/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 3/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MMath // ///////////////////////////////////////////////////////////////////////////// #include "MMath.h" ClassImp(MMath); using namespace std; // -------------------------------------------------------------------------- // // Calculate Significance as // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b // // s: total number of events in signal region // b: number of background events in signal region // Double_t MMath::Significance(Double_t s, Double_t b) { const Double_t k = b==0 ? 0 : s/b; const Double_t f = s+k*k*b; return f==0 ? 0 : (s-b)/TMath::Sqrt(f); } // -------------------------------------------------------------------------- // // calculates the significance according to Li & Ma // ApJ 272 (1983) 317, Formula 17 // // s // s: number of on events // b // b: number of off events // alpha = t_on/t_off; // t: observation time // // Returns -1 if sum<0 or alpha<0 or the argument of sqrt<0 // Returns 0 if s+b==0 // Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha) { const Double_t sum = s+b; if (sum==0) return 0; if (sum<0 || alpha<=0) return -1; const Double_t l = s*TMath::Log(s/sum*(alpha+1)/alpha); const Double_t m = b*TMath::Log(b/sum*(alpha+1) ); return l+m<0 ? -1 : TMath::Sqrt((l+m)*2); }