| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2005
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MMath
|
|---|
| 28 | //
|
|---|
| 29 | // Mars - Math package (eg Significances, etc)
|
|---|
| 30 | //
|
|---|
| 31 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 32 | #include "MMath.h"
|
|---|
| 33 |
|
|---|
| 34 | #ifndef ROOT_TVector3
|
|---|
| 35 | #include <TVector3.h>
|
|---|
| 36 | #endif
|
|---|
| 37 |
|
|---|
| 38 | #ifndef ROOT_TArrayD
|
|---|
| 39 | #include <TArrayD.h>
|
|---|
| 40 | #endif
|
|---|
| 41 |
|
|---|
| 42 | #ifndef ROOT_TComplex
|
|---|
| 43 | #include <TComplex.h>
|
|---|
| 44 | #endif
|
|---|
| 45 |
|
|---|
| 46 | // --------------------------------------------------------------------------
|
|---|
| 47 | //
|
|---|
| 48 | // Calculate Significance as
|
|---|
| 49 | // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
|
|---|
| 50 | //
|
|---|
| 51 | // s: total number of events in signal region
|
|---|
| 52 | // b: number of background events in signal region
|
|---|
| 53 | //
|
|---|
| 54 | Double_t MMath::Significance(Double_t s, Double_t b)
|
|---|
| 55 | {
|
|---|
| 56 | const Double_t k = b==0 ? 0 : s/b;
|
|---|
| 57 | const Double_t f = s+k*k*b;
|
|---|
| 58 |
|
|---|
| 59 | return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 | // --------------------------------------------------------------------------
|
|---|
| 63 | //
|
|---|
| 64 | // Symmetrized significance - this is somehow analog to
|
|---|
| 65 | // SignificanceLiMaSigned
|
|---|
| 66 | //
|
|---|
| 67 | // Returns Significance(s,b) if s>b otherwise -Significance(b, s);
|
|---|
| 68 | //
|
|---|
| 69 | Double_t MMath::SignificanceSym(Double_t s, Double_t b)
|
|---|
| 70 | {
|
|---|
| 71 | return s>b ? Significance(s, b) : -Significance(b, s);
|
|---|
| 72 | }
|
|---|
| 73 |
|
|---|
| 74 | // --------------------------------------------------------------------------
|
|---|
| 75 | //
|
|---|
| 76 | // calculates the significance according to Li & Ma
|
|---|
| 77 | // ApJ 272 (1983) 317, Formula 17
|
|---|
| 78 | //
|
|---|
| 79 | // s // s: number of on events
|
|---|
| 80 | // b // b: number of off events
|
|---|
| 81 | // alpha = t_on/t_off; // t: observation time
|
|---|
| 82 | //
|
|---|
| 83 | // The significance has the same (positive!) value for s>b and b>s.
|
|---|
| 84 | //
|
|---|
| 85 | // Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0
|
|---|
| 86 | //
|
|---|
| 87 | // Here is some eMail written by Daniel Mazin about the meaning of the arguments:
|
|---|
| 88 | //
|
|---|
| 89 | // > Ok. Here is my understanding:
|
|---|
| 90 | // > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
|
|---|
| 91 | // > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
|
|---|
| 92 | // > exactly this. If you scale OFF to ON first (using time or using any other
|
|---|
| 93 | // > method), then you cannot use formula 17 (9) anymore. You can just try
|
|---|
| 94 | // > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
|
|---|
| 95 | // > will see the result will be different.
|
|---|
| 96 | //
|
|---|
| 97 | // > Here are less mathematical arguments:
|
|---|
| 98 | //
|
|---|
| 99 | // > 1) the better background determination you have (smaller alpha) the more
|
|---|
| 100 | // > significant is your excess, thus your analysis is more sensitive. If you
|
|---|
| 101 | // > normalize OFF to ON first, you loose this sensitivity.
|
|---|
| 102 | //
|
|---|
| 103 | // > 2) the normalization OFF to ON has an error, which naturally depends on
|
|---|
| 104 | // > the OFF and ON. This error is propagating to the significance of your
|
|---|
| 105 | // > excess if you use the Li&Ma formula 17 correctly. But if you normalize
|
|---|
| 106 | // > first and use then alpha=1, the error gets lost completely, you loose
|
|---|
| 107 | // > somehow the criteria of goodness of the normalization.
|
|---|
| 108 | //
|
|---|
| 109 | Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
|
|---|
| 110 | {
|
|---|
| 111 | const Double_t sum = s+b;
|
|---|
| 112 |
|
|---|
| 113 | if (s<0 || b<0 || alpha<=0)
|
|---|
| 114 | return -1;
|
|---|
| 115 |
|
|---|
| 116 | const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha);
|
|---|
| 117 | const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1) );
|
|---|
| 118 |
|
|---|
| 119 | return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | // --------------------------------------------------------------------------
|
|---|
| 123 | //
|
|---|
| 124 | // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
|
|---|
| 125 | // calculation has failed. Otherwise the Li/Ma significance which was
|
|---|
| 126 | // calculated. If s<b a negative value is returned.
|
|---|
| 127 | //
|
|---|
| 128 | Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
|
|---|
| 129 | {
|
|---|
| 130 | const Double_t sig = SignificanceLiMa(s, b, alpha);
|
|---|
| 131 | if (sig<=0)
|
|---|
| 132 | return 0;
|
|---|
| 133 |
|
|---|
| 134 | return TMath::Sign(sig, s-alpha*b);
|
|---|
| 135 | }
|
|---|
| 136 |
|
|---|
| 137 | // --------------------------------------------------------------------------
|
|---|
| 138 | //
|
|---|
| 139 | // Return Li/Ma (5) for the error of the excess, under the assumption that
|
|---|
| 140 | // the existance of a signal is already known.
|
|---|
| 141 | //
|
|---|
| 142 | Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha)
|
|---|
| 143 | {
|
|---|
| 144 | Double_t Ns = s - alpha*b;
|
|---|
| 145 | Double_t sN = s + alpha*alpha*b;
|
|---|
| 146 |
|
|---|
| 147 | return Ns<0 || sN<0 ? 0 : Ns/TMath::Sqrt(sN);
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | // --------------------------------------------------------------------------
|
|---|
| 151 | //
|
|---|
| 152 | // Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
|
|---|
| 153 | //
|
|---|
| 154 | Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
|
|---|
| 155 | {
|
|---|
| 156 | static const Double_t sqrt2 = TMath::Sqrt(2.);
|
|---|
| 157 |
|
|---|
| 158 | const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
|
|---|
| 159 |
|
|---|
| 160 | if (rc<0)
|
|---|
| 161 | return 0;
|
|---|
| 162 | if (rc>1)
|
|---|
| 163 | return 1;
|
|---|
| 164 |
|
|---|
| 165 | return rc;
|
|---|
| 166 | }
|
|---|
| 167 |
|
|---|
| 168 | // ------------------------------------------------------------------------
|
|---|
| 169 | //
|
|---|
| 170 | // Return the "median" (at 68.3%) value of the distribution of
|
|---|
| 171 | // abs(a[i]-Median)
|
|---|
| 172 | //
|
|---|
| 173 | template <class Size, class Element>
|
|---|
| 174 | Double_t MMath::MedianDevImp(Size n, const Element *a, Double_t &med)
|
|---|
| 175 | {
|
|---|
| 176 | static const Double_t prob = 0.682689477208650697; //MMath::.GaissProb(1.0);
|
|---|
| 177 |
|
|---|
| 178 | // Sanity check
|
|---|
| 179 | if (n <= 0 || !a)
|
|---|
| 180 | return 0;
|
|---|
| 181 |
|
|---|
| 182 | // Get median of distribution
|
|---|
| 183 | med = TMath::Median(n, a);
|
|---|
| 184 |
|
|---|
| 185 | // Create the abs(a[i]-med) distribution
|
|---|
| 186 | Double_t arr[n];
|
|---|
| 187 | for (int i=0; i<n; i++)
|
|---|
| 188 | arr[i] = TMath::Abs(a[i]-med);
|
|---|
| 189 |
|
|---|
| 190 | // FIXME: GausProb() is a workaround. It should be taken into account in Median!
|
|---|
| 191 | //return TMath::Median(n, arr);
|
|---|
| 192 |
|
|---|
| 193 | // Sort distribution
|
|---|
| 194 | Long64_t idx[n];
|
|---|
| 195 | TMath::SortImp(n, arr, idx, kTRUE);
|
|---|
| 196 |
|
|---|
| 197 | // Define where to divide
|
|---|
| 198 | const Int_t div = TMath::Nint(n*prob);
|
|---|
| 199 |
|
|---|
| 200 | // Calculate result
|
|---|
| 201 | Double_t dev = TMath::KOrdStat(n, arr, div, idx);
|
|---|
| 202 | if (n%2 == 0)
|
|---|
| 203 | {
|
|---|
| 204 | dev += TMath::KOrdStat(n, arr, div-1, idx);
|
|---|
| 205 | dev /= 2;
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | return dev;
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | // ------------------------------------------------------------------------
|
|---|
| 212 | //
|
|---|
| 213 | // Return the "median" (at 68.3%) value of the distribution of
|
|---|
| 214 | // abs(a[i]-Median)
|
|---|
| 215 | //
|
|---|
| 216 | Double_t MMath::MedianDev(Long64_t n, const Short_t *a, Double_t &med)
|
|---|
| 217 | {
|
|---|
| 218 | return MedianDevImp(n, a, med);
|
|---|
| 219 | }
|
|---|
| 220 |
|
|---|
| 221 | // ------------------------------------------------------------------------
|
|---|
| 222 | //
|
|---|
| 223 | // Return the "median" (at 68.3%) value of the distribution of
|
|---|
| 224 | // abs(a[i]-Median)
|
|---|
| 225 | //
|
|---|
| 226 | Double_t MMath::MedianDev(Long64_t n, const Int_t *a, Double_t &med)
|
|---|
| 227 | {
|
|---|
| 228 | return MedianDevImp(n, a, med);
|
|---|
| 229 | }
|
|---|
| 230 |
|
|---|
| 231 | // ------------------------------------------------------------------------
|
|---|
| 232 | //
|
|---|
| 233 | // Return the "median" (at 68.3%) value of the distribution of
|
|---|
| 234 | // abs(a[i]-Median)
|
|---|
| 235 | //
|
|---|
| 236 | Double_t MMath::MedianDev(Long64_t n, const Float_t *a, Double_t &med)
|
|---|
| 237 | {
|
|---|
| 238 | return MedianDevImp(n, a, med);
|
|---|
| 239 | }
|
|---|
| 240 |
|
|---|
| 241 | // ------------------------------------------------------------------------
|
|---|
| 242 | //
|
|---|
| 243 | // Return the "median" (at 68.3%) value of the distribution of
|
|---|
| 244 | // abs(a[i]-Median)
|
|---|
| 245 | //
|
|---|
| 246 | Double_t MMath::MedianDev(Long64_t n, const Double_t *a, Double_t &med)
|
|---|
| 247 | {
|
|---|
| 248 | return MedianDevImp(n, a, med);
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 | // ------------------------------------------------------------------------
|
|---|
| 252 | //
|
|---|
| 253 | // Return the "median" (at 68.3%) value of the distribution of
|
|---|
| 254 | // abs(a[i]-Median)
|
|---|
| 255 | //
|
|---|
| 256 | Double_t MMath::MedianDev(Long64_t n, const Long_t *a, Double_t &med)
|
|---|
| 257 | {
|
|---|
| 258 | return MedianDevImp(n, a, med);
|
|---|
| 259 | }
|
|---|
| 260 |
|
|---|
| 261 | // ------------------------------------------------------------------------
|
|---|
| 262 | //
|
|---|
| 263 | // Return the "median" (at 68.3%) value of the distribution of
|
|---|
| 264 | // abs(a[i]-Median)
|
|---|
| 265 | //
|
|---|
| 266 | Double_t MMath::MedianDev(Long64_t n, const Long64_t *a, Double_t &med)
|
|---|
| 267 | {
|
|---|
| 268 | return MedianDevImp(n, a, med);
|
|---|
| 269 | }
|
|---|
| 270 |
|
|---|
| 271 | Double_t MMath::MedianDev(Long64_t n, const Short_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
|---|
| 272 | Double_t MMath::MedianDev(Long64_t n, const Int_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
|---|
| 273 | Double_t MMath::MedianDev(Long64_t n, const Float_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
|---|
| 274 | Double_t MMath::MedianDev(Long64_t n, const Double_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
|---|
| 275 | Double_t MMath::MedianDev(Long64_t n, const Long_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
|---|
| 276 | Double_t MMath::MedianDev(Long64_t n, const Long64_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
|---|
| 277 |
|
|---|
| 278 | // --------------------------------------------------------------------------
|
|---|
| 279 | //
|
|---|
| 280 | // This function reduces the precision to roughly 0.5% of a Float_t by
|
|---|
| 281 | // changing its bit-pattern (Be carefull, in rare cases this function must
|
|---|
| 282 | // be adapted to different machines!). This is usefull to enforce better
|
|---|
| 283 | // compression by eg. gzip.
|
|---|
| 284 | //
|
|---|
| 285 | void MMath::ReducePrecision(Float_t &val)
|
|---|
| 286 | {
|
|---|
| 287 | UInt_t &f = (UInt_t&)val;
|
|---|
| 288 |
|
|---|
| 289 | f += 0x00004000;
|
|---|
| 290 | f &= 0xffff8000;
|
|---|
| 291 | }
|
|---|
| 292 |
|
|---|
| 293 | // -------------------------------------------------------------------------
|
|---|
| 294 | //
|
|---|
| 295 | // Quadratic interpolation
|
|---|
| 296 | //
|
|---|
| 297 | // calculate the parameters of a parabula such that
|
|---|
| 298 | // y(i) = a + b*x(i) + c*x(i)^2
|
|---|
| 299 | //
|
|---|
| 300 | // If the determinant==0 an empty TVector3 is returned.
|
|---|
| 301 | //
|
|---|
| 302 | TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
|
|---|
| 303 | {
|
|---|
| 304 | Double_t x1 = x(0);
|
|---|
| 305 | Double_t x2 = x(1);
|
|---|
| 306 | Double_t x3 = x(2);
|
|---|
| 307 |
|
|---|
| 308 | Double_t y1 = y(0);
|
|---|
| 309 | Double_t y2 = y(1);
|
|---|
| 310 | Double_t y3 = y(2);
|
|---|
| 311 |
|
|---|
| 312 | const double det =
|
|---|
| 313 | + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
|
|---|
| 314 | - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
|
|---|
| 315 |
|
|---|
| 316 |
|
|---|
| 317 | if (det==0)
|
|---|
| 318 | return TVector3();
|
|---|
| 319 |
|
|---|
| 320 | const double det1 = 1.0/det;
|
|---|
| 321 |
|
|---|
| 322 | const double ai11 = x2*x3*x3 - x3*x2*x2;
|
|---|
| 323 | const double ai12 = x3*x1*x1 - x1*x3*x3;
|
|---|
| 324 | const double ai13 = x1*x2*x2 - x2*x1*x1;
|
|---|
| 325 |
|
|---|
| 326 | const double ai21 = x2*x2 - x3*x3;
|
|---|
| 327 | const double ai22 = x3*x3 - x1*x1;
|
|---|
| 328 | const double ai23 = x1*x1 - x2*x2;
|
|---|
| 329 |
|
|---|
| 330 | const double ai31 = x3 - x2;
|
|---|
| 331 | const double ai32 = x1 - x3;
|
|---|
| 332 | const double ai33 = x2 - x1;
|
|---|
| 333 |
|
|---|
| 334 | return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
|
|---|
| 335 | (ai21*y1 + ai22*y2 + ai23*y3) * det1,
|
|---|
| 336 | (ai31*y1 + ai32*y2 + ai33*y3) * det1);
|
|---|
| 337 | }
|
|---|
| 338 |
|
|---|
| 339 | Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
|---|
| 340 | {
|
|---|
| 341 | const TVector3 c = GetParab(vx, vy);
|
|---|
| 342 | return c(0) + c(1)*x + c(2)*x*x;
|
|---|
| 343 | }
|
|---|
| 344 |
|
|---|
| 345 | Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
|---|
| 346 | {
|
|---|
| 347 | const Double_t l0 = TMath::Log10(vx(0));
|
|---|
| 348 | const Double_t l1 = TMath::Log10(vx(1));
|
|---|
| 349 | const Double_t l2 = TMath::Log10(vx(2));
|
|---|
| 350 |
|
|---|
| 351 | const TVector3 vx0(l0, l1, l2);
|
|---|
| 352 | return InterpolParabLin(vx0, vy, TMath::Log10(x));
|
|---|
| 353 | }
|
|---|
| 354 |
|
|---|
| 355 | Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
|---|
| 356 | {
|
|---|
| 357 | const Double_t l0 = TMath::Cos(vx(0));
|
|---|
| 358 | const Double_t l1 = TMath::Cos(vx(1));
|
|---|
| 359 | const Double_t l2 = TMath::Cos(vx(2));
|
|---|
| 360 |
|
|---|
| 361 | const TVector3 vx0(l0, l1, l2);
|
|---|
| 362 | return InterpolParabLin(vx0, vy, TMath::Cos(x));
|
|---|
| 363 | }
|
|---|
| 364 |
|
|---|
| 365 | // --------------------------------------------------------------------------
|
|---|
| 366 | //
|
|---|
| 367 | // Analytically calculated result of a least square fit of:
|
|---|
| 368 | // y = A*e^(B*x)
|
|---|
| 369 | // Equal weights
|
|---|
| 370 | //
|
|---|
| 371 | // It returns TArrayD(2) = { A, B };
|
|---|
| 372 | //
|
|---|
| 373 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
|
|---|
| 374 | //
|
|---|
| 375 | TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y)
|
|---|
| 376 | {
|
|---|
| 377 | Double_t sumxsqy = 0;
|
|---|
| 378 | Double_t sumylny = 0;
|
|---|
| 379 | Double_t sumxy = 0;
|
|---|
| 380 | Double_t sumy = 0;
|
|---|
| 381 | Double_t sumxylny = 0;
|
|---|
| 382 | for (int i=0; i<n; i++)
|
|---|
| 383 | {
|
|---|
| 384 | sumylny += y[i]*TMath::Log(y[i]);
|
|---|
| 385 | sumxy += x[i]*y[i];
|
|---|
| 386 | sumxsqy += x[i]*x[i]*y[i];
|
|---|
| 387 | sumxylny += x[i]*y[i]*TMath::Log(y[i]);
|
|---|
| 388 | sumy += y[i];
|
|---|
| 389 | }
|
|---|
| 390 |
|
|---|
| 391 | const Double_t dev = sumy*sumxsqy - sumxy*sumxy;
|
|---|
| 392 |
|
|---|
| 393 | const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev;
|
|---|
| 394 | const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev;
|
|---|
| 395 |
|
|---|
| 396 | TArrayD rc(2);
|
|---|
| 397 | rc[0] = TMath::Exp(a);
|
|---|
| 398 | rc[1] = b;
|
|---|
| 399 | return rc;
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 | // --------------------------------------------------------------------------
|
|---|
| 403 | //
|
|---|
| 404 | // Analytically calculated result of a least square fit of:
|
|---|
| 405 | // y = A*e^(B*x)
|
|---|
| 406 | // Greater weights to smaller values
|
|---|
| 407 | //
|
|---|
| 408 | // It returns TArrayD(2) = { A, B };
|
|---|
| 409 | //
|
|---|
| 410 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
|
|---|
| 411 | //
|
|---|
| 412 | TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y)
|
|---|
| 413 | {
|
|---|
| 414 | // -------- Greater weights to smaller values ---------
|
|---|
| 415 | Double_t sumlny = 0;
|
|---|
| 416 | Double_t sumxlny = 0;
|
|---|
| 417 | Double_t sumxsq = 0;
|
|---|
| 418 | Double_t sumx = 0;
|
|---|
| 419 | for (int i=0; i<n; i++)
|
|---|
| 420 | {
|
|---|
| 421 | sumlny += TMath::Log(y[i]);
|
|---|
| 422 | sumxlny += x[i]*TMath::Log(y[i]);
|
|---|
| 423 |
|
|---|
| 424 | sumxsq += x[i]*x[i];
|
|---|
| 425 | sumx += x[i];
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | const Double_t dev = n*sumxsq-sumx*sumx;
|
|---|
| 429 |
|
|---|
| 430 | const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev;
|
|---|
| 431 | const Double_t b = (n*sumxlny - sumx*sumlny)/dev;
|
|---|
| 432 |
|
|---|
| 433 | TArrayD rc(2);
|
|---|
| 434 | rc[0] = TMath::Exp(a);
|
|---|
| 435 | rc[1] = b;
|
|---|
| 436 | return rc;
|
|---|
| 437 | }
|
|---|
| 438 |
|
|---|
| 439 | // --------------------------------------------------------------------------
|
|---|
| 440 | //
|
|---|
| 441 | // Analytically calculated result of a least square fit of:
|
|---|
| 442 | // y = A+B*ln(x)
|
|---|
| 443 | //
|
|---|
| 444 | // It returns TArrayD(2) = { A, B };
|
|---|
| 445 | //
|
|---|
| 446 | // see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
|
|---|
| 447 | //
|
|---|
| 448 | TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y)
|
|---|
| 449 | {
|
|---|
| 450 | Double_t sumylnx = 0;
|
|---|
| 451 | Double_t sumy = 0;
|
|---|
| 452 | Double_t sumlnx = 0;
|
|---|
| 453 | Double_t sumlnxsq = 0;
|
|---|
| 454 | for (int i=0; i<n; i++)
|
|---|
| 455 | {
|
|---|
| 456 | sumylnx += y[i]*TMath::Log(x[i]);
|
|---|
| 457 | sumy += y[i];
|
|---|
| 458 | sumlnx += TMath::Log(x[i]);
|
|---|
| 459 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
|
|---|
| 460 | }
|
|---|
| 461 |
|
|---|
| 462 | const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx);
|
|---|
| 463 | const Double_t a = (sumy-b*sumlnx)/n;
|
|---|
| 464 |
|
|---|
| 465 | TArrayD rc(2);
|
|---|
| 466 | rc[0] = a;
|
|---|
| 467 | rc[1] = b;
|
|---|
| 468 | return rc;
|
|---|
| 469 | }
|
|---|
| 470 |
|
|---|
| 471 | // --------------------------------------------------------------------------
|
|---|
| 472 | //
|
|---|
| 473 | // Analytically calculated result of a least square fit of:
|
|---|
| 474 | // y = A*x^B
|
|---|
| 475 | //
|
|---|
| 476 | // It returns TArrayD(2) = { A, B };
|
|---|
| 477 | //
|
|---|
| 478 | // see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
|
|---|
| 479 | //
|
|---|
| 480 | TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y)
|
|---|
| 481 | {
|
|---|
| 482 | Double_t sumlnxlny = 0;
|
|---|
| 483 | Double_t sumlnx = 0;
|
|---|
| 484 | Double_t sumlny = 0;
|
|---|
| 485 | Double_t sumlnxsq = 0;
|
|---|
| 486 | for (int i=0; i<n; i++)
|
|---|
| 487 | {
|
|---|
| 488 | sumlnxlny += TMath::Log(x[i])*TMath::Log(y[i]);
|
|---|
| 489 | sumlnx += TMath::Log(x[i]);
|
|---|
| 490 | sumlny += TMath::Log(y[i]);
|
|---|
| 491 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
|
|---|
| 492 | }
|
|---|
| 493 |
|
|---|
| 494 | const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx);
|
|---|
| 495 | const Double_t a = (sumlny-b*sumlnx)/n;
|
|---|
| 496 |
|
|---|
| 497 | TArrayD rc(2);
|
|---|
| 498 | rc[0] = TMath::Exp(a);
|
|---|
| 499 | rc[1] = b;
|
|---|
| 500 | return rc;
|
|---|
| 501 | }
|
|---|
| 502 |
|
|---|
| 503 | Int_t MMath::SolvePol2(Double_t a, Double_t b, Double_t &x1, Double_t &x2)
|
|---|
| 504 | {
|
|---|
| 505 | const Double_t r = a*a - 4*b;
|
|---|
| 506 | if (r<0)
|
|---|
| 507 | return 0;
|
|---|
| 508 |
|
|---|
| 509 | if (r==0)
|
|---|
| 510 | {
|
|---|
| 511 | x1 = -a/2;
|
|---|
| 512 | return 1;
|
|---|
| 513 | }
|
|---|
| 514 |
|
|---|
| 515 | const Double_t s = TMath::Sqrt(r);
|
|---|
| 516 |
|
|---|
| 517 | x1 = (-a+s)/2;
|
|---|
| 518 | x2 = (-a-s)/2;
|
|---|
| 519 |
|
|---|
| 520 | return 2;
|
|---|
| 521 | }
|
|---|
| 522 |
|
|---|
| 523 | // --------------------------------------------------------------------------
|
|---|
| 524 | //
|
|---|
| 525 | // This is a helper function making the execution of SolverPol3 a bit faster
|
|---|
| 526 | //
|
|---|
| 527 | static inline Double_t ReMul(const TComplex &c1, const TComplex &th)
|
|---|
| 528 | {
|
|---|
| 529 | const TComplex c2 = TComplex::Cos(th/3.);
|
|---|
| 530 | return c1.Re() * c2.Re() - c1.Im() * c2.Im();
|
|---|
| 531 | }
|
|---|
| 532 |
|
|---|
| 533 | // --------------------------------------------------------------------------
|
|---|
| 534 | //
|
|---|
| 535 | // Solves: x^3 + ax^2 + bx + c = 0;
|
|---|
| 536 | // Return number of the real solutions returns as z1, z2, z3
|
|---|
| 537 | //
|
|---|
| 538 | // Algorithm adapted from http://home.att.net/~srschmitt/cubizen.heml
|
|---|
| 539 | // Which is based on the solution given in
|
|---|
| 540 | // http://mathworld.wolfram.com/CubicEquation.html
|
|---|
| 541 | //
|
|---|
| 542 | // -------------------------------------------------------------------------
|
|---|
| 543 | //
|
|---|
| 544 | // Exact solutions of cubic polynomial equations
|
|---|
| 545 | // by Stephen R. Schmitt Algorithm
|
|---|
| 546 | //
|
|---|
| 547 | // An exact solution of the cubic polynomial equation:
|
|---|
| 548 | //
|
|---|
| 549 | // x^3 + a*x^2 + b*x + c = 0
|
|---|
| 550 | //
|
|---|
| 551 | // was first published by Gerolamo Cardano (1501-1576) in his treatise,
|
|---|
| 552 | // Ars Magna. He did not discoverer of the solution; a professor of
|
|---|
| 553 | // mathematics at the University of Bologna named Scipione del Ferro (ca.
|
|---|
| 554 | // 1465-1526) is credited as the first to find an exact solution. In the
|
|---|
| 555 | // years since, several improvements to the original solution have been
|
|---|
| 556 | // discovered. Zeno source code
|
|---|
| 557 | //
|
|---|
| 558 | // % compute real or complex roots of cubic polynomial
|
|---|
| 559 | // function cubic( var z1, z2, z3 : real, a, b, c : real ) : real
|
|---|
| 560 | //
|
|---|
| 561 | // var Q, R, D, S, T : real
|
|---|
| 562 | // var im, th : real
|
|---|
| 563 | //
|
|---|
| 564 | // Q := (3*b - a^2)/9
|
|---|
| 565 | // R := (9*b*a - 27*c - 2*a^3)/54
|
|---|
| 566 | // D := Q^3 + R^2 % polynomial discriminant
|
|---|
| 567 | //
|
|---|
| 568 | // if (D >= 0) then % complex or duplicate roots
|
|---|
| 569 | //
|
|---|
| 570 | // S := sgn(R + sqrt(D))*abs(R + sqrt(D))^(1/3)
|
|---|
| 571 | // T := sgn(R - sqrt(D))*abs(R - sqrt(D))^(1/3)
|
|---|
| 572 | //
|
|---|
| 573 | // z1 := -a/3 + (S + T) % real root
|
|---|
| 574 | // z2 := -a/3 - (S + T)/2 % real part of complex root
|
|---|
| 575 | // z3 := -a/3 - (S + T)/2 % real part of complex root
|
|---|
| 576 | // im := abs(sqrt(3)*(S - T)/2) % complex part of root pair
|
|---|
| 577 | //
|
|---|
| 578 | // else % distinct real roots
|
|---|
| 579 | //
|
|---|
| 580 | // th := arccos(R/sqrt( -Q^3))
|
|---|
| 581 | //
|
|---|
| 582 | // z1 := 2*sqrt(-Q)*cos(th/3) - a/3
|
|---|
| 583 | // z2 := 2*sqrt(-Q)*cos((th + 2*pi)/3) - a/3
|
|---|
| 584 | // z3 := 2*sqrt(-Q)*cos((th + 4*pi)/3) - a/3
|
|---|
| 585 | // im := 0
|
|---|
| 586 | //
|
|---|
| 587 | // end if
|
|---|
| 588 | //
|
|---|
| 589 | // return im % imaginary part
|
|---|
| 590 | //
|
|---|
| 591 | // end function
|
|---|
| 592 | //
|
|---|
| 593 | Int_t MMath::SolvePol3(Double_t a, Double_t b, Double_t c,
|
|---|
| 594 | Double_t &x1, Double_t &x2, Double_t &x3)
|
|---|
| 595 | {
|
|---|
| 596 | const Double_t Q = (a*a - 3*b)/9;
|
|---|
| 597 | const Double_t R = (9*b*a - 27*c - 2*a*a*a)/54;
|
|---|
| 598 | const Double_t D = R*R - Q*Q*Q; // polynomial discriminant
|
|---|
| 599 |
|
|---|
| 600 | // ----- The single-real / duplicate-roots solution -----
|
|---|
| 601 |
|
|---|
| 602 | if (D==0)
|
|---|
| 603 | {
|
|---|
| 604 | const Double_t r = MMath::Sqrt3(R);
|
|---|
| 605 |
|
|---|
| 606 | x1 = 2*r - a/3.; // real root
|
|---|
| 607 | x2 = r - a/3.; // real root
|
|---|
| 608 |
|
|---|
| 609 | return 2;
|
|---|
| 610 | }
|
|---|
| 611 |
|
|---|
| 612 | if (D>0) // complex or duplicate roots
|
|---|
| 613 | {
|
|---|
| 614 | const Double_t sqrtd = TMath::Sqrt(D);
|
|---|
| 615 |
|
|---|
| 616 | const Double_t S = MMath::Sqrt3(R + sqrtd);
|
|---|
| 617 | const Double_t T = MMath::Sqrt3(R - sqrtd);
|
|---|
| 618 |
|
|---|
| 619 | x1 = (S+T) - a/3.; // real root
|
|---|
| 620 |
|
|---|
| 621 | return 1;
|
|---|
| 622 |
|
|---|
| 623 | //z2 = (S + T)/2 - a/3.; // real part of complex root
|
|---|
| 624 | //z3 = (S + T)/2 - a/3.; // real part of complex root
|
|---|
| 625 | //im = fabs(sqrt(3)*(S - T)/2) // complex part of root pair
|
|---|
| 626 | }
|
|---|
| 627 |
|
|---|
| 628 | // ----- The general solution with three roots ---
|
|---|
| 629 |
|
|---|
| 630 | if (Q==0)
|
|---|
| 631 | return 0;
|
|---|
| 632 |
|
|---|
| 633 | if (Q>0) // This is here for speed reasons
|
|---|
| 634 | {
|
|---|
| 635 | const Double_t sqrtq = TMath::Sqrt(Q);
|
|---|
| 636 | const Double_t rq = R/TMath::Abs(Q);
|
|---|
| 637 |
|
|---|
| 638 | const Double_t th1 = TMath::ACos(rq/sqrtq);
|
|---|
| 639 | const Double_t th2 = th1 + TMath::TwoPi();
|
|---|
| 640 | const Double_t th3 = th2 + TMath::TwoPi();
|
|---|
| 641 |
|
|---|
| 642 | x1 = 2.*sqrtq * TMath::Cos(th1/3.) - a/3.;
|
|---|
| 643 | x2 = 2.*sqrtq * TMath::Cos(th2/3.) - a/3.;
|
|---|
| 644 | x3 = 2.*sqrtq * TMath::Cos(th3/3.) - a/3.;
|
|---|
| 645 |
|
|---|
| 646 | return 3;
|
|---|
| 647 | }
|
|---|
| 648 |
|
|---|
| 649 | const TComplex sqrtq = TComplex::Sqrt(Q);
|
|---|
| 650 | const Double_t rq = R/TMath::Abs(Q);
|
|---|
| 651 |
|
|---|
| 652 | const TComplex th1 = TComplex::ACos(rq/sqrtq);
|
|---|
| 653 | const TComplex th2 = th1 + TMath::TwoPi();
|
|---|
| 654 | const TComplex th3 = th2 + TMath::TwoPi();
|
|---|
| 655 |
|
|---|
| 656 | // For ReMul, see bove
|
|---|
| 657 | x1 = ReMul(2.*sqrtq, th1) - a/3.;
|
|---|
| 658 | x2 = ReMul(2.*sqrtq, th2) - a/3.;
|
|---|
| 659 | x3 = ReMul(2.*sqrtq, th3) - a/3.;
|
|---|
| 660 |
|
|---|
| 661 | return 3;
|
|---|
| 662 | }
|
|---|