/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 3/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MMath // ///////////////////////////////////////////////////////////////////////////// #include "MMath.h" // -------------------------------------------------------------------------- // // Calculate Significance as // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b // // s: total number of events in signal region // b: number of background events in signal region // Double_t MMath::Significance(Double_t s, Double_t b) { const Double_t k = b==0 ? 0 : s/b; const Double_t f = s+k*k*b; return f==0 ? 0 : (s-b)/TMath::Sqrt(f); } // -------------------------------------------------------------------------- // // Symmetrized significance - this is somehow analog to // SignificanceLiMaSigned // // Returns Significance(s,b) if s>b otherwise -Significance(b, s); // Double_t MMath::SignificanceSym(Double_t s, Double_t b) { return s>b ? Significance(s, b) : -Significance(b, s); } // -------------------------------------------------------------------------- // // calculates the significance according to Li & Ma // ApJ 272 (1983) 317, Formula 17 // // s // s: number of on events // b // b: number of off events // alpha = t_on/t_off; // t: observation time // // The significance has the same (positive!) value for s>b and b>s. // // Returns -1 if sum<0 or alpha<0 or the argument of sqrt<0 // Returns 0 if s+b==0, s==0 or b==0 // // Here is some eMail written by Daniel Mazin about the meaning of the arguments: // // > Ok. Here is my understanding: // > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the // > scaling factor. The mathematics behind the formula 17 (and/or 9) implies // > exactly this. If you scale OFF to ON first (using time or using any other // > method), then you cannot use formula 17 (9) anymore. You can just try // > the formula before scaling (alpha!=1) and after scaling (alpha=1), you // > will see the result will be different. // // > Here are less mathematical arguments: // // > 1) the better background determination you have (smaller alpha) the more // > significant is your excess, thus your analysis is more sensitive. If you // > normalize OFF to ON first, you loose this sensitivity. // // > 2) the normalization OFF to ON has an error, which naturally depends on // > the OFF and ON. This error is propagating to the significance of your // > excess if you use the Li&Ma formula 17 correctly. But if you normalize // > first and use then alpha=1, the error gets lost completely, you loose // > somehow the criteria of goodness of the normalization. // Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha) { const Double_t sum = s+b; if (s==0 || b==0 || sum==0) return 0; if (sum<0 || alpha<=0) return -1; const Double_t l = s*TMath::Log(s/sum*(alpha+1)/alpha); const Double_t m = b*TMath::Log(b/sum*(alpha+1) ); return l+m<0 ? -1 : TMath::Sqrt((l+m)*2); } // -------------------------------------------------------------------------- // // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the // calculation has failed. Otherwise the Li/Ma significance which was // calculated. If s