source: trunk/MagicSoft/Mars/mastro/MAstro.cc@ 9178

Last change on this file since 9178 was 9156, checked in by tbretz, 16 years ago
*** empty log message ***
File size: 32.8 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 11/2003 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: MAGIC Software Development, 2000-2008
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// MAstro
28// ------
29//
30////////////////////////////////////////////////////////////////////////////
31#include "MAstro.h"
32
33#include <math.h> // fmod on darwin
34
35#include <iostream>
36
37#include <TArrayD.h> // TArrayD
38#include <TVector3.h> // TVector3
39
40#include "MTime.h" // MTime::GetGmst
41#include "MString.h"
42
43#include "MAstroCatalog.h" // FIXME: replace by MVector3!
44
45using namespace std;
46
47ClassImp(MAstro);
48
49const Double_t MAstro::kSynMonth = 29.53058868; // synodic month (new Moon to new Moon)
50const Double_t MAstro::kEpoch0 = 44240.37917; // First full moon after 1980/1/1
51
52Double_t MAstro::RadToHor()
53{
54 return 24/TMath::TwoPi();
55}
56
57Double_t MAstro::HorToRad()
58{
59 return TMath::TwoPi()/24;
60}
61
62Double_t MAstro::Trunc(Double_t val)
63{
64 // dint(A) - truncate to nearest whole number towards zero (double)
65 return val<0 ? TMath::Ceil(val) : TMath::Floor(val);
66}
67
68Double_t MAstro::Round(Double_t val)
69{
70 // dnint(A) - round to nearest whole number (double)
71 return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5);
72}
73
74Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
75{
76 const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg);
77 return sgn=='-' ? -rc : rc;
78}
79
80Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
81{
82 // pi/(180*3600): arcseconds to radians
83 //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6
84 return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/;
85}
86
87Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
88{
89 // pi/(12*3600): seconds of time to radians
90//#define DS2R 7.2722052166430399038487115353692196393452995355905e-5
91 return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/;
92}
93
94Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
95{
96 return Hms2Sec(deg, min, sec, sgn)/3600.;
97}
98
99Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
100{
101 return Hms2Sec(hor, min, sec, sgn)/240.;
102}
103
104Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
105{
106 return Hms2Sec(deg, min, sec, sgn)/54000.;
107}
108
109Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
110{
111 return Hms2Sec(hor, min, sec, sgn)/3600.;
112}
113
114void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec)
115{
116 /* Handle sign */
117 sgn = day<0?'-':'+';
118
119 /* Round interval and express in smallest units required */
120 Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
121
122 /* Separate into fields */
123 const Double_t ah = Trunc(a/3600.);
124 a -= ah * 3600.;
125 const Double_t am = Trunc(a/60.);
126 a -= am * 60.;
127 const Double_t as = Trunc(a);
128
129 /* Return results */
130 hor = (UShort_t)ah;
131 min = (UShort_t)am;
132 sec = (UShort_t)as;
133}
134
135void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
136{
137 Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec);
138}
139
140void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
141{
142 Rad2Hms(rad*15, sgn, deg, min, sec);
143}
144
145void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
146{
147 Day2Hms(d/24, sgn, deg, min, sec);
148}
149
150void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
151{
152 Day2Hms(d/360, sgn, deg, min, sec);
153}
154
155void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
156{
157 Day2Hms(h*15/24, sgn, deg, min, sec);
158}
159
160void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t &deg, UShort_t &min, UShort_t &sec)
161{
162 Day2Hms(h/24, sgn, deg, min, sec);
163}
164
165void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min)
166{
167 /* Handle sign */
168 sgn = day<0?'-':'+';
169
170 /* Round interval and express in smallest units required */
171 Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
172
173 /* Separate into fields */
174 const Double_t ah = Trunc(a/3600.);
175 a -= ah * 3600.;
176
177 /* Return results */
178 hor = (UShort_t)ah;
179 min = a/60.;
180}
181
182void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t &deg, Double_t &min)
183{
184 Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min);
185}
186
187void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t &deg, Double_t &min)
188{
189 Rad2Hm(rad*15, sgn, deg, min);
190}
191
192void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t &deg, Double_t &min)
193{
194 Day2Hm(d/24, sgn, deg, min);
195}
196
197void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t &deg, Double_t &min)
198{
199 Rad2Hm(d/360, sgn, deg, min);
200}
201
202void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t &deg, Double_t &min)
203{
204 Day2Hm(h*15/24, sgn, deg, min);
205}
206
207void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t &deg, Double_t &min)
208{
209 Day2Hm(h/24, sgn, deg, min);
210}
211
212TString MAstro::GetStringDeg(Double_t deg, const char *fmt)
213{
214 Char_t sgn;
215 UShort_t d, m, s;
216 Deg2Dms(deg, sgn, d, m, s);
217
218 return MString::Format(fmt, sgn, d, m ,s);
219}
220
221TString MAstro::GetStringHor(Double_t deg, const char *fmt)
222{
223 Char_t sgn;
224 UShort_t h, m, s;
225 Hor2Hms(deg, sgn, h, m, s);
226
227 return MString::Format(fmt, sgn, h, m ,s);
228}
229
230// --------------------------------------------------------------------------
231//
232// Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0'
233// as floating point value -12.5 or 12.5. If interpretation is
234// successfull kTRUE is returned, otherwise kFALSE. ret is not
235// touched if interpretation was not successfull. The successfull
236// interpreted part is removed from the TString.
237//
238Bool_t MAstro::String2Angle(TString &str, Double_t &ret)
239{
240 Char_t sgn;
241 Int_t d, len;
242 UInt_t m;
243 Float_t s;
244
245 // Skip whitespaces before %c and after %f
246 int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len);
247
248 if (n!=4 || (sgn!='+' && sgn!='-'))
249 return kFALSE;
250
251 str.Remove(0, len);
252
253 ret = Dms2Deg(d, m, s, sgn);
254 return kTRUE;
255}
256
257// --------------------------------------------------------------------------
258//
259// Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0'
260// as floating point value -12.5, 12.5 or 12.5. If interpretation is
261// successfull kTRUE is returned, otherwise kFALSE. ret is not
262// touched if interpretation was not successfull.
263//
264Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret)
265{
266 Char_t sgn = str[0]=='-' ? '-' : '+';
267 Int_t d;
268 UInt_t m;
269 Float_t s;
270
271 const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s);
272
273 if (n!=3)
274 return kFALSE;
275
276 ret = Dms2Deg(d, m, s, sgn);
277 return kTRUE;
278}
279
280// --------------------------------------------------------------------------
281//
282// Returns val=-12.5 as string '-12:30:00'
283//
284TString MAstro::Angle2Coordinate(Double_t val)
285{
286 Char_t sgn;
287 UShort_t d,m,s;
288
289 Deg2Dms(val, sgn, d, m, s);
290
291 return Form("%c%02d:%02d:%02d", sgn, d, m, s);
292}
293
294// --------------------------------------------------------------------------
295//
296// Return year y, month m and day d corresponding to Mjd.
297//
298void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d)
299{
300 // Express day in Gregorian calendar
301 const ULong_t jd = mjd + 2400001;
302 const ULong_t n4 = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37);
303 const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5;
304
305 y = n4/1461L-4712;
306 m = ((nd10/306+2)%12)+1;
307 d = (nd10%306)/10+1;
308}
309
310// --------------------------------------------------------------------------
311//
312// Return Mjd corresponding to year y, month m and day d.
313//
314Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d)
315{
316 // Month lengths in days
317 static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
318
319 // Validate month
320 if (m<1 || m>12)
321 return -1;
322
323 // Allow for leap year
324 months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28;
325
326 // Validate day
327 if (d<1 || d>months[m-1])
328 return -1;
329
330 // Precalculate some values
331 const Byte_t lm = 12-m;
332 const ULong_t lm10 = 4712 + y - lm/10;
333
334 // Perform the conversion
335 return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904;
336}
337
338// --------------------------------------------------------------------------
339//
340// Convert a mjd to a number yymmdd. The century is just cuts away, e.g.
341// 54393 --> 71020 (2007/10/20)
342// 50741 --> 971020 (1997/10/20)
343// 17868 --> 71020 (1907/10/20)
344//
345UInt_t MAstro::Mjd2Yymmdd(UInt_t mjd)
346{
347 UShort_t y;
348 Byte_t m, d;
349 Mjd2Ymd(mjd, y, m, d);
350
351 return d + m*100 + (y%100)*10000;
352}
353
354// --------------------------------------------------------------------------
355//
356// Convert a yymmdd number to mjd. The century is defined as 2000 for
357// yy<70, 1900 elsewise.
358// 71020 --> 54393 (2007/10/20)
359// 971020 --> 50741 (1997/10/20)
360//
361UInt_t MAstro::Yymmdd2Mjd(UInt_t yymmdd)
362{
363 const Byte_t dd = yymmdd%100;
364 const Byte_t mm = (yymmdd/100)%100;
365 const UShort_t yy = (yymmdd/10000)%100;
366
367 return Ymd2Mjd(yy + (yy<70 ? 2000 : 1900), mm, dd);
368}
369
370// --------------------------------------------------------------------------
371//
372// theta0, phi0 [rad]: polar angle/zenith distance, azimuth of 1st object
373// theta1, phi1 [rad]: polar angle/zenith distance, azimuth of 2nd object
374// AngularDistance [rad]: Angular distance between two objects
375//
376Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1)
377{
378 TVector3 v0(1);
379 v0.Rotate(phi0, theta0);
380
381 TVector3 v1(1);
382 v1.Rotate(phi1, theta1);
383
384 return v0.Angle(v1);
385}
386
387// --------------------------------------------------------------------------
388//
389// Calls MTime::GetGmst() Better use MTime::GetGmst() directly
390//
391Double_t MAstro::UT2GMST(Double_t ut1)
392{
393 return MTime(ut1).GetGmst();
394}
395
396// --------------------------------------------------------------------------
397//
398// RotationAngle
399//
400// calculates the angle for the rotation of the sky coordinate system
401// with respect to the local coordinate system. This is identical
402// to the rotation angle of the sky image in the camera.
403//
404// sinl [rad]: sine of observers latitude
405// cosl [rad]: cosine of observers latitude
406// theta [rad]: polar angle/zenith distance
407// phi [rad]: rotation angle/azimuth
408//
409// Return sin/cos component of angle
410//
411// The convention is such, that the rotation angle is -pi/pi if
412// right ascension and local rotation angle are counted in the
413// same direction, 0 if counted in the opposite direction.
414//
415// (In other words: The rotation angle is 0 when the source culminates)
416//
417// Using vectors it can be done like:
418// TVector3 v, p;
419// v.SetMagThetaPhi(1, theta, phi);
420// p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
421// v = v.Cross(l));
422// v.RotateZ(-phi);
423// v.Rotate(-theta)
424// rho = TMath::ATan2(v(2), v(1));
425//
426// For more information see TDAS 00-11, eqs. (18) and (20)
427//
428void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos)
429{
430 const Double_t sint = TMath::Sin(theta);
431 const Double_t cost = TMath::Cos(theta);
432
433 const Double_t snlt = sinl*sint;
434 const Double_t cslt = cosl*cost;
435
436 const Double_t sinp = TMath::Sin(phi);
437 const Double_t cosp = TMath::Cos(phi);
438
439 const Double_t v1 = sint*sinp;
440 const Double_t v2 = cslt - snlt*cosp;
441
442 const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2);
443
444 sin = cosl*sinp / denom; // y-component
445 cos = (snlt-cslt*cosp) / denom; // x-component
446}
447
448// --------------------------------------------------------------------------
449//
450// RotationAngle
451//
452// calculates the angle for the rotation of the sky coordinate system
453// with respect to the local coordinate system. This is identical
454// to the rotation angle of the sky image in the camera.
455//
456// sinl [rad]: sine of observers latitude
457// cosl [rad]: cosine of observers latitude
458// theta [rad]: polar angle/zenith distance
459// phi [rad]: rotation angle/azimuth
460//
461// Return angle [rad] in the range -pi, pi
462//
463// The convention is such, that the rotation angle is -pi/pi if
464// right ascension and local rotation angle are counted in the
465// same direction, 0 if counted in the opposite direction.
466//
467// (In other words: The rotation angle is 0 when the source culminates)
468//
469// Using vectors it can be done like:
470// TVector3 v, p;
471// v.SetMagThetaPhi(1, theta, phi);
472// p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
473// v = v.Cross(l));
474// v.RotateZ(-phi);
475// v.Rotate(-theta)
476// rho = TMath::ATan2(v(2), v(1));
477//
478// For more information see TDAS 00-11, eqs. (18) and (20)
479//
480Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi)
481{
482 const Double_t snlt = sinl*TMath::Sin(theta);
483 const Double_t cslt = cosl*TMath::Cos(theta);
484
485 const Double_t sinp = TMath::Sin(phi);
486 const Double_t cosp = TMath::Cos(phi);
487
488 return TMath::ATan2(cosl*sinp, snlt-cslt*cosp);
489}
490
491// --------------------------------------------------------------------------
492//
493// Estimates the time at which a source culminates.
494//
495// ra: right ascension [rad]
496// elong: observers longitude [rad]
497// mjd: modified julian date (utc)
498//
499// return time in [-12;12]
500//
501Double_t MAstro::EstimateCulminationTime(Double_t mjd, Double_t elong, Double_t ra)
502{
503 // startime at 1.1.2000 for greenwich 0h
504 const Double_t gmt0 = 6.664520;
505
506 // difference of startime for greenwich for two calendar days [h]
507 const Double_t d0 = 0.06570982224;
508
509 // mjd of greenwich 1.1.2000 0h
510 const Double_t mjd0 = 51544;
511
512 // mjd today
513 const Double_t mjd1 = TMath::Floor(mjd);
514
515 // scale between star-time and sun-time
516 const Double_t scale = 1;//1.00273790926;
517
518 const Double_t UT = (ra-elong)*RadToHor() - (gmt0 + d0 * (mjd1-mjd0))/scale;
519
520 return fmod(2412 + UT, 24) - 12;
521}
522
523// --------------------------------------------------------------------------
524//
525// Kepler - solve the equation of Kepler
526//
527Double_t MAstro::Kepler(Double_t m, Double_t ecc)
528{
529 m *= TMath::DegToRad();
530
531 Double_t delta = 0;
532 Double_t e = m;
533 do {
534 delta = e - ecc * sin(e) - m;
535 e -= delta / (1 - ecc * cos(e));
536 } while (fabs(delta) > 1e-6);
537
538 return e;
539}
540
541// --------------------------------------------------------------------------
542//
543// GetMoonPhase - calculate phase of moon as a fraction:
544// Returns -1 if calculation failed
545//
546Double_t MAstro::GetMoonPhase(Double_t mjd)
547{
548 /****** Calculation of the Sun's position. ******/
549
550 // date within epoch
551 const Double_t epoch = 44238; // 1980 January 0.0
552 const Double_t day = mjd - epoch;
553 if (day<0)
554 {
555 cout << "MAstro::GetMoonPhase - Day before Jan 1980" << endl;
556 return -1;
557 }
558
559 // mean anomaly of the Sun
560 const Double_t n = fmod(day*360/365.2422, 360);
561
562 const Double_t elonge = 278.833540; // ecliptic longitude of the Sun at epoch 1980.0
563 const Double_t elongp = 282.596403; // ecliptic longitude of the Sun at perigee
564
565 // convert from perigee co-ordinates to epoch 1980.0
566 const Double_t m = fmod(n + elonge - elongp + 360, 360);
567
568 // solve equation of Kepler
569 const Double_t eccent = 0.016718; // eccentricity of Earth's orbit
570 const Double_t k = Kepler(m, eccent);
571 const Double_t ec0 = sqrt((1 + eccent) / (1 - eccent)) * tan(k / 2);
572 // true anomaly
573 const Double_t ec = 2 * atan(ec0) * TMath::RadToDeg();
574
575 // Sun's geocentric ecliptic longitude
576 const Double_t lambdasun = fmod(ec + elongp + 720, 360);
577
578
579 /****** Calculation of the Moon's position. ******/
580
581 // Moon's mean longitude.
582 const Double_t mmlong = 64.975464; // moon's mean lonigitude at the epoch
583 const Double_t ml = fmod(13.1763966*day + mmlong + 360, 360);
584 // Moon's mean anomaly.
585 const Double_t mmlongp = 349.383063; // mean longitude of the perigee at the epoch
586 const Double_t mm = fmod(ml - 0.1114041*day - mmlongp + 720, 360);
587 // Evection.
588 const Double_t ev = 1.2739 * sin((2 * (ml - lambdasun) - mm)*TMath::DegToRad());
589 // Annual equation.
590 const Double_t sinm = TMath::Sin(m*TMath::DegToRad());
591 const Double_t ae = 0.1858 * sinm;
592 // Correction term.
593 const Double_t a3 = 0.37 * sinm;
594 // Corrected anomaly.
595 const Double_t mmp = (mm + ev - ae - a3)*TMath::DegToRad();
596 // Correction for the equation of the centre.
597 const Double_t mec = 6.2886 * sin(mmp);
598 // Another correction term.
599 const Double_t a4 = 0.214 * sin(2 * mmp);
600 // Corrected longitude.
601 const Double_t lp = ml + ev + mec - ae + a4;
602 // Variation.
603 const Double_t v = 0.6583 * sin(2 * (lp - lambdasun)*TMath::DegToRad());
604 // True longitude.
605 const Double_t lpp = lp + v;
606 // Age of the Moon in degrees.
607 const Double_t age = (lpp - lambdasun)*TMath::DegToRad();
608
609 // Calculation of the phase of the Moon.
610 return (1 - TMath::Cos(age)) / 2;
611}
612
613// --------------------------------------------------------------------------
614//
615// Calculate the Period to which the time belongs to. The Period is defined
616// as the number of synodic months ellapsed since the first full moon
617// after Jan 1st 1980 (which was @ MJD=44240.37917)
618//
619Double_t MAstro::GetMoonPeriod(Double_t mjd)
620{
621 const Double_t et = mjd-kEpoch0; // Elapsed time
622 return et/kSynMonth;
623}
624
625// --------------------------------------------------------------------------
626//
627// Convert a moon period back to a mjd
628//
629// See also
630// MAstro::GetMoonPeriod
631//
632Double_t MAstro::GetMoonPeriodMjd(Double_t p)
633{
634 return p*kSynMonth+kEpoch0;
635}
636
637// --------------------------------------------------------------------------
638//
639// To get the moon period as defined for MAGIC observation we take the
640// nearest integer mjd, eg:
641// 53257.8 --> 53258
642// 53258.3 --> 53258
643// Which is the time between 12h and 11:59h of the following day. To
644// this day-period we assign the moon-period at midnight. To get
645// the MAGIC definition we now substract 284.
646//
647// For MAGIC observation period do eg:
648// GetMagicPeriod(53257.91042)
649// or
650// MTime t;
651// t.SetMjd(53257.91042);
652// GetMagicPeriod(t.GetMjd());
653// or
654// MTime t;
655// t.Set(2004, 1, 1, 12, 32, 11);
656// GetMagicPeriod(t.GetMjd());
657//
658// To get a floating point magic period use
659// GetMoonPeriod(mjd)-284
660//
661Int_t MAstro::GetMagicPeriod(Double_t mjd)
662{
663 const Double_t mmjd = (Double_t)TMath::Nint(mjd);
664 const Double_t period = GetMoonPeriod(mmjd);
665
666 return (Int_t)TMath::Floor(period)-284;
667}
668
669// --------------------------------------------------------------------------
670//
671// Get the start time (12h noon) of the MAGIC period p.
672//
673// See also
674// MAstro::GetMagicPeriod
675//
676Double_t MAstro::GetMagicPeriodStart(Int_t p)
677{
678 return TMath::Floor(GetMoonPeriodMjd(p+284))+0.5;
679}
680
681// --------------------------------------------------------------------------
682//
683// Returns right ascension and declination [rad] of the sun at the
684// given mjd (ra, dec).
685//
686// returns the mean longitude [rad].
687//
688// from http://xoomer.alice.it/vtomezzo/sunriset/formulas/index.html
689//
690Double_t MAstro::GetSunRaDec(Double_t mjd, Double_t &ra, Double_t &dec)
691{
692 const Double_t T = (mjd-51544.5)/36525;// + (h-12)/24.0;
693
694 const Double_t T2 = T<0 ? -T*T : T*T;
695 const Double_t T3 = T*T*T;
696
697 // Find the ecliptic longitude of the Sun
698
699 // Geometric mean longitude of the Sun
700 const Double_t L = 280.46646 + 36000.76983*T + 0.0003032*T2;
701
702 // mean anomaly of the Sun
703 Double_t g = 357.52911 + 35999.05029*T - 0.0001537*T2;
704 g *= TMath::DegToRad();
705
706 // Longitude of the moon's ascending node
707 Double_t omega = 125.04452 - 1934.136261*T + 0.0020708*T2 + T3/450000;
708 omega *= TMath::DegToRad();
709
710 const Double_t coso = cos(omega);
711 const Double_t sino = sin(omega);
712
713 // Equation of the center
714 const Double_t C = (1.914602 - 0.004817*T - 0.000014*T2)*sin(g) +
715 (0.019993 - 0.000101*T)*sin(2*g) + 0.000289*sin(3*g);
716
717 // True longitude of the sun
718 const Double_t tlong = L + C;
719
720 // Apperent longitude of the Sun (ecliptic)
721 Double_t lambda = tlong - 0.00569 - 0.00478*sino;
722 lambda *= TMath::DegToRad();
723
724 // Obliquity of the ecliptic
725 Double_t obliq = 23.4392911 - 0.01300416667*T - 0.00000016389*T2 + 0.00000050361*T3 + 0.00255625*coso;
726 obliq *= TMath::DegToRad();
727
728 // Find the RA and DEC of the Sun
729 const Double_t sinl = sin(lambda);
730
731 ra = atan2(cos(obliq) * sinl, cos(lambda));
732 dec = asin(sin(obliq) * sinl);
733
734 return L*TMath::DegToRad();
735}
736
737// --------------------------------------------------------------------------
738//
739// Returns right ascension and declination [rad] of the moon at the
740// given mjd (ra, dec).
741//
742void MAstro::GetMoonRaDec(Double_t mjd, Double_t &ra, Double_t &dec)
743{
744 // Mean Moon orbit elements as of 1990.0
745 const Double_t l0 = 318.351648 * TMath::DegToRad();
746 const Double_t P0 = 36.340410 * TMath::DegToRad();
747 const Double_t N0 = 318.510107 * TMath::DegToRad();
748 const Double_t i = 5.145396 * TMath::DegToRad();
749
750 Double_t sunra, sundec, g;
751 {
752 const Double_t T = (mjd-51544.5)/36525;// + (h-12)/24.0;
753 const Double_t T2 = T<0 ? -T*T : T*T;
754
755 GetSunRaDec(mjd, sunra, sundec);
756
757 // mean anomaly of the Sun
758 g = 357.52911 + 35999.05029*T - 0.0001537*T2;
759 g *= TMath::DegToRad();
760 }
761
762 const Double_t sing = sin(g)*TMath::DegToRad();
763
764 const Double_t D = (mjd-47891) * TMath::DegToRad();
765 const Double_t l = 13.1763966*D + l0;
766 const Double_t MMoon = l -0.1114041*D - P0; // Moon's mean anomaly M
767 const Double_t N = N0 -0.0529539*D; // Moon's mean ascending node longitude
768
769 const Double_t C = l-sunra;
770 const Double_t Ev = 1.2739 * sin(2*C-MMoon) * TMath::DegToRad();
771 const Double_t Ae = 0.1858 * sing;
772 const Double_t A3 = 0.37 * sing;
773 const Double_t MMoon2 = MMoon+Ev-Ae-A3; // corrected Moon anomaly
774
775 const Double_t Ec = 6.2886 * sin(MMoon2) * TMath::DegToRad(); // equation of centre
776 const Double_t A4 = 0.214 * sin(2*MMoon2)* TMath::DegToRad();
777 const Double_t l2 = l+Ev+Ec-Ae+A4; // corrected Moon's longitude
778
779 const Double_t V = 0.6583 * sin(2*(l2-sunra)) * TMath::DegToRad();
780 const Double_t l3 = l2+V; // true orbital longitude;
781
782 const Double_t N2 = N -0.16*sing;
783
784 ra = fmod( N2 + atan2( sin(l3-N2)*cos(i), cos(l3-N2) ), TMath::TwoPi() );
785 dec = asin(sin(l3-N2)*sin(i) );
786}
787
788// --------------------------------------------------------------------------
789//
790// Return Euqation of time in hours for given mjd
791//
792Double_t MAstro::GetEquationOfTime(Double_t mjd)
793{
794 Double_t ra, dec;
795 const Double_t L = fmod(GetSunRaDec(mjd, ra, dec), TMath::TwoPi());
796
797 if (L-ra>TMath::Pi())
798 ra += TMath::TwoPi();
799
800 return 24*(L - ra)/TMath::TwoPi();
801}
802
803// --------------------------------------------------------------------------
804//
805// Returns noon time (the time of the highest altitude of the sun)
806// at the given mjd and at the given observers longitude [deg]
807//
808// The maximum altitude reached at noon time is
809// altmax = 90.0 + dec - latit;
810// if (dec > latit)
811// altmax = 90.0 + latit - dec;
812// dec=Declination of the sun
813//
814Double_t MAstro::GetNoonTime(Double_t mjd, Double_t longit)
815{
816 const Double_t equation = GetEquationOfTime(TMath::Floor(mjd));
817 return 12. + equation - longit/15;
818}
819
820// --------------------------------------------------------------------------
821//
822// Returns the time (in hours) between noon (the sun culmination)
823// and the sun being at height alt[deg] (90=zenith, 0=horizont)
824//
825// civil twilight: 0deg to -6deg
826// nautical twilight: -6deg to -12deg
827// astronom twilight: -12deg to -18deg
828//
829// latit is the observers latitude in rad
830//
831// returns -1 in case the sun doesn't reach this altitude.
832// (eg. alt=0: Polarnight or -day)
833//
834// To get the sun rise/set:
835// double timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), par[0]);
836// double noon = MAstro::GetNoonTime(mjd, longit);
837// double N = TMath::Floor(mjd)+noon/24.;
838// double risetime = N-timediff/24.;
839// double settime = N+timediff/24.;
840//
841Double_t MAstro::GetTimeFromNoonToAlt(Double_t mjd, Double_t latit, Double_t alt)
842{
843 Double_t ra, dec;
844 GetSunRaDec(mjd, ra, dec);
845
846 const Double_t h = alt*TMath::DegToRad();
847
848 const Double_t arg = (sin(h) - sin(latit)*sin(dec))/(cos(latit)*cos(dec));
849
850 return TMath::Abs(arg)>1 ? -1 : 12*acos(arg)/TMath::Pi();
851}
852
853// --------------------------------------------------------------------------
854//
855// Returns the time of the sunrise/set calculated before and after
856// the noon of floor(mjd) (TO BE IMPROVED)
857//
858// Being longit and latit the longitude and latitude of the observer
859// in deg and alt the hight above or below the horizont in deg.
860//
861// civil twilight: 0deg to -6deg
862// nautical twilight: -6deg to -12deg
863// astronom twilight: -12deg to -18deg
864//
865// A TArrayD(2) is returned with the the mjd of the sunrise in
866// TArray[0] and the mjd of the sunset in TArrayD[1].
867//
868TArrayD MAstro::GetSunRiseSet(Double_t mjd, Double_t longit, Double_t latit, Double_t alt)
869{
870 const Double_t timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), alt);
871 const Double_t noon = MAstro::GetNoonTime(mjd, longit);
872
873 const Double_t N = TMath::Floor(mjd)+noon/24.;
874
875 const Double_t rise = timediff<0 ? N-0.5 : N-timediff/24.;
876 const Double_t set = timediff<0 ? N+0.5 : N+timediff/24.;
877
878 TArrayD rc(2);
879 rc[0] = rise;
880 rc[1] = set;
881 return rc;
882}
883
884// --------------------------------------------------------------------------
885//
886// Returns the distance in x,y between two polar-vectors (eg. Alt/Az, Ra/Dec)
887// projected on aplain in a distance dist. For Magic this this the distance
888// of the camera plain (1700mm) dist also determins the unit in which
889// the TVector2 is returned.
890//
891// v0 is the reference vector (eg. the vector to the center of the camera)
892// v1 is the vector to which we determin the distance on the plain
893//
894// (see also MStarCamTrans::Loc0LocToCam())
895//
896TVector2 MAstro::GetDistOnPlain(const TVector3 &v0, TVector3 v1, Double_t dist)
897{
898 v1.RotateZ(-v0.Phi());
899 v1.RotateY(-v0.Theta());
900 v1.RotateZ(-TMath::Pi()/2); // exchange x and y
901 v1 *= dist/v1.Z();
902
903 return v1.XYvector(); //TVector2(v1.Y(), -v1.X());//v1.XYvector();
904}
905
906// --------------------------------------------------------------------------
907//
908// Calculate the absolute misspointing from the nominal zenith angle nomzd
909// and the deviations in zd (devzd) and az (devaz).
910// All values given in deg, the return value, too.
911//
912Double_t MAstro::GetDevAbs(Double_t nomzd, Double_t devzd, Double_t devaz)
913{
914 const Double_t pzd = nomzd * TMath::DegToRad();
915 const Double_t azd = devzd * TMath::DegToRad();
916 const Double_t aaz = devaz * TMath::DegToRad();
917
918 const double el = TMath::Pi()/2-pzd;
919
920 const double dphi2 = aaz/2.;
921 const double cos2 = TMath::Cos(dphi2)*TMath::Cos(dphi2);
922 const double sin2 = TMath::Sin(dphi2)*TMath::Sin(dphi2);
923 const double d = TMath::Cos(azd)*cos2 - TMath::Cos(2*el)*sin2;
924
925 return TMath::ACos(d)*TMath::RadToDeg();
926}
927
928// --------------------------------------------------------------------------
929//
930// Returned is the offset (number of days) which must be added to
931// March 1st of the given year, eg:
932//
933// Int_t offset = GetDayOfEaster(2004);
934//
935// MTime t;
936// t.Set(year, 3, 1);
937// t.SetMjd(t.GetMjd()+offset);
938//
939// cout << t << endl;
940//
941// If the date coudn't be calculated -1 is returned.
942//
943// The minimum value returned is 21 corresponding to March 22.
944// The maximum value returned is 55 corresponding to April 25.
945//
946// --------------------------------------------------------------------------
947//
948// Gauss'sche Formel zur Berechnung des Osterdatums
949// Wann wird Ostern gefeiert? Wie erfährt man das Osterdatum für ein
950// bestimmtes Jahr, ohne in einen Kalender zu schauen?
951//
952// Ostern ist ein "bewegliches" Fest. Es wird am ersten Sonntag nach dem
953// ersten Frühlingsvollmond gefeiert. Damit ist der 22. März der früheste
954// Termin, der 25. April der letzte, auf den Ostern fallen kann. Von
955// diesem Termin hängen auch die Feste Christi Himmelfahrt, das 40 Tage
956// nach Ostern, und Pfingsten, das 50 Tage nach Ostern gefeiert wird, ab.
957//
958// Von Carl Friedrich Gauß (Mathematiker, Astronom und Physiker;
959// 1777-1855) stammt ein Algorithmus, der es erlaubt ohne Kenntnis des
960// Mondkalenders die Daten der Osterfeste für die Jahre 1700 bis 2199 zu
961// bestimmen.
962//
963// Gib eine Jahreszahl zwischen 1700 und 2199 ein:
964//
965// Und so funktioniert der Algorithmus:
966//
967// Es sei:
968//
969// J die Jahreszahl
970// a der Divisionsrest von J/19
971// b der Divisionsrest von J/4
972// c der Divisionsrest von J/7
973// d der Divisionsrest von (19*a + M)/30
974// e der Divisionsrest von (2*b + 4*c + 6*d + N)/7
975//
976// wobei M und N folgende Werte annehmen:
977//
978// für die Jahre M N
979// 1583-1599 22 2
980// 1600-1699 22 2
981// 1700-1799 23 3
982// 1800-1899 23 4
983// 1900-1999 24 5
984// 2000-2099 24 5
985// 2100-2199 24 6
986// 2200-2299 25 0
987// 2300-2399 26 1
988// 2400-2499 25 1
989//
990// Dann fällt Ostern auf den
991// (22 + d + e)ten März
992//
993// oder den
994// (d + e - 9)ten April
995//
996// Beachte:
997// Anstelle des 26. Aprils ist immer der 19. April zu setzen,
998// anstelle des 25. Aprils immer dann der 18. April, wenn d=28 und a>10.
999//
1000// Literatur:
1001// Schüler-Rechenduden
1002// Bibliographisches Institut
1003// Mannheim, 1966
1004//
1005// --------------------------------------------------------------------------
1006//
1007// Der Ostersonntag ist ein sog. unregelmäßiger Feiertag. Alle anderen
1008// unregelmäßigen Feiertage eines Jahres leiten sich von diesem Tag ab:
1009//
1010// * Aschermittwoch ist 46 Tage vor Ostern.
1011// * Pfingsten ist 49 Tage nach Ostern.
1012// * Christi Himmelfahrt ist 10 Tage vor Pfingsten.
1013// * Fronleichnam ist 11 Tage nach Pfingsten.
1014//
1015// Man muß also nur den Ostersonntag ermitteln, um alle anderen
1016// unregelmäßigen Feiertage zu berechnen. Doch wie geht das?
1017//
1018// Dazu etwas Geschichte:
1019//
1020// Das 1. Kirchenkonzil im Jahre 325 hat festgelegt:
1021//
1022// * Ostern ist stets am ersten Sonntag nach dem ersten Vollmond des
1023// Frühlings.
1024// * Stichtag ist der 21. März, die "Frühlings-Tagundnachtgleiche".
1025//
1026// Am 15.10.1582 wurde von Papst Gregor XIII. der bis dahin gültige
1027// Julianische Kalender reformiert. Der noch heute gültige Gregorianische
1028// Kalender legt dabei folgendes fest:
1029//
1030// Ein Jahr hat 365 Tage und ein Schaltjahr wird eingefügt, wenn das Jahr
1031// durch 4 oder durch 400, aber nicht durch 100 teilbar ist. Hieraus
1032// ergeben sich die zwei notwendigen Konstanten, um den Ostersonntag zu
1033// berechnen:
1034//
1035// 1. Die Jahreslänge von und bis zum Zeitpunkt der
1036// Frühlings-Tagundnachtgleiche: 365,2422 mittlere Sonnentage
1037// 2. Ein Mondmonat: 29,5306 mittlere Sonnentage
1038//
1039// Mit der "Osterformel", von Carl Friedrich Gauß (1777-1855) im Jahre 1800
1040// entwickelt, läßt sich der Ostersonntag für jedes Jahr von 1583 bis 8202
1041// berechnen.
1042//
1043// Der früheste mögliche Ostertermin ist der 22. März. (Wenn der Vollmond
1044// auf den 21. März fällt und der 22. März ein Sonntag ist.)
1045//
1046// Der späteste mögliche Ostertermin ist der 25. April. (Wenn der Vollmond
1047// auf den 21. März fällt und der 21. März ein Sonntag ist.)
1048//
1049Int_t MAstro::GetEasterOffset(UShort_t year)
1050{
1051 if (year<1583 || year>2499)
1052 {
1053 cout << "MAstro::GetDayOfEaster - Year " << year << " not between 1700 and 2199" << endl;
1054 return -1;
1055 }
1056
1057 Int_t M=0;
1058 Int_t N=0;
1059 switch (year/100)
1060 {
1061 case 15:
1062 case 16: M=22; N=2; break;
1063 case 17: M=23; N=3; break;
1064 case 18: M=23; N=4; break;
1065 case 19:
1066 case 20: M=24; N=5; break;
1067 case 21: M=24; N=6; break;
1068 case 22: M=25; N=0; break;
1069 case 23: M=26; N=1; break;
1070 case 24: M=25; N=1; break;
1071 }
1072
1073 const Int_t a = year%19;
1074 const Int_t b = year%4;
1075 const Int_t c = year%7;
1076 const Int_t d = (19*a + M)%30;
1077 const Int_t e = (2*b + 4*c + 6*d + N)%7;
1078
1079 if (e==6 && d==28 && a>10)
1080 return 48;
1081
1082 if (d+e==35)
1083 return 49;
1084
1085 return d + e + 21;
1086}
Note: See TracBrowser for help on using the repository browser.