/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 3/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MMath // ///////////////////////////////////////////////////////////////////////////// #include "MMath.h" ClassImp(MMath); using namespace std; // -------------------------------------------------------------------------- // // Calculate Significance as // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b // // s: total number of events in signal region // b: number of background events in signal region // Double_t MMath::Significance(Double_t s, Double_t b) { const Double_t k = b==0 ? 0 : s/b; const Double_t f = s+k*k*b; return f==0 ? 0 : (s-b)/Sqrt(f); } // -------------------------------------------------------------------------- // // Symmetrized significance - this is somehow analog to // SignificanceLiMaSigned // // Returns Significance(s,b) if s>b otherwise -Significance(b, s); // Double_t MMath::SignificanceSym(Double_t s, Double_t b) { return s>b ? Significance(s, b) : -Significance(b, s); } // -------------------------------------------------------------------------- // // calculates the significance according to Li & Ma // ApJ 272 (1983) 317, Formula 17 // // s // s: number of on events // b // b: number of off events // alpha = t_on/t_off; // t: observation time // // The significance has the same (positive!) value for s>b and b>s. // // Returns -1 if sum<0 or alpha<0 or the argument of sqrt<0 // Returns 0 if s+b==0 // Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha) { const Double_t sum = s+b; if (sum==0) return 0; if (sum<0 || alpha<=0) return -1; const Double_t l = s*Log(s/sum*(alpha+1)/alpha); const Double_t m = b*Log(b/sum*(alpha+1) ); return l+m<0 ? -1 : Sqrt((l+m)*2); } // -------------------------------------------------------------------------- // // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the // calculation has failed. Otherwise the Li/Ma significance which was // calculated. If s TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y) { Double_t x1 = x(0); Double_t x2 = x(1); Double_t x3 = x(2); Double_t y1 = y(0); Double_t y2 = y(1); Double_t y3 = y(2); const double det = + x2*x3*x3 + x1*x2*x2 + x3*x1*x1 - x2*x1*x1 - x3*x2*x2 - x1*x3*x3; if (det==0) return TVector3(); const double det1 = 1.0/det; const double ai11 = x2*x3*x3 - x3*x2*x2; const double ai12 = x3*x1*x1 - x1*x3*x3; const double ai13 = x1*x2*x2 - x2*x1*x1; const double ai21 = x2*x2 - x3*x3; const double ai22 = x3*x3 - x1*x1; const double ai23 = x1*x1 - x2*x2; const double ai31 = x3 - x2; const double ai32 = x1 - x3; const double ai33 = x2 - x1; return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1, (ai21*y1 + ai22*y2 + ai23*y3) * det1, (ai31*y1 + ai32*y2 + ai33*y3) * det1); } Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x) { const TVector3 c = GetParab(vx, vy); return c(0) + c(1)*x + c(2)*x*x; } Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x) { const Double_t l0 = TMath::Log10(vx(0)); const Double_t l1 = TMath::Log10(vx(1)); const Double_t l2 = TMath::Log10(vx(2)); const TVector3 vx0(l0, l1, l2); return InterpolParabLin(vx0, vy, TMath::Log10(x)); } Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x) { const Double_t l0 = TMath::Cos(vx(0)); const Double_t l1 = TMath::Cos(vx(1)); const Double_t l2 = TMath::Cos(vx(2)); const TVector3 vx0(l0, l1, l2); return InterpolParabLin(vx0, vy, TMath::Cos(x)); }