/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 3/2004 ! ! Copyright: MAGIC Software Development, 2000-2005 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MMath // // Mars - Math package (eg Significances, etc) // ///////////////////////////////////////////////////////////////////////////// #include "MMath.h" #ifndef ROOT_TVector3 #include #endif #ifndef ROOT_TArrayD #include #endif // -------------------------------------------------------------------------- // // Calculate Significance as // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b // // s: total number of events in signal region // b: number of background events in signal region // Double_t MMath::Significance(Double_t s, Double_t b) { const Double_t k = b==0 ? 0 : s/b; const Double_t f = s+k*k*b; return f==0 ? 0 : (s-b)/TMath::Sqrt(f); } // -------------------------------------------------------------------------- // // Symmetrized significance - this is somehow analog to // SignificanceLiMaSigned // // Returns Significance(s,b) if s>b otherwise -Significance(b, s); // Double_t MMath::SignificanceSym(Double_t s, Double_t b) { return s>b ? Significance(s, b) : -Significance(b, s); } // -------------------------------------------------------------------------- // // calculates the significance according to Li & Ma // ApJ 272 (1983) 317, Formula 17 // // s // s: number of on events // b // b: number of off events // alpha = t_on/t_off; // t: observation time // // The significance has the same (positive!) value for s>b and b>s. // // Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0 // // Here is some eMail written by Daniel Mazin about the meaning of the arguments: // // > Ok. Here is my understanding: // > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the // > scaling factor. The mathematics behind the formula 17 (and/or 9) implies // > exactly this. If you scale OFF to ON first (using time or using any other // > method), then you cannot use formula 17 (9) anymore. You can just try // > the formula before scaling (alpha!=1) and after scaling (alpha=1), you // > will see the result will be different. // // > Here are less mathematical arguments: // // > 1) the better background determination you have (smaller alpha) the more // > significant is your excess, thus your analysis is more sensitive. If you // > normalize OFF to ON first, you loose this sensitivity. // // > 2) the normalization OFF to ON has an error, which naturally depends on // > the OFF and ON. This error is propagating to the significance of your // > excess if you use the Li&Ma formula 17 correctly. But if you normalize // > first and use then alpha=1, the error gets lost completely, you loose // > somehow the criteria of goodness of the normalization. // Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha) { const Double_t sum = s+b; if (s<0 || b<0 || alpha<=0) return -1; const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha); const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1) ); return l+m<0 ? -1 : TMath::Sqrt((l+m)*2); } // -------------------------------------------------------------------------- // // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the // calculation has failed. Otherwise the Li/Ma significance which was // calculated. If s1) return 1; return rc; } // -------------------------------------------------------------------------- // // This function reduces the precision to roughly 0.5% of a Float_t by // changing its bit-pattern (Be carefull, in rare cases this function must // be adapted to different machines!). This is usefull to enforce better // compression by eg. gzip. // void MMath::ReducePrecision(Float_t &val) { UInt_t &f = (UInt_t&)val; f += 0x00004000; f &= 0xffff8000; } // ------------------------------------------------------------------------- // // Quadratic interpolation // // calculate the parameters of a parabula such that // y(i) = a + b*x(i) + c*x(i)^2 // // If the determinant==0 an empty TVector3 is returned. // TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y) { Double_t x1 = x(0); Double_t x2 = x(1); Double_t x3 = x(2); Double_t y1 = y(0); Double_t y2 = y(1); Double_t y3 = y(2); const double det = + x2*x3*x3 + x1*x2*x2 + x3*x1*x1 - x2*x1*x1 - x3*x2*x2 - x1*x3*x3; if (det==0) return TVector3(); const double det1 = 1.0/det; const double ai11 = x2*x3*x3 - x3*x2*x2; const double ai12 = x3*x1*x1 - x1*x3*x3; const double ai13 = x1*x2*x2 - x2*x1*x1; const double ai21 = x2*x2 - x3*x3; const double ai22 = x3*x3 - x1*x1; const double ai23 = x1*x1 - x2*x2; const double ai31 = x3 - x2; const double ai32 = x1 - x3; const double ai33 = x2 - x1; return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1, (ai21*y1 + ai22*y2 + ai23*y3) * det1, (ai31*y1 + ai32*y2 + ai33*y3) * det1); } Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x) { const TVector3 c = GetParab(vx, vy); return c(0) + c(1)*x + c(2)*x*x; } Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x) { const Double_t l0 = TMath::Log10(vx(0)); const Double_t l1 = TMath::Log10(vx(1)); const Double_t l2 = TMath::Log10(vx(2)); const TVector3 vx0(l0, l1, l2); return InterpolParabLin(vx0, vy, TMath::Log10(x)); } Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x) { const Double_t l0 = TMath::Cos(vx(0)); const Double_t l1 = TMath::Cos(vx(1)); const Double_t l2 = TMath::Cos(vx(2)); const TVector3 vx0(l0, l1, l2); return InterpolParabLin(vx0, vy, TMath::Cos(x)); } // -------------------------------------------------------------------------- // // Analytically calculated result of a least square fit of: // y = A*e^(B*x) // Equal weights // // It returns TArrayD(2) = { A, B }; // // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html // TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y) { Double_t sumxsqy = 0; Double_t sumylny = 0; Double_t sumxy = 0; Double_t sumy = 0; Double_t sumxylny = 0; for (int i=0; i