source: trunk/MagicSoft/Mars/mbase/MMath.cc@ 8560

Last change on this file since 8560 was 8544, checked in by tbretz, 18 years ago
*** empty log message ***
File size: 21.8 KB
Line 
1/* ======================================================================== *\
2! $Name: not supported by cvs2svn $:$Id: MMath.cc,v 1.32 2007-06-11 15:35:14 tbretz Exp $
3! --------------------------------------------------------------------------
4!
5! *
6! * This file is part of MARS, the MAGIC Analysis and Reconstruction
7! * Software. It is distributed to you in the hope that it can be a useful
8! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
9! * It is distributed WITHOUT ANY WARRANTY.
10! *
11! * Permission to use, copy, modify and distribute this software and its
12! * documentation for any purpose is hereby granted without fee,
13! * provided that the above copyright notice appear in all copies and
14! * that both that copyright notice and this permission notice appear
15! * in supporting documentation. It is provided "as is" without express
16! * or implied warranty.
17! *
18!
19!
20! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2005
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MMath
30//
31// Mars - Math package (eg Significances, etc)
32//
33/////////////////////////////////////////////////////////////////////////////
34#include "MMath.h"
35
36#ifndef ROOT_TVector2
37#include <TVector2.h>
38#endif
39
40#ifndef ROOT_TVector3
41#include <TVector3.h>
42#endif
43
44#ifndef ROOT_TArrayD
45#include <TArrayD.h>
46#endif
47
48#ifndef ROOT_TComplex
49#include <TComplex.h>
50#endif
51
52//NamespaceImp(MMath);
53
54// --------------------------------------------------------------------------
55//
56// Calculate Significance as
57// significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
58//
59// s: total number of events in signal region
60// b: number of background events in signal region
61//
62Double_t MMath::Significance(Double_t s, Double_t b)
63{
64 const Double_t k = b==0 ? 0 : s/b;
65 const Double_t f = s+k*k*b;
66
67 return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
68}
69
70// --------------------------------------------------------------------------
71//
72// Symmetrized significance - this is somehow analog to
73// SignificanceLiMaSigned
74//
75// Returns Significance(s,b) if s>b otherwise -Significance(b, s);
76//
77Double_t MMath::SignificanceSym(Double_t s, Double_t b)
78{
79 return s>b ? Significance(s, b) : -Significance(b, s);
80}
81
82// --------------------------------------------------------------------------
83//
84// calculates the significance according to Li & Ma
85// ApJ 272 (1983) 317, Formula 17
86//
87// s // s: number of on events
88// b // b: number of off events
89// alpha = t_on/t_off; // t: observation time
90//
91// The significance has the same (positive!) value for s>b and b>s.
92//
93// Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0
94//
95// Here is some eMail written by Daniel Mazin about the meaning of the arguments:
96//
97// > Ok. Here is my understanding:
98// > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
99// > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
100// > exactly this. If you scale OFF to ON first (using time or using any other
101// > method), then you cannot use formula 17 (9) anymore. You can just try
102// > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
103// > will see the result will be different.
104//
105// > Here are less mathematical arguments:
106//
107// > 1) the better background determination you have (smaller alpha) the more
108// > significant is your excess, thus your analysis is more sensitive. If you
109// > normalize OFF to ON first, you loose this sensitivity.
110//
111// > 2) the normalization OFF to ON has an error, which naturally depends on
112// > the OFF and ON. This error is propagating to the significance of your
113// > excess if you use the Li&Ma formula 17 correctly. But if you normalize
114// > first and use then alpha=1, the error gets lost completely, you loose
115// > somehow the criteria of goodness of the normalization.
116//
117Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
118{
119 const Double_t sum = s+b;
120
121 if (s<0 || b<0 || alpha<=0)
122 return -1;
123
124 const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha);
125 const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1) );
126
127 return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
128}
129
130// --------------------------------------------------------------------------
131//
132// Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
133// calculation has failed. Otherwise the Li/Ma significance which was
134// calculated. If s<b a negative value is returned.
135//
136Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
137{
138 const Double_t sig = SignificanceLiMa(s, b, alpha);
139 if (sig<=0)
140 return 0;
141
142 return TMath::Sign(sig, s-alpha*b);
143}
144
145// --------------------------------------------------------------------------
146//
147// Return Li/Ma (5) for the error of the excess, under the assumption that
148// the existance of a signal is already known.
149//
150Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha)
151{
152 Double_t Ns = s - alpha*b;
153 Double_t sN = s + alpha*alpha*b;
154
155 return Ns<0 || sN<0 ? 0 : Ns/TMath::Sqrt(sN);
156}
157
158// --------------------------------------------------------------------------
159//
160// Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
161//
162Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
163{
164 static const Double_t sqrt2 = TMath::Sqrt(2.);
165
166 const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
167
168 if (rc<0)
169 return 0;
170 if (rc>1)
171 return 1;
172
173 return rc;
174}
175
176// ------------------------------------------------------------------------
177//
178// Return the "median" (at 68.3%) value of the distribution of
179// abs(a[i]-Median)
180//
181template <class Size, class Element>
182Double_t MMath::MedianDevImp(Size n, const Element *a, Double_t &med)
183{
184 static const Double_t prob = 0.682689477208650697; //MMath::GaussProb(1.0);
185
186 // Sanity check
187 if (n <= 0 || !a)
188 return 0;
189
190 // Get median of distribution
191 med = TMath::Median(n, a);
192
193 // Create the abs(a[i]-med) distribution
194 Double_t arr[n];
195 for (int i=0; i<n; i++)
196 arr[i] = TMath::Abs(a[i]-med);
197
198 // Define where to divide (floor because the highest possible is n-1)
199 const Int_t div = TMath::FloorNint(n*prob);
200
201 // Calculate result
202 Double_t dev = TMath::KOrdStat(n, arr, div);
203 if (n%2 == 0)
204 {
205 dev += TMath::KOrdStat(n, arr, div-1);
206 dev /= 2;
207 }
208
209 return dev;
210}
211
212// ------------------------------------------------------------------------
213//
214// Return the "median" (at 68.3%) value of the distribution of
215// abs(a[i]-Median)
216//
217Double_t MMath::MedianDev(Long64_t n, const Short_t *a, Double_t &med)
218{
219 return MedianDevImp(n, a, med);
220}
221
222// ------------------------------------------------------------------------
223//
224// Return the "median" (at 68.3%) value of the distribution of
225// abs(a[i]-Median)
226//
227Double_t MMath::MedianDev(Long64_t n, const Int_t *a, Double_t &med)
228{
229 return MedianDevImp(n, a, med);
230}
231
232// ------------------------------------------------------------------------
233//
234// Return the "median" (at 68.3%) value of the distribution of
235// abs(a[i]-Median)
236//
237Double_t MMath::MedianDev(Long64_t n, const Float_t *a, Double_t &med)
238{
239 return MedianDevImp(n, a, med);
240}
241
242// ------------------------------------------------------------------------
243//
244// Return the "median" (at 68.3%) value of the distribution of
245// abs(a[i]-Median)
246//
247Double_t MMath::MedianDev(Long64_t n, const Double_t *a, Double_t &med)
248{
249 return MedianDevImp(n, a, med);
250}
251
252// ------------------------------------------------------------------------
253//
254// Return the "median" (at 68.3%) value of the distribution of
255// abs(a[i]-Median)
256//
257Double_t MMath::MedianDev(Long64_t n, const Long_t *a, Double_t &med)
258{
259 return MedianDevImp(n, a, med);
260}
261
262// ------------------------------------------------------------------------
263//
264// Return the "median" (at 68.3%) value of the distribution of
265// abs(a[i]-Median)
266//
267Double_t MMath::MedianDev(Long64_t n, const Long64_t *a, Double_t &med)
268{
269 return MedianDevImp(n, a, med);
270}
271
272Double_t MMath::MedianDev(Long64_t n, const Short_t *a) { Double_t med; return MedianDevImp(n, a, med); }
273Double_t MMath::MedianDev(Long64_t n, const Int_t *a) { Double_t med; return MedianDevImp(n, a, med); }
274Double_t MMath::MedianDev(Long64_t n, const Float_t *a) { Double_t med; return MedianDevImp(n, a, med); }
275Double_t MMath::MedianDev(Long64_t n, const Double_t *a) { Double_t med; return MedianDevImp(n, a, med); }
276Double_t MMath::MedianDev(Long64_t n, const Long_t *a) { Double_t med; return MedianDevImp(n, a, med); }
277Double_t MMath::MedianDev(Long64_t n, const Long64_t *a) { Double_t med; return MedianDevImp(n, a, med); }
278
279// --------------------------------------------------------------------------
280//
281// This function reduces the precision to roughly 0.5% of a Float_t by
282// changing its bit-pattern (Be carefull, in rare cases this function must
283// be adapted to different machines!). This is usefull to enforce better
284// compression by eg. gzip.
285//
286void MMath::ReducePrecision(Float_t &val)
287{
288 UInt_t &f = (UInt_t&)val;
289
290 f += 0x00004000;
291 f &= 0xffff8000;
292}
293
294// -------------------------------------------------------------------------
295//
296// Quadratic interpolation
297//
298// calculate the parameters of a parabula such that
299// y(i) = a + b*x(i) + c*x(i)^2
300//
301// If the determinant==0 an empty TVector3 is returned.
302//
303TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
304{
305 Double_t x1 = x(0);
306 Double_t x2 = x(1);
307 Double_t x3 = x(2);
308
309 Double_t y1 = y(0);
310 Double_t y2 = y(1);
311 Double_t y3 = y(2);
312
313 const double det =
314 + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
315 - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
316
317
318 if (det==0)
319 return TVector3();
320
321 const double det1 = 1.0/det;
322
323 const double ai11 = x2*x3*x3 - x3*x2*x2;
324 const double ai12 = x3*x1*x1 - x1*x3*x3;
325 const double ai13 = x1*x2*x2 - x2*x1*x1;
326
327 const double ai21 = x2*x2 - x3*x3;
328 const double ai22 = x3*x3 - x1*x1;
329 const double ai23 = x1*x1 - x2*x2;
330
331 const double ai31 = x3 - x2;
332 const double ai32 = x1 - x3;
333 const double ai33 = x2 - x1;
334
335 return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
336 (ai21*y1 + ai22*y2 + ai23*y3) * det1,
337 (ai31*y1 + ai32*y2 + ai33*y3) * det1);
338}
339
340Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
341{
342 const TVector3 c = GetParab(vx, vy);
343 return c(0) + c(1)*x + c(2)*x*x;
344}
345
346Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
347{
348 const Double_t l0 = TMath::Log10(vx(0));
349 const Double_t l1 = TMath::Log10(vx(1));
350 const Double_t l2 = TMath::Log10(vx(2));
351
352 const TVector3 vx0(l0, l1, l2);
353 return InterpolParabLin(vx0, vy, TMath::Log10(x));
354}
355
356Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
357{
358 const Double_t l0 = TMath::Cos(vx(0));
359 const Double_t l1 = TMath::Cos(vx(1));
360 const Double_t l2 = TMath::Cos(vx(2));
361
362 const TVector3 vx0(l0, l1, l2);
363 return InterpolParabLin(vx0, vy, TMath::Cos(x));
364}
365
366// --------------------------------------------------------------------------
367//
368// Analytically calculated result of a least square fit of:
369// y = A*e^(B*x)
370// Equal weights
371//
372// It returns TArrayD(2) = { A, B };
373//
374// see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
375//
376TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y)
377{
378 Double_t sumxsqy = 0;
379 Double_t sumylny = 0;
380 Double_t sumxy = 0;
381 Double_t sumy = 0;
382 Double_t sumxylny = 0;
383 for (int i=0; i<n; i++)
384 {
385 sumylny += y[i]*TMath::Log(y[i]);
386 sumxy += x[i]*y[i];
387 sumxsqy += x[i]*x[i]*y[i];
388 sumxylny += x[i]*y[i]*TMath::Log(y[i]);
389 sumy += y[i];
390 }
391
392 const Double_t dev = sumy*sumxsqy - sumxy*sumxy;
393
394 const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev;
395 const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev;
396
397 TArrayD rc(2);
398 rc[0] = TMath::Exp(a);
399 rc[1] = b;
400 return rc;
401}
402
403// --------------------------------------------------------------------------
404//
405// Analytically calculated result of a least square fit of:
406// y = A*e^(B*x)
407// Greater weights to smaller values
408//
409// It returns TArrayD(2) = { A, B };
410//
411// see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
412//
413TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y)
414{
415 // -------- Greater weights to smaller values ---------
416 Double_t sumlny = 0;
417 Double_t sumxlny = 0;
418 Double_t sumxsq = 0;
419 Double_t sumx = 0;
420 for (int i=0; i<n; i++)
421 {
422 sumlny += TMath::Log(y[i]);
423 sumxlny += x[i]*TMath::Log(y[i]);
424
425 sumxsq += x[i]*x[i];
426 sumx += x[i];
427 }
428
429 const Double_t dev = n*sumxsq-sumx*sumx;
430
431 const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev;
432 const Double_t b = (n*sumxlny - sumx*sumlny)/dev;
433
434 TArrayD rc(2);
435 rc[0] = TMath::Exp(a);
436 rc[1] = b;
437 return rc;
438}
439
440// --------------------------------------------------------------------------
441//
442// Analytically calculated result of a least square fit of:
443// y = A+B*ln(x)
444//
445// It returns TArrayD(2) = { A, B };
446//
447// see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
448//
449TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y)
450{
451 Double_t sumylnx = 0;
452 Double_t sumy = 0;
453 Double_t sumlnx = 0;
454 Double_t sumlnxsq = 0;
455 for (int i=0; i<n; i++)
456 {
457 sumylnx += y[i]*TMath::Log(x[i]);
458 sumy += y[i];
459 sumlnx += TMath::Log(x[i]);
460 sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
461 }
462
463 const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx);
464 const Double_t a = (sumy-b*sumlnx)/n;
465
466 TArrayD rc(2);
467 rc[0] = a;
468 rc[1] = b;
469 return rc;
470}
471
472// --------------------------------------------------------------------------
473//
474// Analytically calculated result of a least square fit of:
475// y = A*x^B
476//
477// It returns TArrayD(2) = { A, B };
478//
479// see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
480//
481TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y)
482{
483 Double_t sumlnxlny = 0;
484 Double_t sumlnx = 0;
485 Double_t sumlny = 0;
486 Double_t sumlnxsq = 0;
487 for (int i=0; i<n; i++)
488 {
489 sumlnxlny += TMath::Log(x[i])*TMath::Log(y[i]);
490 sumlnx += TMath::Log(x[i]);
491 sumlny += TMath::Log(y[i]);
492 sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
493 }
494
495 const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx);
496 const Double_t a = (sumlny-b*sumlnx)/n;
497
498 TArrayD rc(2);
499 rc[0] = TMath::Exp(a);
500 rc[1] = b;
501 return rc;
502}
503
504// --------------------------------------------------------------------------
505//
506// Calculate the intersection of two lines defined by (x1;y1) and (x2;x2)
507// Returns the intersection point.
508//
509// It is assumed that the lines intersect. If there is no intersection
510// TVector2() is returned (which is not destinguishable from
511// TVector2(0,0) if the intersection is at the coordinate source)
512//
513// Formula from: http://mathworld.wolfram.com/Line-LineIntersection.html
514//
515TVector2 MMath::GetIntersectionPoint(const TVector2 &x1, const TVector2 &y1, const TVector2 &x2, const TVector2 &y2)
516{
517 TMatrix d(2,2);
518 d[0][0] = x1.X()-y1.X();
519 d[0][1] = x2.X()-y2.X();
520 d[1][0] = x1.Y()-y1.Y();
521 d[1][1] = x2.Y()-y2.Y();
522
523 const Double_t denom = d.Determinant();
524 if (denom==0)
525 return TVector2();
526
527 TMatrix l1(2,2);
528 TMatrix l2(2,2);
529
530 l1[0][0] = x1.X();
531 l1[0][1] = y1.X();
532 l2[0][0] = x2.X();
533 l2[0][1] = y2.X();
534
535 l1[1][0] = x1.Y();
536 l1[1][1] = y1.Y();
537 l2[1][0] = x2.Y();
538 l2[1][1] = y2.Y();
539
540 TMatrix a(2,2);
541 a[0][0] = l1.Determinant();
542 a[0][1] = l2.Determinant();
543 a[1][0] = x1.X()-y1.X();
544 a[1][1] = x2.X()-y2.X();
545
546 const Double_t X = a.Determinant()/denom;
547
548 a[1][0] = x1.Y()-y1.Y();
549 a[1][1] = x2.Y()-y2.Y();
550
551 const Double_t Y = a.Determinant()/denom;
552
553 return TVector2(X, Y);
554}
555
556// --------------------------------------------------------------------------
557//
558// Solves: x^2 + ax + b = 0;
559// Return number of solutions returned as x1, x2
560//
561Int_t MMath::SolvePol2(Double_t a, Double_t b, Double_t &x1, Double_t &x2)
562{
563 const Double_t r = a*a - 4*b;
564 if (r<0)
565 return 0;
566
567 if (r==0)
568 {
569 x1 = x2 = -a/2;
570 return 1;
571 }
572
573 const Double_t s = TMath::Sqrt(r);
574
575 x1 = (-a+s)/2;
576 x2 = (-a-s)/2;
577
578 return 2;
579}
580
581// --------------------------------------------------------------------------
582//
583// This is a helper function making the execution of SolverPol3 a bit faster
584//
585static inline Double_t ReMul(const TComplex &c1, const TComplex &th)
586{
587 const TComplex c2 = TComplex::Cos(th/3.);
588 return c1.Re() * c2.Re() - c1.Im() * c2.Im();
589}
590
591// --------------------------------------------------------------------------
592//
593// Solves: x^3 + ax^2 + bx + c = 0;
594// Return number of the real solutions, returned as z1, z2, z3
595//
596// Algorithm adapted from http://home.att.net/~srschmitt/cubizen.heml
597// Which is based on the solution given in
598// http://mathworld.wolfram.com/CubicEquation.html
599//
600// -------------------------------------------------------------------------
601//
602// Exact solutions of cubic polynomial equations
603// by Stephen R. Schmitt Algorithm
604//
605// An exact solution of the cubic polynomial equation:
606//
607// x^3 + a*x^2 + b*x + c = 0
608//
609// was first published by Gerolamo Cardano (1501-1576) in his treatise,
610// Ars Magna. He did not discoverer of the solution; a professor of
611// mathematics at the University of Bologna named Scipione del Ferro (ca.
612// 1465-1526) is credited as the first to find an exact solution. In the
613// years since, several improvements to the original solution have been
614// discovered. Zeno source code
615//
616// http://home.att.net/~srschmitt/cubizen.html
617//
618// % compute real or complex roots of cubic polynomial
619// function cubic( var z1, z2, z3 : real, a, b, c : real ) : real
620//
621// var Q, R, D, S, T : real
622// var im, th : real
623//
624// Q := (3*b - a^2)/9
625// R := (9*b*a - 27*c - 2*a^3)/54
626// D := Q^3 + R^2 % polynomial discriminant
627//
628// if (D >= 0) then % complex or duplicate roots
629//
630// S := sgn(R + sqrt(D))*abs(R + sqrt(D))^(1/3)
631// T := sgn(R - sqrt(D))*abs(R - sqrt(D))^(1/3)
632//
633// z1 := -a/3 + (S + T) % real root
634// z2 := -a/3 - (S + T)/2 % real part of complex root
635// z3 := -a/3 - (S + T)/2 % real part of complex root
636// im := abs(sqrt(3)*(S - T)/2) % complex part of root pair
637//
638// else % distinct real roots
639//
640// th := arccos(R/sqrt( -Q^3))
641//
642// z1 := 2*sqrt(-Q)*cos(th/3) - a/3
643// z2 := 2*sqrt(-Q)*cos((th + 2*pi)/3) - a/3
644// z3 := 2*sqrt(-Q)*cos((th + 4*pi)/3) - a/3
645// im := 0
646//
647// end if
648//
649// return im % imaginary part
650//
651// end function
652//
653// see also http://en.wikipedia.org/wiki/Cubic_equation
654//
655Int_t MMath::SolvePol3(Double_t a, Double_t b, Double_t c,
656 Double_t &x1, Double_t &x2, Double_t &x3)
657{
658 // Double_t coeff[4] = { 1, a, b, c };
659 // return TMath::RootsCubic(coeff, x1, x2, x3) ? 1 : 3;
660
661 const Double_t Q = (a*a - 3*b)/9;
662 const Double_t R = (9*b*a - 27*c - 2*a*a*a)/54;
663 const Double_t D = R*R - Q*Q*Q; // polynomial discriminant
664
665 // ----- The single-real / duplicate-roots solution -----
666
667 // D<0: three real roots
668 // D>0: one real root
669 // D==0: maximum two real roots (two identical roots)
670
671 // R==0: only one unique root
672 // R!=0: two roots
673
674 if (D==0)
675 {
676 const Double_t r = MMath::Sqrt3(R);
677
678 x1 = r - a/3.; // real root
679 if (R==0)
680 return 1;
681
682 x2 = 2*r - a/3.; // real root
683 return 2;
684 }
685
686 if (D>0) // complex or duplicate roots
687 {
688 const Double_t sqrtd = TMath::Sqrt(D);
689
690 const Double_t S = MMath::Sqrt3(R + sqrtd);
691 const Double_t T = MMath::Sqrt3(R - sqrtd);
692
693 x1 = (S+T) - a/3.; // real root
694
695 return 1;
696
697 //z2 = (S + T)/2 - a/3.; // real part of complex root
698 //z3 = (S + T)/2 - a/3.; // real part of complex root
699 //im = fabs(sqrt(3)*(S - T)/2) // complex part of root pair
700 }
701
702 // ----- The general solution with three roots ---
703
704 if (Q==0)
705 return 0;
706
707 if (Q>0) // This is here for speed reasons
708 {
709 const Double_t sqrtq = TMath::Sqrt(Q);
710 const Double_t rq = R/TMath::Abs(Q);
711
712 const Double_t t = TMath::ACos(rq/sqrtq)/3;
713
714 static const Double_t sqrt3 = TMath::Sqrt(3.);
715
716 const Double_t s = TMath::Sin(t)*sqrt3;
717 const Double_t c = TMath::Cos(t);
718
719 x1 = 2*sqrtq * c - a/3;
720 x2 = -sqrtq * (s + c) - a/3;
721 x3 = sqrtq * (s - c) - a/3;
722
723 /* --- Easier to understand but slower ---
724 const Double_t th1 = TMath::ACos(rq/sqrtq);
725 const Double_t th2 = th1 + TMath::TwoPi();
726 const Double_t th3 = th2 + TMath::TwoPi();
727
728 x1 = 2.*sqrtq * TMath::Cos(th1/3.) - a/3.;
729 x2 = 2.*sqrtq * TMath::Cos(th2/3.) - a/3.;
730 x3 = 2.*sqrtq * TMath::Cos(th3/3.) - a/3.;
731 */
732 return 3;
733 }
734
735 const TComplex sqrtq = TComplex::Sqrt(Q);
736 const Double_t rq = R/TMath::Abs(Q);
737
738 const TComplex th1 = TComplex::ACos(rq/sqrtq);
739 const TComplex th2 = th1 + TMath::TwoPi();
740 const TComplex th3 = th2 + TMath::TwoPi();
741
742 // For ReMul, see bove
743 x1 = ReMul(2.*sqrtq, th1) - a/3.;
744 x2 = ReMul(2.*sqrtq, th2) - a/3.;
745 x3 = ReMul(2.*sqrtq, th3) - a/3.;
746
747 return 3;
748}
Note: See TracBrowser for help on using the repository browser.