| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Thomas Bretz  3/2004 <mailto:tbretz@astro.uni-wuerzburg.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2005 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | // MMath | 
|---|
| 28 | // | 
|---|
| 29 | // Mars - Math package (eg Significances, etc) | 
|---|
| 30 | // | 
|---|
| 31 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 32 | #include "MMath.h" | 
|---|
| 33 |  | 
|---|
| 34 | #ifndef ROOT_TVector3 | 
|---|
| 35 | #include <TVector3.h> | 
|---|
| 36 | #endif | 
|---|
| 37 |  | 
|---|
| 38 | #ifndef ROOT_TArrayD | 
|---|
| 39 | #include <TArrayD.h> | 
|---|
| 40 | #endif | 
|---|
| 41 |  | 
|---|
| 42 | #ifndef ROOT_TComplex | 
|---|
| 43 | #include <TComplex.h> | 
|---|
| 44 | #endif | 
|---|
| 45 |  | 
|---|
| 46 | //NamespaceImp(MMath); | 
|---|
| 47 |  | 
|---|
| 48 | // -------------------------------------------------------------------------- | 
|---|
| 49 | // | 
|---|
| 50 | // Calculate Significance as | 
|---|
| 51 | // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b | 
|---|
| 52 | // | 
|---|
| 53 | // s: total number of events in signal region | 
|---|
| 54 | // b: number of background events in signal region | 
|---|
| 55 | // | 
|---|
| 56 | Double_t MMath::Significance(Double_t s, Double_t b) | 
|---|
| 57 | { | 
|---|
| 58 | const Double_t k = b==0 ? 0 : s/b; | 
|---|
| 59 | const Double_t f = s+k*k*b; | 
|---|
| 60 |  | 
|---|
| 61 | return f==0 ? 0 : (s-b)/TMath::Sqrt(f); | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | // -------------------------------------------------------------------------- | 
|---|
| 65 | // | 
|---|
| 66 | // Symmetrized significance - this is somehow analog to | 
|---|
| 67 | // SignificanceLiMaSigned | 
|---|
| 68 | // | 
|---|
| 69 | // Returns Significance(s,b) if s>b otherwise -Significance(b, s); | 
|---|
| 70 | // | 
|---|
| 71 | Double_t MMath::SignificanceSym(Double_t s, Double_t b) | 
|---|
| 72 | { | 
|---|
| 73 | return s>b ? Significance(s, b) : -Significance(b, s); | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | // -------------------------------------------------------------------------- | 
|---|
| 77 | // | 
|---|
| 78 | //  calculates the significance according to Li & Ma | 
|---|
| 79 | //  ApJ 272 (1983) 317, Formula 17 | 
|---|
| 80 | // | 
|---|
| 81 | //  s                    // s: number of on events | 
|---|
| 82 | //  b                    // b: number of off events | 
|---|
| 83 | //  alpha = t_on/t_off;  // t: observation time | 
|---|
| 84 | // | 
|---|
| 85 | //  The significance has the same (positive!) value for s>b and b>s. | 
|---|
| 86 | // | 
|---|
| 87 | //  Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0 | 
|---|
| 88 | // | 
|---|
| 89 | // Here is some eMail written by Daniel Mazin about the meaning of the arguments: | 
|---|
| 90 | // | 
|---|
| 91 | //  > Ok. Here is my understanding: | 
|---|
| 92 | //  > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the | 
|---|
| 93 | //  > scaling factor. The mathematics behind the formula 17 (and/or 9) implies | 
|---|
| 94 | //  > exactly this. If you scale OFF to ON first (using time or using any other | 
|---|
| 95 | //  > method), then you cannot use formula 17 (9) anymore. You can just try | 
|---|
| 96 | //  > the formula before scaling (alpha!=1) and after scaling (alpha=1), you | 
|---|
| 97 | //  > will see the result will be different. | 
|---|
| 98 | // | 
|---|
| 99 | //  > Here are less mathematical arguments: | 
|---|
| 100 | // | 
|---|
| 101 | //  >  1) the better background determination you have (smaller alpha) the more | 
|---|
| 102 | //  > significant is your excess, thus your analysis is more sensitive. If you | 
|---|
| 103 | //  > normalize OFF to ON first, you loose this sensitivity. | 
|---|
| 104 | // | 
|---|
| 105 | //  >  2) the normalization OFF to ON has an error, which naturally depends on | 
|---|
| 106 | //  > the OFF and ON. This error is propagating to the significance of your | 
|---|
| 107 | //  > excess if you use the Li&Ma formula 17 correctly. But if you normalize | 
|---|
| 108 | //  > first and use then alpha=1, the error gets lost completely, you loose | 
|---|
| 109 | //  > somehow the criteria of goodness of the normalization. | 
|---|
| 110 | // | 
|---|
| 111 | Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha) | 
|---|
| 112 | { | 
|---|
| 113 | const Double_t sum = s+b; | 
|---|
| 114 |  | 
|---|
| 115 | if (s<0 || b<0 || alpha<=0) | 
|---|
| 116 | return -1; | 
|---|
| 117 |  | 
|---|
| 118 | const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha); | 
|---|
| 119 | const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1)      ); | 
|---|
| 120 |  | 
|---|
| 121 | return l+m<0 ? -1 : TMath::Sqrt((l+m)*2); | 
|---|
| 122 | } | 
|---|
| 123 |  | 
|---|
| 124 | // -------------------------------------------------------------------------- | 
|---|
| 125 | // | 
|---|
| 126 | // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the | 
|---|
| 127 | // calculation has failed. Otherwise the Li/Ma significance which was | 
|---|
| 128 | // calculated. If s<b a negative value is returned. | 
|---|
| 129 | // | 
|---|
| 130 | Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha) | 
|---|
| 131 | { | 
|---|
| 132 | const Double_t sig = SignificanceLiMa(s, b, alpha); | 
|---|
| 133 | if (sig<=0) | 
|---|
| 134 | return 0; | 
|---|
| 135 |  | 
|---|
| 136 | return TMath::Sign(sig, s-alpha*b); | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | // -------------------------------------------------------------------------- | 
|---|
| 140 | // | 
|---|
| 141 | // Return Li/Ma (5) for the error of the excess, under the assumption that | 
|---|
| 142 | // the existance of a signal is already known. | 
|---|
| 143 | // | 
|---|
| 144 | Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha) | 
|---|
| 145 | { | 
|---|
| 146 | Double_t Ns = s - alpha*b; | 
|---|
| 147 | Double_t sN = s + alpha*alpha*b; | 
|---|
| 148 |  | 
|---|
| 149 | return Ns<0 || sN<0 ? 0 : Ns/TMath::Sqrt(sN); | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | // -------------------------------------------------------------------------- | 
|---|
| 153 | // | 
|---|
| 154 | // Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2))) | 
|---|
| 155 | // | 
|---|
| 156 | Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean) | 
|---|
| 157 | { | 
|---|
| 158 | static const Double_t sqrt2 = TMath::Sqrt(2.); | 
|---|
| 159 |  | 
|---|
| 160 | const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2)); | 
|---|
| 161 |  | 
|---|
| 162 | if (rc<0) | 
|---|
| 163 | return 0; | 
|---|
| 164 | if (rc>1) | 
|---|
| 165 | return 1; | 
|---|
| 166 |  | 
|---|
| 167 | return rc; | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | // ------------------------------------------------------------------------ | 
|---|
| 171 | // | 
|---|
| 172 | // Return the "median" (at 68.3%) value of the distribution of | 
|---|
| 173 | // abs(a[i]-Median) | 
|---|
| 174 | // | 
|---|
| 175 | template <class Size, class Element> | 
|---|
| 176 | Double_t MMath::MedianDevImp(Size n, const Element *a, Double_t &med) | 
|---|
| 177 | { | 
|---|
| 178 | static const Double_t prob = 0.682689477208650697; //MMath::GaussProb(1.0); | 
|---|
| 179 |  | 
|---|
| 180 | // Sanity check | 
|---|
| 181 | if (n <= 0 || !a) | 
|---|
| 182 | return 0; | 
|---|
| 183 |  | 
|---|
| 184 | // Get median of distribution | 
|---|
| 185 | med = TMath::Median(n, a); | 
|---|
| 186 |  | 
|---|
| 187 | // Create the abs(a[i]-med) distribution | 
|---|
| 188 | Double_t arr[n]; | 
|---|
| 189 | for (int i=0; i<n; i++) | 
|---|
| 190 | arr[i] = TMath::Abs(a[i]-med); | 
|---|
| 191 |  | 
|---|
| 192 | // FIXME: GausProb() is a workaround. It should be taken into account in Median! | 
|---|
| 193 | //return TMath::Median(n, arr); | 
|---|
| 194 |  | 
|---|
| 195 | // Sort distribution | 
|---|
| 196 | Long64_t idx[n]; | 
|---|
| 197 | TMath::SortImp(n, arr, idx, kTRUE); | 
|---|
| 198 |  | 
|---|
| 199 | // Define where to divide | 
|---|
| 200 | const Int_t div = TMath::Nint(n*prob); | 
|---|
| 201 |  | 
|---|
| 202 | // Calculate result | 
|---|
| 203 | Double_t dev = TMath::KOrdStat(n, arr, div, idx); | 
|---|
| 204 | if (n%2 == 0) | 
|---|
| 205 | { | 
|---|
| 206 | dev += TMath::KOrdStat(n, arr, div-1, idx); | 
|---|
| 207 | dev /= 2; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | return dev; | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | // ------------------------------------------------------------------------ | 
|---|
| 214 | // | 
|---|
| 215 | // Return the "median" (at 68.3%) value of the distribution of | 
|---|
| 216 | // abs(a[i]-Median) | 
|---|
| 217 | // | 
|---|
| 218 | Double_t MMath::MedianDev(Long64_t n, const Short_t *a, Double_t &med) | 
|---|
| 219 | { | 
|---|
| 220 | return MedianDevImp(n, a, med); | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | // ------------------------------------------------------------------------ | 
|---|
| 224 | // | 
|---|
| 225 | // Return the "median" (at 68.3%) value of the distribution of | 
|---|
| 226 | // abs(a[i]-Median) | 
|---|
| 227 | // | 
|---|
| 228 | Double_t MMath::MedianDev(Long64_t n, const Int_t *a, Double_t &med) | 
|---|
| 229 | { | 
|---|
| 230 | return MedianDevImp(n, a, med); | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 | // ------------------------------------------------------------------------ | 
|---|
| 234 | // | 
|---|
| 235 | // Return the "median" (at 68.3%) value of the distribution of | 
|---|
| 236 | // abs(a[i]-Median) | 
|---|
| 237 | // | 
|---|
| 238 | Double_t MMath::MedianDev(Long64_t n, const Float_t *a, Double_t &med) | 
|---|
| 239 | { | 
|---|
| 240 | return MedianDevImp(n, a, med); | 
|---|
| 241 | } | 
|---|
| 242 |  | 
|---|
| 243 | // ------------------------------------------------------------------------ | 
|---|
| 244 | // | 
|---|
| 245 | // Return the "median" (at 68.3%) value of the distribution of | 
|---|
| 246 | // abs(a[i]-Median) | 
|---|
| 247 | // | 
|---|
| 248 | Double_t MMath::MedianDev(Long64_t n, const Double_t *a, Double_t &med) | 
|---|
| 249 | { | 
|---|
| 250 | return MedianDevImp(n, a, med); | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | // ------------------------------------------------------------------------ | 
|---|
| 254 | // | 
|---|
| 255 | // Return the "median" (at 68.3%) value of the distribution of | 
|---|
| 256 | // abs(a[i]-Median) | 
|---|
| 257 | // | 
|---|
| 258 | Double_t MMath::MedianDev(Long64_t n, const Long_t *a, Double_t &med) | 
|---|
| 259 | { | 
|---|
| 260 | return MedianDevImp(n, a, med); | 
|---|
| 261 | } | 
|---|
| 262 |  | 
|---|
| 263 | // ------------------------------------------------------------------------ | 
|---|
| 264 | // | 
|---|
| 265 | // Return the "median" (at 68.3%) value of the distribution of | 
|---|
| 266 | // abs(a[i]-Median) | 
|---|
| 267 | // | 
|---|
| 268 | Double_t MMath::MedianDev(Long64_t n, const Long64_t *a, Double_t &med) | 
|---|
| 269 | { | 
|---|
| 270 | return MedianDevImp(n, a, med); | 
|---|
| 271 | } | 
|---|
| 272 |  | 
|---|
| 273 | Double_t MMath::MedianDev(Long64_t n, const Short_t  *a) { Double_t med; return MedianDevImp(n, a, med); } | 
|---|
| 274 | Double_t MMath::MedianDev(Long64_t n, const Int_t    *a) { Double_t med; return MedianDevImp(n, a, med); } | 
|---|
| 275 | Double_t MMath::MedianDev(Long64_t n, const Float_t  *a) { Double_t med; return MedianDevImp(n, a, med); } | 
|---|
| 276 | Double_t MMath::MedianDev(Long64_t n, const Double_t *a) { Double_t med; return MedianDevImp(n, a, med); } | 
|---|
| 277 | Double_t MMath::MedianDev(Long64_t n, const Long_t   *a) { Double_t med; return MedianDevImp(n, a, med); } | 
|---|
| 278 | Double_t MMath::MedianDev(Long64_t n, const Long64_t *a) { Double_t med; return MedianDevImp(n, a, med); } | 
|---|
| 279 |  | 
|---|
| 280 | // -------------------------------------------------------------------------- | 
|---|
| 281 | // | 
|---|
| 282 | // This function reduces the precision to roughly 0.5% of a Float_t by | 
|---|
| 283 | // changing its bit-pattern (Be carefull, in rare cases this function must | 
|---|
| 284 | // be adapted to different machines!). This is usefull to enforce better | 
|---|
| 285 | // compression by eg. gzip. | 
|---|
| 286 | // | 
|---|
| 287 | void MMath::ReducePrecision(Float_t &val) | 
|---|
| 288 | { | 
|---|
| 289 | UInt_t &f = (UInt_t&)val; | 
|---|
| 290 |  | 
|---|
| 291 | f += 0x00004000; | 
|---|
| 292 | f &= 0xffff8000; | 
|---|
| 293 | } | 
|---|
| 294 |  | 
|---|
| 295 | // ------------------------------------------------------------------------- | 
|---|
| 296 | // | 
|---|
| 297 | // Quadratic interpolation | 
|---|
| 298 | // | 
|---|
| 299 | // calculate the parameters of a parabula such that | 
|---|
| 300 | //    y(i) = a + b*x(i) + c*x(i)^2 | 
|---|
| 301 | // | 
|---|
| 302 | // If the determinant==0 an empty TVector3 is returned. | 
|---|
| 303 | // | 
|---|
| 304 | TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y) | 
|---|
| 305 | { | 
|---|
| 306 | Double_t x1 = x(0); | 
|---|
| 307 | Double_t x2 = x(1); | 
|---|
| 308 | Double_t x3 = x(2); | 
|---|
| 309 |  | 
|---|
| 310 | Double_t y1 = y(0); | 
|---|
| 311 | Double_t y2 = y(1); | 
|---|
| 312 | Double_t y3 = y(2); | 
|---|
| 313 |  | 
|---|
| 314 | const double det = | 
|---|
| 315 | + x2*x3*x3 + x1*x2*x2 + x3*x1*x1 | 
|---|
| 316 | - x2*x1*x1 - x3*x2*x2 - x1*x3*x3; | 
|---|
| 317 |  | 
|---|
| 318 |  | 
|---|
| 319 | if (det==0) | 
|---|
| 320 | return TVector3(); | 
|---|
| 321 |  | 
|---|
| 322 | const double det1 = 1.0/det; | 
|---|
| 323 |  | 
|---|
| 324 | const double ai11 = x2*x3*x3 - x3*x2*x2; | 
|---|
| 325 | const double ai12 = x3*x1*x1 - x1*x3*x3; | 
|---|
| 326 | const double ai13 = x1*x2*x2 - x2*x1*x1; | 
|---|
| 327 |  | 
|---|
| 328 | const double ai21 = x2*x2 - x3*x3; | 
|---|
| 329 | const double ai22 = x3*x3 - x1*x1; | 
|---|
| 330 | const double ai23 = x1*x1 - x2*x2; | 
|---|
| 331 |  | 
|---|
| 332 | const double ai31 = x3 - x2; | 
|---|
| 333 | const double ai32 = x1 - x3; | 
|---|
| 334 | const double ai33 = x2 - x1; | 
|---|
| 335 |  | 
|---|
| 336 | return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1, | 
|---|
| 337 | (ai21*y1 + ai22*y2 + ai23*y3) * det1, | 
|---|
| 338 | (ai31*y1 + ai32*y2 + ai33*y3) * det1); | 
|---|
| 339 | } | 
|---|
| 340 |  | 
|---|
| 341 | Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x) | 
|---|
| 342 | { | 
|---|
| 343 | const TVector3 c = GetParab(vx, vy); | 
|---|
| 344 | return c(0) + c(1)*x + c(2)*x*x; | 
|---|
| 345 | } | 
|---|
| 346 |  | 
|---|
| 347 | Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x) | 
|---|
| 348 | { | 
|---|
| 349 | const Double_t l0 = TMath::Log10(vx(0)); | 
|---|
| 350 | const Double_t l1 = TMath::Log10(vx(1)); | 
|---|
| 351 | const Double_t l2 = TMath::Log10(vx(2)); | 
|---|
| 352 |  | 
|---|
| 353 | const TVector3 vx0(l0, l1, l2); | 
|---|
| 354 | return InterpolParabLin(vx0, vy, TMath::Log10(x)); | 
|---|
| 355 | } | 
|---|
| 356 |  | 
|---|
| 357 | Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x) | 
|---|
| 358 | { | 
|---|
| 359 | const Double_t l0 = TMath::Cos(vx(0)); | 
|---|
| 360 | const Double_t l1 = TMath::Cos(vx(1)); | 
|---|
| 361 | const Double_t l2 = TMath::Cos(vx(2)); | 
|---|
| 362 |  | 
|---|
| 363 | const TVector3 vx0(l0, l1, l2); | 
|---|
| 364 | return InterpolParabLin(vx0, vy, TMath::Cos(x)); | 
|---|
| 365 | } | 
|---|
| 366 |  | 
|---|
| 367 | // -------------------------------------------------------------------------- | 
|---|
| 368 | // | 
|---|
| 369 | // Analytically calculated result of a least square fit of: | 
|---|
| 370 | //    y = A*e^(B*x) | 
|---|
| 371 | // Equal weights | 
|---|
| 372 | // | 
|---|
| 373 | // It returns TArrayD(2) = { A, B }; | 
|---|
| 374 | // | 
|---|
| 375 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html | 
|---|
| 376 | // | 
|---|
| 377 | TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y) | 
|---|
| 378 | { | 
|---|
| 379 | Double_t sumxsqy  = 0; | 
|---|
| 380 | Double_t sumylny  = 0; | 
|---|
| 381 | Double_t sumxy    = 0; | 
|---|
| 382 | Double_t sumy     = 0; | 
|---|
| 383 | Double_t sumxylny = 0; | 
|---|
| 384 | for (int i=0; i<n; i++) | 
|---|
| 385 | { | 
|---|
| 386 | sumylny  += y[i]*TMath::Log(y[i]); | 
|---|
| 387 | sumxy    += x[i]*y[i]; | 
|---|
| 388 | sumxsqy  += x[i]*x[i]*y[i]; | 
|---|
| 389 | sumxylny += x[i]*y[i]*TMath::Log(y[i]); | 
|---|
| 390 | sumy     += y[i]; | 
|---|
| 391 | } | 
|---|
| 392 |  | 
|---|
| 393 | const Double_t dev = sumy*sumxsqy - sumxy*sumxy; | 
|---|
| 394 |  | 
|---|
| 395 | const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev; | 
|---|
| 396 | const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev; | 
|---|
| 397 |  | 
|---|
| 398 | TArrayD rc(2); | 
|---|
| 399 | rc[0] = TMath::Exp(a); | 
|---|
| 400 | rc[1] = b; | 
|---|
| 401 | return rc; | 
|---|
| 402 | } | 
|---|
| 403 |  | 
|---|
| 404 | // -------------------------------------------------------------------------- | 
|---|
| 405 | // | 
|---|
| 406 | // Analytically calculated result of a least square fit of: | 
|---|
| 407 | //    y = A*e^(B*x) | 
|---|
| 408 | // Greater weights to smaller values | 
|---|
| 409 | // | 
|---|
| 410 | // It returns TArrayD(2) = { A, B }; | 
|---|
| 411 | // | 
|---|
| 412 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html | 
|---|
| 413 | // | 
|---|
| 414 | TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y) | 
|---|
| 415 | { | 
|---|
| 416 | // -------- Greater weights to smaller values --------- | 
|---|
| 417 | Double_t sumlny  = 0; | 
|---|
| 418 | Double_t sumxlny = 0; | 
|---|
| 419 | Double_t sumxsq  = 0; | 
|---|
| 420 | Double_t sumx    = 0; | 
|---|
| 421 | for (int i=0; i<n; i++) | 
|---|
| 422 | { | 
|---|
| 423 | sumlny  += TMath::Log(y[i]); | 
|---|
| 424 | sumxlny += x[i]*TMath::Log(y[i]); | 
|---|
| 425 |  | 
|---|
| 426 | sumxsq  += x[i]*x[i]; | 
|---|
| 427 | sumx    += x[i]; | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | const Double_t dev = n*sumxsq-sumx*sumx; | 
|---|
| 431 |  | 
|---|
| 432 | const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev; | 
|---|
| 433 | const Double_t b = (n*sumxlny - sumx*sumlny)/dev; | 
|---|
| 434 |  | 
|---|
| 435 | TArrayD rc(2); | 
|---|
| 436 | rc[0] = TMath::Exp(a); | 
|---|
| 437 | rc[1] = b; | 
|---|
| 438 | return rc; | 
|---|
| 439 | } | 
|---|
| 440 |  | 
|---|
| 441 | // -------------------------------------------------------------------------- | 
|---|
| 442 | // | 
|---|
| 443 | // Analytically calculated result of a least square fit of: | 
|---|
| 444 | //    y = A+B*ln(x) | 
|---|
| 445 | // | 
|---|
| 446 | // It returns TArrayD(2) = { A, B }; | 
|---|
| 447 | // | 
|---|
| 448 | // see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html | 
|---|
| 449 | // | 
|---|
| 450 | TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y) | 
|---|
| 451 | { | 
|---|
| 452 | Double_t sumylnx  = 0; | 
|---|
| 453 | Double_t sumy     = 0; | 
|---|
| 454 | Double_t sumlnx   = 0; | 
|---|
| 455 | Double_t sumlnxsq = 0; | 
|---|
| 456 | for (int i=0; i<n; i++) | 
|---|
| 457 | { | 
|---|
| 458 | sumylnx  += y[i]*TMath::Log(x[i]); | 
|---|
| 459 | sumy     += y[i]; | 
|---|
| 460 | sumlnx   += TMath::Log(x[i]); | 
|---|
| 461 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]); | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx); | 
|---|
| 465 | const Double_t a = (sumy-b*sumlnx)/n; | 
|---|
| 466 |  | 
|---|
| 467 | TArrayD rc(2); | 
|---|
| 468 | rc[0] = a; | 
|---|
| 469 | rc[1] = b; | 
|---|
| 470 | return rc; | 
|---|
| 471 | } | 
|---|
| 472 |  | 
|---|
| 473 | // -------------------------------------------------------------------------- | 
|---|
| 474 | // | 
|---|
| 475 | // Analytically calculated result of a least square fit of: | 
|---|
| 476 | //    y = A*x^B | 
|---|
| 477 | // | 
|---|
| 478 | // It returns TArrayD(2) = { A, B }; | 
|---|
| 479 | // | 
|---|
| 480 | // see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html | 
|---|
| 481 | // | 
|---|
| 482 | TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y) | 
|---|
| 483 | { | 
|---|
| 484 | Double_t sumlnxlny  = 0; | 
|---|
| 485 | Double_t sumlnx   = 0; | 
|---|
| 486 | Double_t sumlny    = 0; | 
|---|
| 487 | Double_t sumlnxsq   = 0; | 
|---|
| 488 | for (int i=0; i<n; i++) | 
|---|
| 489 | { | 
|---|
| 490 | sumlnxlny  += TMath::Log(x[i])*TMath::Log(y[i]); | 
|---|
| 491 | sumlnx     += TMath::Log(x[i]); | 
|---|
| 492 | sumlny     += TMath::Log(y[i]); | 
|---|
| 493 | sumlnxsq   += TMath::Log(x[i])*TMath::Log(x[i]); | 
|---|
| 494 | } | 
|---|
| 495 |  | 
|---|
| 496 | const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx); | 
|---|
| 497 | const Double_t a = (sumlny-b*sumlnx)/n; | 
|---|
| 498 |  | 
|---|
| 499 | TArrayD rc(2); | 
|---|
| 500 | rc[0] = TMath::Exp(a); | 
|---|
| 501 | rc[1] = b; | 
|---|
| 502 | return rc; | 
|---|
| 503 | } | 
|---|
| 504 |  | 
|---|
| 505 | // -------------------------------------------------------------------------- | 
|---|
| 506 | // | 
|---|
| 507 | // Solves: x^2 + ax + b = 0; | 
|---|
| 508 | // Return number of solutions returned as x1, x2 | 
|---|
| 509 | // | 
|---|
| 510 | Int_t MMath::SolvePol2(Double_t a, Double_t b, Double_t &x1, Double_t &x2) | 
|---|
| 511 | { | 
|---|
| 512 | const Double_t r = a*a - 4*b; | 
|---|
| 513 | if (r<0) | 
|---|
| 514 | return 0; | 
|---|
| 515 |  | 
|---|
| 516 | if (r==0) | 
|---|
| 517 | { | 
|---|
| 518 | x1 = -a/2; | 
|---|
| 519 | return 1; | 
|---|
| 520 | } | 
|---|
| 521 |  | 
|---|
| 522 | const Double_t s = TMath::Sqrt(r); | 
|---|
| 523 |  | 
|---|
| 524 | x1 = (-a+s)/2; | 
|---|
| 525 | x2 = (-a-s)/2; | 
|---|
| 526 |  | 
|---|
| 527 | return 2; | 
|---|
| 528 | } | 
|---|
| 529 |  | 
|---|
| 530 | // -------------------------------------------------------------------------- | 
|---|
| 531 | // | 
|---|
| 532 | // This is a helper function making the execution of SolverPol3 a bit faster | 
|---|
| 533 | // | 
|---|
| 534 | static inline Double_t ReMul(const TComplex &c1, const TComplex &th) | 
|---|
| 535 | { | 
|---|
| 536 | const TComplex c2 = TComplex::Cos(th/3.); | 
|---|
| 537 | return c1.Re() * c2.Re() - c1.Im() * c2.Im(); | 
|---|
| 538 | } | 
|---|
| 539 |  | 
|---|
| 540 | // -------------------------------------------------------------------------- | 
|---|
| 541 | // | 
|---|
| 542 | // Solves: x^3 + ax^2 + bx + c = 0; | 
|---|
| 543 | // Return number of the real solutions, returned as z1, z2, z3 | 
|---|
| 544 | // | 
|---|
| 545 | // Algorithm adapted from http://home.att.net/~srschmitt/cubizen.heml | 
|---|
| 546 | // Which is based on the solution given in | 
|---|
| 547 | //    http://mathworld.wolfram.com/CubicEquation.html | 
|---|
| 548 | // | 
|---|
| 549 | // ------------------------------------------------------------------------- | 
|---|
| 550 | // | 
|---|
| 551 | // Exact solutions of cubic polynomial equations | 
|---|
| 552 | // by Stephen R. Schmitt Algorithm | 
|---|
| 553 | // | 
|---|
| 554 | // An exact solution of the cubic polynomial equation: | 
|---|
| 555 | // | 
|---|
| 556 | //   x^3 + a*x^2 + b*x + c = 0 | 
|---|
| 557 | // | 
|---|
| 558 | // was first published by Gerolamo Cardano (1501-1576) in his treatise, | 
|---|
| 559 | // Ars Magna. He did not discoverer of the solution; a professor of | 
|---|
| 560 | // mathematics at the University of Bologna named Scipione del Ferro (ca. | 
|---|
| 561 | // 1465-1526) is credited as the first to find an exact solution. In the | 
|---|
| 562 | // years since, several improvements to the original solution have been | 
|---|
| 563 | // discovered. Zeno source code | 
|---|
| 564 | // | 
|---|
| 565 | // http://home.att.net/~srschmitt/cubizen.html | 
|---|
| 566 | // | 
|---|
| 567 | // % compute real or complex roots of cubic polynomial | 
|---|
| 568 | // function cubic( var z1, z2, z3 : real, a, b, c : real ) : real | 
|---|
| 569 | // | 
|---|
| 570 | //     var Q, R, D, S, T : real | 
|---|
| 571 | //     var im, th : real | 
|---|
| 572 | // | 
|---|
| 573 | //     Q := (3*b - a^2)/9 | 
|---|
| 574 | //     R := (9*b*a - 27*c - 2*a^3)/54 | 
|---|
| 575 | //     D := Q^3 + R^2                          % polynomial discriminant | 
|---|
| 576 | // | 
|---|
| 577 | //     if (D >= 0) then                        % complex or duplicate roots | 
|---|
| 578 | // | 
|---|
| 579 | //         S := sgn(R + sqrt(D))*abs(R + sqrt(D))^(1/3) | 
|---|
| 580 | //         T := sgn(R - sqrt(D))*abs(R - sqrt(D))^(1/3) | 
|---|
| 581 | // | 
|---|
| 582 | //         z1 := -a/3 + (S + T)               % real root | 
|---|
| 583 | //         z2 := -a/3 - (S + T)/2             % real part of complex root | 
|---|
| 584 | //         z3 := -a/3 - (S + T)/2             % real part of complex root | 
|---|
| 585 | //         im := abs(sqrt(3)*(S - T)/2)       % complex part of root pair | 
|---|
| 586 | // | 
|---|
| 587 | //     else                                    % distinct real roots | 
|---|
| 588 | // | 
|---|
| 589 | //         th := arccos(R/sqrt( -Q^3)) | 
|---|
| 590 | // | 
|---|
| 591 | //         z1 := 2*sqrt(-Q)*cos(th/3) - a/3 | 
|---|
| 592 | //         z2 := 2*sqrt(-Q)*cos((th + 2*pi)/3) - a/3 | 
|---|
| 593 | //         z3 := 2*sqrt(-Q)*cos((th + 4*pi)/3) - a/3 | 
|---|
| 594 | //         im := 0 | 
|---|
| 595 | // | 
|---|
| 596 | //     end if | 
|---|
| 597 | // | 
|---|
| 598 | //     return im                               % imaginary part | 
|---|
| 599 | // | 
|---|
| 600 | // end function | 
|---|
| 601 | // | 
|---|
| 602 | // see also http://en.wikipedia.org/wiki/Cubic_equation | 
|---|
| 603 | // | 
|---|
| 604 | Int_t MMath::SolvePol3(Double_t a, Double_t b, Double_t c, | 
|---|
| 605 | Double_t &x1, Double_t &x2, Double_t &x3) | 
|---|
| 606 | { | 
|---|
| 607 | //    Double_t coeff[4] = { 1, a, b, c }; | 
|---|
| 608 | //    return TMath::RootsCubic(coeff, x1, x2, x3) ? 1 : 3; | 
|---|
| 609 |  | 
|---|
| 610 | const Double_t Q = (a*a - 3*b)/9; | 
|---|
| 611 | const Double_t R = (9*b*a - 27*c - 2*a*a*a)/54; | 
|---|
| 612 | const Double_t D = R*R - Q*Q*Q;             // polynomial discriminant | 
|---|
| 613 |  | 
|---|
| 614 | // ----- The single-real / duplicate-roots solution ----- | 
|---|
| 615 |  | 
|---|
| 616 | // D<0:  three real roots | 
|---|
| 617 | // D>0:  one real root | 
|---|
| 618 | // D==0: maximum two real roots (two identical roots) | 
|---|
| 619 |  | 
|---|
| 620 | // R==0: only one unique root | 
|---|
| 621 | // R!=0: two roots | 
|---|
| 622 |  | 
|---|
| 623 | if (D==0) | 
|---|
| 624 | { | 
|---|
| 625 | const Double_t r = MMath::Sqrt3(R); | 
|---|
| 626 |  | 
|---|
| 627 | x1 = r - a/3.;               // real root | 
|---|
| 628 | if (R==0) | 
|---|
| 629 | return 1; | 
|---|
| 630 |  | 
|---|
| 631 | x2 = 2*r - a/3.;               // real root | 
|---|
| 632 | return 2; | 
|---|
| 633 | } | 
|---|
| 634 |  | 
|---|
| 635 | if (D>0)                                    // complex or duplicate roots | 
|---|
| 636 | { | 
|---|
| 637 | const Double_t sqrtd = TMath::Sqrt(D); | 
|---|
| 638 |  | 
|---|
| 639 | const Double_t S = MMath::Sqrt3(R + sqrtd); | 
|---|
| 640 | const Double_t T = MMath::Sqrt3(R - sqrtd); | 
|---|
| 641 |  | 
|---|
| 642 | x1 = (S+T) - a/3.;               // real root | 
|---|
| 643 |  | 
|---|
| 644 | return 1; | 
|---|
| 645 |  | 
|---|
| 646 | //z2 = (S + T)/2 - a/3.;            // real part of complex root | 
|---|
| 647 | //z3 = (S + T)/2 - a/3.;            // real part of complex root | 
|---|
| 648 | //im = fabs(sqrt(3)*(S - T)/2)      // complex part of root pair | 
|---|
| 649 | } | 
|---|
| 650 |  | 
|---|
| 651 | // ----- The general solution with three roots --- | 
|---|
| 652 |  | 
|---|
| 653 | if (Q==0) | 
|---|
| 654 | return 0; | 
|---|
| 655 |  | 
|---|
| 656 | if (Q>0) // This is here for speed reasons | 
|---|
| 657 | { | 
|---|
| 658 | const Double_t sqrtq = TMath::Sqrt(Q); | 
|---|
| 659 | const Double_t rq    = R/TMath::Abs(Q); | 
|---|
| 660 |  | 
|---|
| 661 | const Double_t th1 = TMath::ACos(rq/sqrtq); | 
|---|
| 662 | const Double_t th2 = th1 + TMath::TwoPi(); | 
|---|
| 663 | const Double_t th3 = th2 + TMath::TwoPi(); | 
|---|
| 664 |  | 
|---|
| 665 | x1 = 2.*sqrtq * TMath::Cos(th1/3.) - a/3.; | 
|---|
| 666 | x2 = 2.*sqrtq * TMath::Cos(th2/3.) - a/3.; | 
|---|
| 667 | x3 = 2.*sqrtq * TMath::Cos(th3/3.) - a/3.; | 
|---|
| 668 |  | 
|---|
| 669 | return 3; | 
|---|
| 670 | } | 
|---|
| 671 |  | 
|---|
| 672 | const TComplex sqrtq = TComplex::Sqrt(Q); | 
|---|
| 673 | const Double_t rq    = R/TMath::Abs(Q); | 
|---|
| 674 |  | 
|---|
| 675 | const TComplex th1 = TComplex::ACos(rq/sqrtq); | 
|---|
| 676 | const TComplex th2 = th1 + TMath::TwoPi(); | 
|---|
| 677 | const TComplex th3 = th2 + TMath::TwoPi(); | 
|---|
| 678 |  | 
|---|
| 679 | // For ReMul, see bove | 
|---|
| 680 | x1 = ReMul(2.*sqrtq, th1) - a/3.; | 
|---|
| 681 | x2 = ReMul(2.*sqrtq, th2) - a/3.; | 
|---|
| 682 | x3 = ReMul(2.*sqrtq, th3) - a/3.; | 
|---|
| 683 |  | 
|---|
| 684 | return 3; | 
|---|
| 685 | } | 
|---|