334UInt_t MAstro::Mjd2Yymmdd(UInt_t mjd)
335{
336 UShort_t y;
337 Byte_t m, d;
338 Mjd2Ymd(mjd, y, m, d);
339
340 return d + m*100 + (y%100)*10000;
341}
342
343// --------------------------------------------------------------------------
344//
345// Convert a yymmdd number to mjd. The century is defined as 2000 for
346// yy<70, 1900 elsewise.
347// 71020 --> 54393 (2007/10/20)
348// 971020 --> 50741 (1997/10/20)
349//
350UInt_t MAstro::Yymmdd2Mjd(UInt_t yymmdd)
351{
352 const Byte_t dd = yymmdd%100;
353 const Byte_t mm = (yymmdd/100)%100;
354 const UShort_t yy = (yymmdd/10000)%100;
355
356 return Ymd2Mjd(yy + (yy<70 ? 2000 : 1900), mm, dd);
357}
358
359// --------------------------------------------------------------------------
360//
361// theta0, phi0 [rad]: polar angle/zenith distance, azimuth of 1st object
362// theta1, phi1 [rad]: polar angle/zenith distance, azimuth of 2nd object
363// AngularDistance [rad]: Angular distance between two objects
364//
365Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1)
366{
367 TVector3 v0(1);
368 v0.Rotate(phi0, theta0);
369
370 TVector3 v1(1);
371 v1.Rotate(phi1, theta1);
372
373 return v0.Angle(v1);
374}
375
376// --------------------------------------------------------------------------
377//
378// Calls MTime::GetGmst() Better use MTime::GetGmst() directly
379//
380Double_t MAstro::UT2GMST(Double_t ut1)
381{
382 return MTime(ut1).GetGmst();
383}
384
385// --------------------------------------------------------------------------
386//
387// RotationAngle
388//
389// calculates the angle for the rotation of the sky coordinate system
390// with respect to the local coordinate system. This is identical
391// to the rotation angle of the sky image in the camera.
392//
393// sinl [rad]: sine of observers latitude
394// cosl [rad]: cosine of observers latitude
395// theta [rad]: polar angle/zenith distance
396// phi [rad]: rotation angle/azimuth
397//
398// Return sin/cos component of angle
399//
400// The convention is such, that the rotation angle is -pi/pi if
401// right ascension and local rotation angle are counted in the
402// same direction, 0 if counted in the opposite direction.
403//
404// (In other words: The rotation angle is 0 when the source culminates)
405//
406// Using vectors it can be done like:
407// TVector3 v, p;
408// v.SetMagThetaPhi(1, theta, phi);
409// p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
410// v = v.Cross(l));
411// v.RotateZ(-phi);
412// v.Rotate(-theta)
413// rho = TMath::ATan2(v(2), v(1));
414//
415// For more information see TDAS 00-11, eqs. (18) and (20)
416//
417void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos)
418{
419 const Double_t sint = TMath::Sin(theta);
420 const Double_t cost = TMath::Cos(theta);
421
422 const Double_t snlt = sinl*sint;
423 const Double_t cslt = cosl*cost;
424
425 const Double_t sinp = TMath::Sin(phi);
426 const Double_t cosp = TMath::Cos(phi);
427
428 const Double_t v1 = sint*sinp;
429 const Double_t v2 = cslt - snlt*cosp;
430
431 const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2);
432
433 sin = cosl*sinp / denom; // y-component
434 cos = (snlt-cslt*cosp) / denom; // x-component
435}
436
437// --------------------------------------------------------------------------
438//
439// RotationAngle
440//
441// calculates the angle for the rotation of the sky coordinate system
442// with respect to the local coordinate system. This is identical
443// to the rotation angle of the sky image in the camera.
444//
445// sinl [rad]: sine of observers latitude
446// cosl [rad]: cosine of observers latitude
447// theta [rad]: polar angle/zenith distance
448// phi [rad]: rotation angle/azimuth
449//
450// Return angle [rad] in the range -pi, pi
451//
452// The convention is such, that the rotation angle is -pi/pi if
453// right ascension and local rotation angle are counted in the
454// same direction, 0 if counted in the opposite direction.
455//
456// (In other words: The rotation angle is 0 when the source culminates)
457//
458// Using vectors it can be done like:
459// TVector3 v, p;
460// v.SetMagThetaPhi(1, theta, phi);
461// p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
462// v = v.Cross(l));
463// v.RotateZ(-phi);
464// v.Rotate(-theta)
465// rho = TMath::ATan2(v(2), v(1));
466//
467// For more information see TDAS 00-11, eqs. (18) and (20)
468//
469Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi)
470{
471 const Double_t snlt = sinl*TMath::Sin(theta);
472 const Double_t cslt = cosl*TMath::Cos(theta);
473
474 const Double_t sinp = TMath::Sin(phi);
475 const Double_t cosp = TMath::Cos(phi);
476
477 return TMath::ATan2(cosl*sinp, snlt-cslt*cosp);
478}
479
480// --------------------------------------------------------------------------
481//
482// Estimates the time at which a source culminates.
483//
484// ra: right ascension [rad]
485// elong: observers longitude [rad]
486// mjd: modified julian date (utc)
487//
488// return time in [-12;12]
489//
490Double_t MAstro::EstimateCulminationTime(Double_t mjd, Double_t elong, Double_t ra)
491{
492 // startime at 1.1.2000 for greenwich 0h
493 const Double_t gmt0 = 6.664520;
494
495 // difference of startime for greenwich for two calendar days [h]
496 const Double_t d0 = 0.06570982224;
497
498 // mjd of greenwich 1.1.2000 0h
499 const Double_t mjd0 = 51544;
500
501 // mjd today
502 const Double_t mjd1 = TMath::Floor(mjd);
503
504 // scale between star-time and sun-time
505 const Double_t scale = 1;//1.00273790926;
506
507 const Double_t UT = (ra-elong)*RadToHor() - (gmt0 + d0 * (mjd1-mjd0))/scale;
508
509 return fmod(2412 + UT, 24) - 12;
510}
511
512// --------------------------------------------------------------------------
513//
514// Kepler - solve the equation of Kepler
515//
516Double_t MAstro::Kepler(Double_t m, Double_t ecc)
517{
518 m *= TMath::DegToRad();
519
520 Double_t delta = 0;
521 Double_t e = m;
522 do {
523 delta = e - ecc * sin(e) - m;
524 e -= delta / (1 - ecc * cos(e));
525 } while (fabs(delta) > 1e-6);
526
527 return e;
528}
529
530// --------------------------------------------------------------------------
531//
532// GetMoonPhase - calculate phase of moon as a fraction:
533// Returns -1 if calculation failed
534//
535Double_t MAstro::GetMoonPhase(Double_t mjd)
536{
537 /****** Calculation of the Sun's position. ******/
538
539 // date within epoch
540 const Double_t epoch = 44238; // 1980 January 0.0
541 const Double_t day = mjd - epoch;
542 if (day<0)
543 {
544 cout << "MAstro::GetMoonPhase - Day before Jan 1980" << endl;
545 return -1;
546 }
547
548 // mean anomaly of the Sun
549 const Double_t n = fmod(day*360/365.2422, 360);
550
551 const Double_t elonge = 278.833540; // ecliptic longitude of the Sun at epoch 1980.0
552 const Double_t elongp = 282.596403; // ecliptic longitude of the Sun at perigee
553
554 // convert from perigee co-ordinates to epoch 1980.0
555 const Double_t m = fmod(n + elonge - elongp + 360, 360);
556
557 // solve equation of Kepler
558 const Double_t eccent = 0.016718; // eccentricity of Earth's orbit
559 const Double_t k = Kepler(m, eccent);
560 const Double_t ec0 = sqrt((1 + eccent) / (1 - eccent)) * tan(k / 2);
561 // true anomaly
562 const Double_t ec = 2 * atan(ec0) * TMath::RadToDeg();
563
564 // Sun's geocentric ecliptic longitude
565 const Double_t lambdasun = fmod(ec + elongp + 720, 360);
566
567
568 /****** Calculation of the Moon's position. ******/
569
570 // Moon's mean longitude.
571 const Double_t mmlong = 64.975464; // moon's mean lonigitude at the epoch
572 const Double_t ml = fmod(13.1763966*day + mmlong + 360, 360);
573 // Moon's mean anomaly.
574 const Double_t mmlongp = 349.383063; // mean longitude of the perigee at the epoch
575 const Double_t mm = fmod(ml - 0.1114041*day - mmlongp + 720, 360);
576 // Evection.
577 const Double_t ev = 1.2739 * sin((2 * (ml - lambdasun) - mm)*TMath::DegToRad());
578 // Annual equation.
579 const Double_t sinm = TMath::Sin(m*TMath::DegToRad());
580 const Double_t ae = 0.1858 * sinm;
581 // Correction term.
582 const Double_t a3 = 0.37 * sinm;
583 // Corrected anomaly.
584 const Double_t mmp = (mm + ev - ae - a3)*TMath::DegToRad();
585 // Correction for the equation of the centre.
586 const Double_t mec = 6.2886 * sin(mmp);
587 // Another correction term.
588 const Double_t a4 = 0.214 * sin(2 * mmp);
589 // Corrected longitude.
590 const Double_t lp = ml + ev + mec - ae + a4;
591 // Variation.
592 const Double_t v = 0.6583 * sin(2 * (lp - lambdasun)*TMath::DegToRad());
593 // True longitude.
594 const Double_t lpp = lp + v;
595 // Age of the Moon in degrees.
596 const Double_t age = (lpp - lambdasun)*TMath::DegToRad();
597
598 // Calculation of the phase of the Moon.
599 return (1 - TMath::Cos(age)) / 2;
600}
601
602// --------------------------------------------------------------------------
603//
604// Calculate the Period to which the time belongs to. The Period is defined
605// as the number of synodic months ellapsed since the first full moon
606// after Jan 1st 1980 (which was @ MJD=44240.37917)
607//
608Double_t MAstro::GetMoonPeriod(Double_t mjd)
609{
610 const Double_t synmonth = 29.53058868; // synodic month (new Moon to new Moon)
611 const Double_t epoch0 = 44240.37917; // First full moon after 1980/1/1
612
613 const Double_t et = mjd-epoch0; // Ellapsed time
614 return et/synmonth;
615}
616
617// --------------------------------------------------------------------------
618//
619// To get the moon period as defined for MAGIC observation we take the
620// nearest integer mjd, eg:
621// 53257.8 --> 53258
622// 53258.3 --> 53258
623// Which is the time between 13h and 12:59h of the following day. To
624// this day-period we assign the moon-period at midnight. To get
625// the MAGIC definition we now substract 284.
626//
627// For MAGIC observation period do eg:
628// GetMagicPeriod(53257.91042)
629// or
630// MTime t;
631// t.SetMjd(53257.91042);
632// GetMagicPeriod(t.GetMjd());
633// or
634// MTime t;
635// t.Set(2004, 1, 1, 12, 32, 11);
636// GetMagicPeriod(t.GetMjd());
637//
638// To get a floating point magic period use
639// GetMoonPeriod(mjd)-284
640//
641Int_t MAstro::GetMagicPeriod(Double_t mjd)
642{
643 const Double_t mmjd = (Double_t)TMath::Nint(mjd);
644 const Double_t period = GetMoonPeriod(mmjd);
645
646 return (Int_t)TMath::Floor(period)-284;
647}
648
649// --------------------------------------------------------------------------
650//
651// Returns right ascension and declination [rad] of the sun at the
652// given mjd (ra, dec).
653//
654// returns the mean longitude [rad].
655//
656// from http://xoomer.alice.it/vtomezzo/sunriset/formulas/index.html
657//
658Double_t MAstro::GetSunRaDec(Double_t mjd, Double_t &ra, Double_t &dec)
659{
660 const Double_t T = (mjd-51544.5)/36525;// + (h-12)/24.0;
661
662 const Double_t T2 = T<0 ? -T*T : T*T;
663 const Double_t T3 = T*T*T;
664
665 // Find the ecliptic longitude of the Sun
666
667 // Geometric mean longitude of the Sun
668 const Double_t L = 280.46646 + 36000.76983*T + 0.0003032*T2;
669
670 // mean anomaly of the Sun
671 Double_t g = 357.52911 + 35999.05029*T - 0.0001537*T2;
672 g *= TMath::DegToRad();
673
674 // Longitude of the moon's ascending node
675 Double_t omega = 125.04452 - 1934.136261*T + 0.0020708*T2 + T3/450000;
676 omega *= TMath::DegToRad();
677
678 const Double_t coso = cos(omega);
679 const Double_t sino = sin(omega);
680
681 // Equation of the center
682 const Double_t C = (1.914602 - 0.004817*T - 0.000014*T2)*sin(g) +
683 (0.019993 - 0.000101*T)*sin(2*g) + 0.000289*sin(3*g);
684
685 // True longitude of the sun
686 const Double_t tlong = L + C;
687
688 // Apperent longitude of the Sun (ecliptic)
689 Double_t lambda = tlong - 0.00569 - 0.00478*sino;
690 lambda *= TMath::DegToRad();
691
692 // Obliquity of the ecliptic
693 Double_t obliq = 23.4392911 - 0.01300416667*T - 0.00000016389*T2 + 0.00000050361*T3 + 0.00255625*coso;
694 obliq *= TMath::DegToRad();
695
696 // Find the RA and DEC of the Sun
697 const Double_t sinl = sin(lambda);
698
699 ra = atan2(cos(obliq) * sinl, cos(lambda));
700 dec = asin(sin(obliq) * sinl);
701
702 return L*TMath::DegToRad();
703}
704
705// --------------------------------------------------------------------------
706//
707// Returns right ascension and declination [rad] of the moon at the
708// given mjd (ra, dec).
709//
710void MAstro::GetMoonRaDec(Double_t mjd, Double_t &ra, Double_t &dec)
711{
712 // Mean Moon orbit elements as of 1990.0
713 const Double_t l0 = 318.351648 * TMath::DegToRad();
714 const Double_t P0 = 36.340410 * TMath::DegToRad();
715 const Double_t N0 = 318.510107 * TMath::DegToRad();
716 const Double_t i = 5.145396 * TMath::DegToRad();
717
718 Double_t sunra, sundec, g;
719 {
720 const Double_t T = (mjd-51544.5)/36525;// + (h-12)/24.0;
721 const Double_t T2 = T<0 ? -T*T : T*T;
722
723 GetSunRaDec(mjd, sunra, sundec);
724
725 // mean anomaly of the Sun
726 g = 357.52911 + 35999.05029*T - 0.0001537*T2;
727 g *= TMath::DegToRad();
728 }
729
730 const Double_t sing = sin(g)*TMath::DegToRad();
731
732 const Double_t D = (mjd-47891) * TMath::DegToRad();
733 const Double_t l = 13.1763966*D + l0;
734 const Double_t MMoon = l -0.1114041*D - P0; // Moon's mean anomaly M
735 const Double_t N = N0 -0.0529539*D; // Moon's mean ascending node longitude
736
737 const Double_t C = l-sunra;
738 const Double_t Ev = 1.2739 * sin(2*C-MMoon) * TMath::DegToRad();
739 const Double_t Ae = 0.1858 * sing;
740 const Double_t A3 = 0.37 * sing;
741 const Double_t MMoon2 = MMoon+Ev-Ae-A3; // corrected Moon anomaly
742
743 const Double_t Ec = 6.2886 * sin(MMoon2) * TMath::DegToRad(); // equation of centre
744 const Double_t A4 = 0.214 * sin(2*MMoon2)* TMath::DegToRad();
745 const Double_t l2 = l+Ev+Ec-Ae+A4; // corrected Moon's longitude
746
747 const Double_t V = 0.6583 * sin(2*(l2-sunra)) * TMath::DegToRad();
748 const Double_t l3 = l2+V; // true orbital longitude;
749
750 const Double_t N2 = N -0.16*sing;
751
752 ra = fmod( N2 + atan2( sin(l3-N2)*cos(i), cos(l3-N2) ), TMath::TwoPi() );
753 dec = asin(sin(l3-N2)*sin(i) );
754}
755
756// --------------------------------------------------------------------------
757//
758// Return Euqation of time in hours for given mjd
759//
760Double_t MAstro::GetEquationOfTime(Double_t mjd)
761{
762 Double_t ra, dec;
763 const Double_t L = fmod(GetSunRaDec(mjd, ra, dec), TMath::TwoPi());
764
765 if (L-ra>TMath::Pi())
766 ra += TMath::TwoPi();
767
768 return 24*(L - ra)/TMath::TwoPi();
769}
770
771// --------------------------------------------------------------------------
772//
773// Returns noon time (the time of the highest altitude of the sun)
774// at the given mjd and at the given observers longitude [deg]
775//
776// The maximum altitude reached at noon time is
777// altmax = 90.0 + dec - latit;
778// if (dec > latit)
779// altmax = 90.0 + latit - dec;
780// dec=Declination of the sun
781//
782Double_t MAstro::GetNoonTime(Double_t mjd, Double_t longit)
783{
784 const Double_t equation = GetEquationOfTime(TMath::Floor(mjd));
785 return 12. + equation - longit/15;
786}
787
788// --------------------------------------------------------------------------
789//
790// Returns the time (in hours) between noon (the sun culmination)
791// and the sun being at height alt[deg] (90=zenith, 0=horizont)
792//
793// civil twilight: 0deg to -6deg
794// nautical twilight: -6deg to -12deg
795// astronom twilight: -12deg to -18deg
796//
797// latit is the observers latitude in rad
798//
799// returns -1 in case the sun doesn't reach this altitude.
800// (eg. alt=0: Polarnight or -day)
801//
802// To get the sun rise/set:
803// double timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), par[0]);
804// double noon = MAstro::GetNoonTime(mjd, longit);
805// double N = TMath::Floor(mjd)+noon/24.;
806// double risetime = N-timediff/24.;
807// double settime = N+timediff/24.;
808//
809Double_t MAstro::GetTimeFromNoonToAlt(Double_t mjd, Double_t latit, Double_t alt)
810{
811 Double_t ra, dec;
812 GetSunRaDec(mjd, ra, dec);
813
814 const Double_t h = alt*TMath::DegToRad();
815
816 const Double_t arg = (sin(h) - sin(latit)*sin(dec))/(cos(latit)*cos(dec));
817
818 return TMath::Abs(arg)>1 ? -1 : 12*acos(arg)/TMath::Pi();
819}
820
821// --------------------------------------------------------------------------
822//
823// Returns the time of the sunrise/set calculated before and after
824// the noon of floor(mjd) (TO BE IMPROVED)
825//
826// Being longit and latit the longitude and latitude of the observer
827// in deg and alt the hight above or below the horizont in deg.
828//
829// civil twilight: 0deg to -6deg
830// nautical twilight: -6deg to -12deg
831// astronom twilight: -12deg to -18deg
832//
833// A TArrayD(2) is returned with the the mjd of the sunrise in
834// TArray[0] and the mjd of the sunset in TArrayD[1].
835//
836TArrayD MAstro::GetSunRiseSet(Double_t mjd, Double_t longit, Double_t latit, Double_t alt)
837{
838 const Double_t timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), alt);
839 const Double_t noon = MAstro::GetNoonTime(mjd, longit);
840
841 const Double_t N = TMath::Floor(mjd)+noon/24.;
842
843 const Double_t rise = timediff<0 ? N-0.5 : N-timediff/24.;
844 const Double_t set = timediff<0 ? N+0.5 : N+timediff/24.;
845
846 TArrayD rc(2);
847 rc[0] = rise;
848 rc[1] = set;
849 return rc;
850}
851
852// --------------------------------------------------------------------------
853//
854// Returns the distance in x,y between two polar-vectors (eg. Alt/Az, Ra/Dec)
855// projected on aplain in a distance dist. For Magic this this the distance
856// of the camera plain (1700mm) dist also determins the unit in which
857// the TVector2 is returned.
858//
859// v0 is the reference vector (eg. the vector to the center of the camera)
860// v1 is the vector to which we determin the distance on the plain
861//
862// (see also MStarCamTrans::Loc0LocToCam())
863//
864TVector2 MAstro::GetDistOnPlain(const TVector3 &v0, TVector3 v1, Double_t dist)
865{
866 v1.RotateZ(-v0.Phi());
867 v1.RotateY(-v0.Theta());
868 v1.RotateZ(-TMath::Pi()/2); // exchange x and y
869 v1 *= dist/v1.Z();
870
871 return v1.XYvector(); //TVector2(v1.Y(), -v1.X());//v1.XYvector();
872}
873
874// --------------------------------------------------------------------------
875//
876// Calculate the absolute misspointing from the nominal zenith angle nomzd
877// and the deviations in zd (devzd) and az (devaz).
878// All values given in deg, the return value, too.
879//
880Double_t MAstro::GetDevAbs(Double_t nomzd, Double_t devzd, Double_t devaz)
881{
882 const Double_t pzd = nomzd * TMath::DegToRad();
883 const Double_t azd = devzd * TMath::DegToRad();
884 const Double_t aaz = devaz * TMath::DegToRad();
885
886 const double el = TMath::Pi()/2-pzd;
887
888 const double dphi2 = aaz/2.;
889 const double cos2 = TMath::Cos(dphi2)*TMath::Cos(dphi2);
890 const double sin2 = TMath::Sin(dphi2)*TMath::Sin(dphi2);
891 const double d = TMath::Cos(azd)*cos2 - TMath::Cos(2*el)*sin2;
892
893 return TMath::ACos(d)*TMath::RadToDeg();
894}
895
896// --------------------------------------------------------------------------
897//
898// Returned is the offset (number of days) which must be added to
899// March 1st of the given year, eg:
900//
901// Int_t offset = GetDayOfEaster(2004);
902//
903// MTime t;
904// t.Set(year, 3, 1);
905// t.SetMjd(t.GetMjd()+offset);
906//
907// cout << t << endl;
908//
909// If the date coudn't be calculated -1 is returned.
910//
911// The minimum value returned is 21 corresponding to March 22.
912// The maximum value returned is 55 corresponding to April 25.
913//
914// --------------------------------------------------------------------------
915//
916// Gauss'sche Formel zur Berechnung des Osterdatums
917// Wann wird Ostern gefeiert? Wie erfährt man das Osterdatum für ein
918// bestimmtes Jahr, ohne in einen Kalender zu schauen?
919//
920// Ostern ist ein "bewegliches" Fest. Es wird am ersten Sonntag nach dem
921// ersten Frühlingsvollmond gefeiert. Damit ist der 22. März der früheste
922// Termin, der 25. April der letzte, auf den Ostern fallen kann. Von
923// diesem Termin hängen auch die Feste Christi Himmelfahrt, das 40 Tage
924// nach Ostern, und Pfingsten, das 50 Tage nach Ostern gefeiert wird, ab.
925//
926// Von Carl Friedrich Gauß (Mathematiker, Astronom und Physiker;
927// 1777-1855) stammt ein Algorithmus, der es erlaubt ohne Kenntnis des
928// Mondkalenders die Daten der Osterfeste für die Jahre 1700 bis 2199 zu
929// bestimmen.
930//
931// Gib eine Jahreszahl zwischen 1700 und 2199 ein:
932//
933// Und so funktioniert der Algorithmus:
934//
935// Es sei:
936//
937// J die Jahreszahl
938// a der Divisionsrest von J/19
939// b der Divisionsrest von J/4
940// c der Divisionsrest von J/7
941// d der Divisionsrest von (19*a + M)/30
942// e der Divisionsrest von (2*b + 4*c + 6*d + N)/7
943//
944// wobei M und N folgende Werte annehmen:
945//
946// für die Jahre M N
947// 1583-1599 22 2
948// 1600-1699 22 2
949// 1700-1799 23 3
950// 1800-1899 23 4
951// 1900-1999 24 5
952// 2000-2099 24 5
953// 2100-2199 24 6
954// 2200-2299 25 0
955// 2300-2399 26 1
956// 2400-2499 25 1
957//
958// Dann fällt Ostern auf den
959// (22 + d + e)ten März
960//
961// oder den
962// (d + e - 9)ten April
963//
964// Beachte:
965// Anstelle des 26. Aprils ist immer der 19. April zu setzen,
966// anstelle des 25. Aprils immer dann der 18. April, wenn d=28 und a>10.
967//
968// Literatur:
969// Schüler-Rechenduden
970// Bibliographisches Institut
971// Mannheim, 1966
972//
973// --------------------------------------------------------------------------
974//
975// Der Ostersonntag ist ein sog. unregelmäßiger Feiertag. Alle anderen
976// unregelmäßigen Feiertage eines Jahres leiten sich von diesem Tag ab:
977//
978// * Aschermittwoch ist 46 Tage vor Ostern.
979// * Pfingsten ist 49 Tage nach Ostern.
980// * Christi Himmelfahrt ist 10 Tage vor Pfingsten.
981// * Fronleichnam ist 11 Tage nach Pfingsten.
982//
983// Man muß also nur den Ostersonntag ermitteln, um alle anderen
984// unregelmäßigen Feiertage zu berechnen. Doch wie geht das?
985//
986// Dazu etwas Geschichte:
987//
988// Das 1. Kirchenkonzil im Jahre 325 hat festgelegt:
989//
990// * Ostern ist stets am ersten Sonntag nach dem ersten Vollmond des
991// Frühlings.
992// * Stichtag ist der 21. März, die "Frühlings-Tagundnachtgleiche".
993//
994// Am 15.10.1582 wurde von Papst Gregor XIII. der bis dahin gültige
995// Julianische Kalender reformiert. Der noch heute gültige Gregorianische
996// Kalender legt dabei folgendes fest:
997//
998// Ein Jahr hat 365 Tage und ein Schaltjahr wird eingefügt, wenn das Jahr
999// durch 4 oder durch 400, aber nicht durch 100 teilbar ist. Hieraus
1000// ergeben sich die zwei notwendigen Konstanten, um den Ostersonntag zu
1001// berechnen:
1002//
1003// 1. Die Jahreslänge von und bis zum Zeitpunkt der
1004// Frühlings-Tagundnachtgleiche: 365,2422 mittlere Sonnentage
1005// 2. Ein Mondmonat: 29,5306 mittlere Sonnentage
1006//
1007// Mit der "Osterformel", von Carl Friedrich Gauß (1777-1855) im Jahre 1800
1008// entwickelt, läßt sich der Ostersonntag für jedes Jahr von 1583 bis 8202
1009// berechnen.
1010//
1011// Der früheste mögliche Ostertermin ist der 22. März. (Wenn der Vollmond
1012// auf den 21. März fällt und der 22. März ein Sonntag ist.)
1013//
1014// Der späteste mögliche Ostertermin ist der 25. April. (Wenn der Vollmond
1015// auf den 21. März fällt und der 21. März ein Sonntag ist.)
1016//
1017Int_t MAstro::GetEasterOffset(UShort_t year)
1018{
1019 if (year<1583 || year>2499)
1020 {
1021 cout << "MAstro::GetDayOfEaster - Year " << year << " not between 1700 and 2199" << endl;
1022 return -1;
1023 }
1024
1025 Int_t M=0;
1026 Int_t N=0;
1027 switch (year/100)
1028 {
1029 case 15:
1030 case 16: M=22; N=2; break;
1031 case 17: M=23; N=3; break;
1032 case 18: M=23; N=4; break;
1033 case 19:
1034 case 20: M=24; N=5; break;
1035 case 21: M=24; N=6; break;
1036 case 22: M=25; N=0; break;
1037 case 23: M=26; N=1; break;
1038 case 24: M=25; N=1; break;
1039 }
1040
1041 const Int_t a = year%19;
1042 const Int_t b = year%4;
1043 const Int_t c = year%7;
1044 const Int_t d = (19*a + M)%30;
1045 const Int_t e = (2*b + 4*c + 6*d + N)%7;
1046
1047 if (e==6 && d==28 && a>10)
1048 return 48;
1049
1050 if (d+e==35)
1051 return 49;
1052
1053 return d + e + 21;
1054}
Note: See TracBrowser for help on using the repository browser.