| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2005
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MMath
|
|---|
| 28 | //
|
|---|
| 29 | // Mars - Math package (eg Significances, etc)
|
|---|
| 30 | //
|
|---|
| 31 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 32 | #include "MMath.h"
|
|---|
| 33 |
|
|---|
| 34 | #ifndef ROOT_TVector3
|
|---|
| 35 | #include <TVector3.h>
|
|---|
| 36 | #endif
|
|---|
| 37 |
|
|---|
| 38 | #ifndef ROOT_TArrayD
|
|---|
| 39 | #include <TArrayD.h>
|
|---|
| 40 | #endif
|
|---|
| 41 | // --------------------------------------------------------------------------
|
|---|
| 42 | //
|
|---|
| 43 | // Calculate Significance as
|
|---|
| 44 | // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
|
|---|
| 45 | //
|
|---|
| 46 | // s: total number of events in signal region
|
|---|
| 47 | // b: number of background events in signal region
|
|---|
| 48 | //
|
|---|
| 49 | Double_t MMath::Significance(Double_t s, Double_t b)
|
|---|
| 50 | {
|
|---|
| 51 | const Double_t k = b==0 ? 0 : s/b;
|
|---|
| 52 | const Double_t f = s+k*k*b;
|
|---|
| 53 |
|
|---|
| 54 | return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
|
|---|
| 55 | }
|
|---|
| 56 |
|
|---|
| 57 | // --------------------------------------------------------------------------
|
|---|
| 58 | //
|
|---|
| 59 | // Symmetrized significance - this is somehow analog to
|
|---|
| 60 | // SignificanceLiMaSigned
|
|---|
| 61 | //
|
|---|
| 62 | // Returns Significance(s,b) if s>b otherwise -Significance(b, s);
|
|---|
| 63 | //
|
|---|
| 64 | Double_t MMath::SignificanceSym(Double_t s, Double_t b)
|
|---|
| 65 | {
|
|---|
| 66 | return s>b ? Significance(s, b) : -Significance(b, s);
|
|---|
| 67 | }
|
|---|
| 68 |
|
|---|
| 69 | // --------------------------------------------------------------------------
|
|---|
| 70 | //
|
|---|
| 71 | // calculates the significance according to Li & Ma
|
|---|
| 72 | // ApJ 272 (1983) 317, Formula 17
|
|---|
| 73 | //
|
|---|
| 74 | // s // s: number of on events
|
|---|
| 75 | // b // b: number of off events
|
|---|
| 76 | // alpha = t_on/t_off; // t: observation time
|
|---|
| 77 | //
|
|---|
| 78 | // The significance has the same (positive!) value for s>b and b>s.
|
|---|
| 79 | //
|
|---|
| 80 | // Returns -1 if sum<0 or alpha<0 or the argument of sqrt<0
|
|---|
| 81 | // Returns 0 if s+b==0, s==0 or b==0
|
|---|
| 82 | //
|
|---|
| 83 | // Here is some eMail written by Daniel Mazin about the meaning of the arguments:
|
|---|
| 84 | //
|
|---|
| 85 | // > Ok. Here is my understanding:
|
|---|
| 86 | // > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
|
|---|
| 87 | // > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
|
|---|
| 88 | // > exactly this. If you scale OFF to ON first (using time or using any other
|
|---|
| 89 | // > method), then you cannot use formula 17 (9) anymore. You can just try
|
|---|
| 90 | // > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
|
|---|
| 91 | // > will see the result will be different.
|
|---|
| 92 | //
|
|---|
| 93 | // > Here are less mathematical arguments:
|
|---|
| 94 | //
|
|---|
| 95 | // > 1) the better background determination you have (smaller alpha) the more
|
|---|
| 96 | // > significant is your excess, thus your analysis is more sensitive. If you
|
|---|
| 97 | // > normalize OFF to ON first, you loose this sensitivity.
|
|---|
| 98 | //
|
|---|
| 99 | // > 2) the normalization OFF to ON has an error, which naturally depends on
|
|---|
| 100 | // > the OFF and ON. This error is propagating to the significance of your
|
|---|
| 101 | // > excess if you use the Li&Ma formula 17 correctly. But if you normalize
|
|---|
| 102 | // > first and use then alpha=1, the error gets lost completely, you loose
|
|---|
| 103 | // > somehow the criteria of goodness of the normalization.
|
|---|
| 104 | //
|
|---|
| 105 | Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
|
|---|
| 106 | {
|
|---|
| 107 | const Double_t sum = s+b;
|
|---|
| 108 |
|
|---|
| 109 | if (s==0 || b==0 || sum==0)
|
|---|
| 110 | return 0;
|
|---|
| 111 |
|
|---|
| 112 | if (sum<0 || alpha<=0)
|
|---|
| 113 | return -1;
|
|---|
| 114 |
|
|---|
| 115 | const Double_t l = s*TMath::Log(s/sum*(alpha+1)/alpha);
|
|---|
| 116 | const Double_t m = b*TMath::Log(b/sum*(alpha+1) );
|
|---|
| 117 |
|
|---|
| 118 | return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
|
|---|
| 119 | }
|
|---|
| 120 |
|
|---|
| 121 | // --------------------------------------------------------------------------
|
|---|
| 122 | //
|
|---|
| 123 | // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
|
|---|
| 124 | // calculation has failed. Otherwise the Li/Ma significance which was
|
|---|
| 125 | // calculated. If s<b a negative value is returned.
|
|---|
| 126 | //
|
|---|
| 127 | Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
|
|---|
| 128 | {
|
|---|
| 129 | const Double_t sig = SignificanceLiMa(s, b, alpha);
|
|---|
| 130 | if (sig<=0)
|
|---|
| 131 | return 0;
|
|---|
| 132 |
|
|---|
| 133 | return TMath::Sign(sig, s-alpha*b);
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 | // --------------------------------------------------------------------------
|
|---|
| 137 | //
|
|---|
| 138 | // Return Li/Ma (5) for the error of the excess, under the assumption that
|
|---|
| 139 | // the existance of a signal is already known.
|
|---|
| 140 | //
|
|---|
| 141 | Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha)
|
|---|
| 142 | {
|
|---|
| 143 | Double_t Ns = s - alpha*b;
|
|---|
| 144 | Double_t sN = s + alpha*alpha*b;
|
|---|
| 145 |
|
|---|
| 146 | return Ns<0 || sN<0 ? 0 : Ns/TMath::Sqrt(sN);
|
|---|
| 147 | }
|
|---|
| 148 |
|
|---|
| 149 | // --------------------------------------------------------------------------
|
|---|
| 150 | //
|
|---|
| 151 | // Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
|
|---|
| 152 | //
|
|---|
| 153 | Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
|
|---|
| 154 | {
|
|---|
| 155 | static const Double_t sqrt2 = TMath::Sqrt(2.);
|
|---|
| 156 |
|
|---|
| 157 | const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
|
|---|
| 158 |
|
|---|
| 159 | if (rc<0)
|
|---|
| 160 | return 0;
|
|---|
| 161 | if (rc>1)
|
|---|
| 162 | return 1;
|
|---|
| 163 |
|
|---|
| 164 | return rc;
|
|---|
| 165 | }
|
|---|
| 166 |
|
|---|
| 167 | // --------------------------------------------------------------------------
|
|---|
| 168 | //
|
|---|
| 169 | // This function reduces the precision to roughly 0.5% of a Float_t by
|
|---|
| 170 | // changing its bit-pattern (Be carefull, in rare cases this function must
|
|---|
| 171 | // be adapted to different machines!). This is usefull to enforce better
|
|---|
| 172 | // compression by eg. gzip.
|
|---|
| 173 | //
|
|---|
| 174 | void MMath::ReducePrecision(Float_t &val)
|
|---|
| 175 | {
|
|---|
| 176 | UInt_t &f = (UInt_t&)val;
|
|---|
| 177 |
|
|---|
| 178 | f += 0x00004000;
|
|---|
| 179 | f &= 0xffff8000;
|
|---|
| 180 | }
|
|---|
| 181 |
|
|---|
| 182 | // -------------------------------------------------------------------------
|
|---|
| 183 | //
|
|---|
| 184 | // Quadratic interpolation
|
|---|
| 185 | //
|
|---|
| 186 | // calculate the parameters of a parabula such that
|
|---|
| 187 | // y(i) = a + b*x(i) + c*x(i)^2
|
|---|
| 188 | //
|
|---|
| 189 | // If the determinant==0 an empty TVector3 is returned.
|
|---|
| 190 | //
|
|---|
| 191 | TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
|
|---|
| 192 | {
|
|---|
| 193 | Double_t x1 = x(0);
|
|---|
| 194 | Double_t x2 = x(1);
|
|---|
| 195 | Double_t x3 = x(2);
|
|---|
| 196 |
|
|---|
| 197 | Double_t y1 = y(0);
|
|---|
| 198 | Double_t y2 = y(1);
|
|---|
| 199 | Double_t y3 = y(2);
|
|---|
| 200 |
|
|---|
| 201 | const double det =
|
|---|
| 202 | + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
|
|---|
| 203 | - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
|
|---|
| 204 |
|
|---|
| 205 |
|
|---|
| 206 | if (det==0)
|
|---|
| 207 | return TVector3();
|
|---|
| 208 |
|
|---|
| 209 | const double det1 = 1.0/det;
|
|---|
| 210 |
|
|---|
| 211 | const double ai11 = x2*x3*x3 - x3*x2*x2;
|
|---|
| 212 | const double ai12 = x3*x1*x1 - x1*x3*x3;
|
|---|
| 213 | const double ai13 = x1*x2*x2 - x2*x1*x1;
|
|---|
| 214 |
|
|---|
| 215 | const double ai21 = x2*x2 - x3*x3;
|
|---|
| 216 | const double ai22 = x3*x3 - x1*x1;
|
|---|
| 217 | const double ai23 = x1*x1 - x2*x2;
|
|---|
| 218 |
|
|---|
| 219 | const double ai31 = x3 - x2;
|
|---|
| 220 | const double ai32 = x1 - x3;
|
|---|
| 221 | const double ai33 = x2 - x1;
|
|---|
| 222 |
|
|---|
| 223 | return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
|
|---|
| 224 | (ai21*y1 + ai22*y2 + ai23*y3) * det1,
|
|---|
| 225 | (ai31*y1 + ai32*y2 + ai33*y3) * det1);
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 | Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
|---|
| 229 | {
|
|---|
| 230 | const TVector3 c = GetParab(vx, vy);
|
|---|
| 231 | return c(0) + c(1)*x + c(2)*x*x;
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
|---|
| 235 | {
|
|---|
| 236 | const Double_t l0 = TMath::Log10(vx(0));
|
|---|
| 237 | const Double_t l1 = TMath::Log10(vx(1));
|
|---|
| 238 | const Double_t l2 = TMath::Log10(vx(2));
|
|---|
| 239 |
|
|---|
| 240 | const TVector3 vx0(l0, l1, l2);
|
|---|
| 241 | return InterpolParabLin(vx0, vy, TMath::Log10(x));
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 | Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
|---|
| 245 | {
|
|---|
| 246 | const Double_t l0 = TMath::Cos(vx(0));
|
|---|
| 247 | const Double_t l1 = TMath::Cos(vx(1));
|
|---|
| 248 | const Double_t l2 = TMath::Cos(vx(2));
|
|---|
| 249 |
|
|---|
| 250 | const TVector3 vx0(l0, l1, l2);
|
|---|
| 251 | return InterpolParabLin(vx0, vy, TMath::Cos(x));
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | // --------------------------------------------------------------------------
|
|---|
| 255 | //
|
|---|
| 256 | // Analytically calculated result of a least square fit of:
|
|---|
| 257 | // y = A*e^(B*x)
|
|---|
| 258 | // Equal weights
|
|---|
| 259 | //
|
|---|
| 260 | // It returns TArrayD(2) = { A, B };
|
|---|
| 261 | //
|
|---|
| 262 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
|
|---|
| 263 | //
|
|---|
| 264 | TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y)
|
|---|
| 265 | {
|
|---|
| 266 | Double_t sumxsqy = 0;
|
|---|
| 267 | Double_t sumylny = 0;
|
|---|
| 268 | Double_t sumxy = 0;
|
|---|
| 269 | Double_t sumy = 0;
|
|---|
| 270 | Double_t sumxylny = 0;
|
|---|
| 271 | for (int i=0; i<n; i++)
|
|---|
| 272 | {
|
|---|
| 273 | sumylny += y[i]*TMath::Log(y[i]);
|
|---|
| 274 | sumxy += x[i]*y[i];
|
|---|
| 275 | sumxsqy += x[i]*x[i]*y[i];
|
|---|
| 276 | sumxylny += x[i]*y[i]*TMath::Log(y[i]);
|
|---|
| 277 | sumy += y[i];
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 | const Double_t dev = sumy*sumxsqy - sumxy*sumxy;
|
|---|
| 281 |
|
|---|
| 282 | const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev;
|
|---|
| 283 | const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev;
|
|---|
| 284 |
|
|---|
| 285 | TArrayD rc(2);
|
|---|
| 286 | rc[0] = TMath::Exp(a);
|
|---|
| 287 | rc[1] = b;
|
|---|
| 288 | return rc;
|
|---|
| 289 | }
|
|---|
| 290 |
|
|---|
| 291 | // --------------------------------------------------------------------------
|
|---|
| 292 | //
|
|---|
| 293 | // Analytically calculated result of a least square fit of:
|
|---|
| 294 | // y = A*e^(B*x)
|
|---|
| 295 | // Greater weights to smaller values
|
|---|
| 296 | //
|
|---|
| 297 | // It returns TArrayD(2) = { A, B };
|
|---|
| 298 | //
|
|---|
| 299 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
|
|---|
| 300 | //
|
|---|
| 301 | TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y)
|
|---|
| 302 | {
|
|---|
| 303 | // -------- Greater weights to smaller values ---------
|
|---|
| 304 | Double_t sumlny = 0;
|
|---|
| 305 | Double_t sumxlny = 0;
|
|---|
| 306 | Double_t sumxsq = 0;
|
|---|
| 307 | Double_t sumx = 0;
|
|---|
| 308 | for (int i=0; i<n; i++)
|
|---|
| 309 | {
|
|---|
| 310 | sumlny += TMath::Log(y[i]);
|
|---|
| 311 | sumxlny += x[i]*TMath::Log(y[i]);
|
|---|
| 312 |
|
|---|
| 313 | sumxsq += x[i]*x[i];
|
|---|
| 314 | sumx += x[i];
|
|---|
| 315 | }
|
|---|
| 316 |
|
|---|
| 317 | const Double_t dev = n*sumxsq-sumx*sumx;
|
|---|
| 318 |
|
|---|
| 319 | const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev;
|
|---|
| 320 | const Double_t b = (n*sumxlny - sumx*sumlny)/dev;
|
|---|
| 321 |
|
|---|
| 322 | TArrayD rc(2);
|
|---|
| 323 | rc[0] = TMath::Exp(a);
|
|---|
| 324 | rc[1] = b;
|
|---|
| 325 | return rc;
|
|---|
| 326 | }
|
|---|
| 327 |
|
|---|
| 328 | // --------------------------------------------------------------------------
|
|---|
| 329 | //
|
|---|
| 330 | // Analytically calculated result of a least square fit of:
|
|---|
| 331 | // y = A+B*ln(x)
|
|---|
| 332 | //
|
|---|
| 333 | // It returns TArrayD(2) = { A, B };
|
|---|
| 334 | //
|
|---|
| 335 | // see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
|
|---|
| 336 | //
|
|---|
| 337 | TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y)
|
|---|
| 338 | {
|
|---|
| 339 | Double_t sumylnx = 0;
|
|---|
| 340 | Double_t sumy = 0;
|
|---|
| 341 | Double_t sumlnx = 0;
|
|---|
| 342 | Double_t sumlnxsq = 0;
|
|---|
| 343 | for (int i=0; i<n; i++)
|
|---|
| 344 | {
|
|---|
| 345 | sumylnx += y[i]*TMath::Log(x[i]);
|
|---|
| 346 | sumy += y[i];
|
|---|
| 347 | sumlnx += TMath::Log(x[i]);
|
|---|
| 348 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
|
|---|
| 349 | }
|
|---|
| 350 |
|
|---|
| 351 | const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx);
|
|---|
| 352 | const Double_t a = (sumy-b*sumlnx)/n;
|
|---|
| 353 |
|
|---|
| 354 | TArrayD rc(2);
|
|---|
| 355 | rc[0] = a;
|
|---|
| 356 | rc[1] = b;
|
|---|
| 357 | return rc;
|
|---|
| 358 | }
|
|---|
| 359 |
|
|---|
| 360 | // --------------------------------------------------------------------------
|
|---|
| 361 | //
|
|---|
| 362 | // Analytically calculated result of a least square fit of:
|
|---|
| 363 | // y = A*x^B
|
|---|
| 364 | //
|
|---|
| 365 | // It returns TArrayD(2) = { A, B };
|
|---|
| 366 | //
|
|---|
| 367 | // see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
|
|---|
| 368 | //
|
|---|
| 369 | TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y)
|
|---|
| 370 | {
|
|---|
| 371 | Double_t sumlnxlny = 0;
|
|---|
| 372 | Double_t sumlnx = 0;
|
|---|
| 373 | Double_t sumlny = 0;
|
|---|
| 374 | Double_t sumlnxsq = 0;
|
|---|
| 375 | for (int i=0; i<n; i++)
|
|---|
| 376 | {
|
|---|
| 377 | sumlnxlny += TMath::Log(x[i])*TMath::Log(y[i]);
|
|---|
| 378 | sumlnx += TMath::Log(x[i]);
|
|---|
| 379 | sumlny += TMath::Log(y[i]);
|
|---|
| 380 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
|
|---|
| 381 | }
|
|---|
| 382 |
|
|---|
| 383 | const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx);
|
|---|
| 384 | const Double_t a = (sumlny-b*sumlnx)/n;
|
|---|
| 385 |
|
|---|
| 386 | TArrayD rc(2);
|
|---|
| 387 | rc[0] = TMath::Exp(a);
|
|---|
| 388 | rc[1] = b;
|
|---|
| 389 | return rc;
|
|---|
| 390 | }
|
|---|